Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium

Jie Ren , Zhuo Zhang , Mei Wang , Guanlin Guo , Ping Du , Fasheng Li

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 10

PDF (480KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 10 DOI: 10.1007/s11783-018-1006-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium

Author information +
History +
PDF (480KB)

Abstract

• Abilities of phosphates to stabilize heavy metal contaminated soils were studied.

• Phosphate-induced changes in soil pH affected the stabilization.

• Stabilization efficiencies were different in both single and ternary metal system.

• Competitive Pb stabilization was shown in soils with ternary metals.

Phosphates can cost-effectively decrease the mobility of Pb in contaminated soils. However, Pb always coexists with other metals in soil, their competitive reactions with phosphates have not been tested. In this study, the abilities of KH2PO4, K2HPO4, and K3PO4 to stabilize Pb, Zn, and Cd in soils contaminated with a single metal or a ternary metal for different phosphorus/metal molar ratios were investigated. Results indicated that the stabilization efficiency of KH2PO4, K2HPO4, and K3PO4 for Pb, Zn, and Cd in single metal contaminated soil (P/M ratio 0.6) was 96.00%–98.74%, 33.76%–47.81%, and 9.50%–55.79%, respectively. Competitive stabilization occurred in the ternary system, Pb exhibited a strong competition, the stabilization efficiency of Zn and Cd reduced by 23.50%–31.64%, and 7.10%–39.26%, respectively. Pyromorphite and amorphous lead phosphate formed with excess KH2PO4 or K2HPO4 addition, while K3PO4 resulted in the formation of a hydroxypyromorphite precipitate. Amorphous Zn and Cd phosphates and hydroxides were the primary products. The immobilization rate of Zn and Cd depends on pH, and increased significantly in response to the excess phosphate application. This approach provides insight into phosphate-induced differences in stabilization efficiency in soils contaminated with multiple metals, which is of theoretical and engineering significance.

Graphical abstract

Keywords

Heavy metals / Metal-contaminated soil / Phosphate / Competitive stabilization

Cite this article

Download citation ▾
Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium. Front. Environ. Sci. Eng., 2018, 12(2): 10 DOI:10.1007/s11783-018-1006-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahn JKang SHwang KKim HKim JSong HHwang I. Evaluation of phosphate fertilizers and red mud in reducing plant availability of Cd, Pb, and Zn in mine tailings. Environmental Earth Sciences201574(3): 2659–2668

[2]

Zhang ZGuo GTeng YWang JRhee J SWang SLi F. Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site. Journal of Hazardous Materials2015288: 140–146

[3]

Fang YCao XZhao L. Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil. Environmental Science and Pollution Research International201219(5): 1659–1667

[4]

Sdiri AHigashi TChaabouni RJamoussi F. Competitive removal of heavy metals from aqueous solutions by montmorillonitic and calcareous clays. Water, Air, and Soil Pollution2012223(3): 1191–1204

[5]

Cao XMa L QRhue D RAppel C S. Mechanisms of lead, copper, and zinc retention by phosphate rock. Environmental Pollution2004131(3): 435–444

[6]

Chen SXu MMa YYang J. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environmental Safety200767(2): 278–285

[7]

Impellitteri C A. Effects of pH and phosphate on metal distribution with emphasis on As speciation and mobilization in soils from a lead smelting site. Science of the Total Environment2005345(1–3): 175–190

[8]

Corami AMignardi SFerrini V. Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite. Journal of Hazardous Materials2007146(1–2): 164–170

[9]

Corami AMignardi SFerrini V. Cadmium removal from single- and multi-metal (Cd+ Pb+ Zn+ Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science2008317(2): 402–408

[10]

Ma L QRao G N. Aqueous Pb reduction in Pb-contaminated soils by florida phosphate rocks. Water, Air, and Soil Pollution1999110(1–2): 1–16

[11]

Hashimoto YSato T. Removal of aqueous lead by poorly-crystalline hydroxyapatites. Chemosphere200769(11): 1775–1782

[12]

Jalali MMoradi F. Competitive sorption of Cd, Cu, Mn, Ni, Pb and Zn in polluted and unpolluted calcareous soils. Environmental Monitoring and Assessment2013185(11): 8831–8846

[13]

Miretzky PFernandez-Cirelli A. Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters20086(3): 121–133

[14]

Austruy AShahid MXiong T TCastrec MPayre VNiazi N KSabir MDumat C. Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. Journal of Soils and Sediments201414(4): 666–678

[15]

Cao XLiang YZhao LLe H. Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions. Environmental Science and Pollution Research International201320(9): 5913–5921

[16]

Zhang ZRen JWang MSong XZhang CChen JLi FGuo G. Competitive immobilization of Pb in an aqueous ternary-metals system by soluble phosphates with varying pH. Chemosphere2016159: 58–65

[17]

Barrett J ETaylor K GHudson-Edwards K ACharnock J M. Solid-phase speciation of Pb in urban road dust sediment: a XANES and EXAFS study. Environmental Science & Technology201044(8): 2940–2946

[18]

USEPA. USEPA 1311 SW-846. Test Methods for Evaluating Solid Wastes. Physical/Chemical Methods. Washington DC: US Environmental Protection Agency1991

[19]

Vandenhove HVanhoudt NDuquène LAntunes KWannijn J. Comparison of two sequential extraction procedures for uranium fractionation in contaminated soils. Journal of Environmental Radioactivity2014137: 1–9

[20]

Wang LPutnis C VRuiz-Agudo EKing H EPutnis A. Coupled dissolution and precipitation at the cerussite-phosphate solution interface: implications for immobilization of lead in soils. Environmental Science & Technology201347(23): 13502–13510

[21]

Chen X BWright J VConca J LPeurrung L M. Effects of pH on heavy metal sorption on mineral apatite. Environmental Science & Technology199731(3): 624–631

[22]

Ma Q YTraina S JLogan T JRyan J A. Effects of Aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb Immobilization by Hydroxyapatite. Environmental Science & Technology199428(7): 1219–1228

[23]

Hodson M EValsami-Jones  É,Cotter-Howells  J D. Bonemeal additions as a remediation treatment for metal contaminated soil. Environmental Science & Technology200034(16): 3501–3507

[24]

Matusik JBajda TManecki M. Immobilization of aqueous cadmium by addition of phosphates.  Journal of Hazardous Materials2008152(3): 1332–1339

[25]

Shevade A VErickson LPierzynski GJiang S. Formation and stability of substituted pyromorphite: A molecular modeling study. Journal of Hazardous Substance Research, 2002(3): 1–11

[26]

Bosso S TEnzweiler JAngélica R S. Lead bioaccessibility in soil and mine wastes after immobilization with phosphate. Water, Air, and Soil Pollution2008195(1–4):257–273

[27]

Cao XWahbi AMa LLi BYang Y. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials2009164(2–3): 555–564

[28]

Gupta D KChatterjee SDatta SVeer VWalther C. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere2014108: 134–144

[29]

Ma Q YLogan T JTraina S J. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental Science & Technology199529(4): 1118–1126

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (480KB)

2806

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/