REVIEW ARTICLE

Catalysis of semihydrogenation of acetylene to ethylene: current trends, challenges, and outlook

  • Toyin D. Shittu 1 ,
  • Olumide B. Ayodele , 2,3
Expand
  • 1. Department of Chemical and Petroleum Engineering, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
  • 2. Department of Micro and Nanofabrication, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
  • 3. School of Chemical Engineering, Engineering Campus, University of Science Malaysia, Nibong Tebal 14300, Malaysia

Received date: 04 Jul 2021

Accepted date: 06 Sep 2021

Published date: 15 Jul 2022

Copyright

2021 Higher Education Press

Abstract

Ethylene is an important feedstock for various industrial processes, particularly in the polymer industry. Unfortunately, during naphtha cracking to produce ethylene, there are instances of acetylene presence in the product stream, which poisons the Ziegler–Natta polymerization catalysts. Thus, appropriate process modification, optimization, and in particular, catalyst design are essential to ensure the production of highly pure ethylene that is suitable as a feedstock in polymerization reactions. Accordingly, carefully selected process parameters and the application of various catalyst systems have been optimized for this purpose. This review provides a holistic view of the recent reports on the selective hydrogenation of acetylene. Previously published reviews were limited to Pd catalysts. However, effective new metal and non-metal catalysts have been explored for selective acetylene hydrogenation. Updates on this recent progress and more comprehensive computational studies that are now available for the reaction are described herein. In addition to the favored Pd catalysts, other catalyst systems including mono, bimetallic, trimetallic, and ionic catalysts are presented. The specific role(s) that each process parameter plays to achieve high acetylene conversion and ethylene selectivity is discussed. Attempts have been made to elucidate the possible catalyst deactivation mechanisms involved in the reaction. Extensive reports suggest that acetylene adsorption occurs through an active single-site mechanism rather than via dual active sites. An increase in the reaction temperature affords high acetylene conversion and ethylene selectivity to obtain reactant streams free of ethylene. Conflicting findings to this trend have reported the presence of ethylene in the feed stream. This review will serve as a useful resource of condensed information for researchers in the field of acetylene-selective hydrogenation.

Cite this article

Toyin D. Shittu , Olumide B. Ayodele . Catalysis of semihydrogenation of acetylene to ethylene: current trends, challenges, and outlook[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(7) : 1031 -1059 . DOI: 10.1007/s11705-021-2113-3

1
Barazandeh K, Dehghani O, Hamidi M, Aryafard E, Rahimpour M R. Investigation of coil outlet temperature effect on the performance of naphtha cracking furnace. Chemical Engineering Research & Design, 2015, 94(14): 307–316

DOI

2
Dehghani O, Rahimpour M R, Shariati A. An experimental approach on industrial Pd-Ag supported α-Al2O3 catalyst used in acetylene hydrogenation process: mechanism, kinetic and catalyst decay. Processes (Basel, Switzerland), 2019, 7(3): 136–157

DOI

3
Benavidez A D, Burton P D, Nogales J L, Jenkins A R, Ivanov S A, Miller J T, Karim A M, Datye A K. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene. Applied Catalysis A, General, 2014, 482: 108–115

DOI

4
He Y, Liang L, Liu Y, Feng J, Ma C, Li D. Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd-Ga/MgO-Al2O3 catalyst. Journal of Catalysis, 2014, 309: 166–173

DOI

5
Molnár Á, Sárkány A, Varga M. Hydrogenation of carbon-carbon multiple bonds: chemo-, regio- and stereo-selectivity. Journal of Molecular Catalysis A Chemical, 2001, 173(1–2): 185–221

DOI

6
Urmès C, Schweitzer J M, Cabiac A, Schuurman Y. Kinetic study of the selective hydrogenation of acetylene over supported palladium under tail-end conditions. Catalysts, 2019, 9(2): 180–192

DOI

7
McCue A J, Anderson J A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 2015, 9(2): 142–153

DOI

8
Zhou H, Yang X, Li L, Liu X, Huang Y, Pan X, Wang A, Li J, Zhang T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catalysis, 2016, 6(2): 1054–1061

DOI

9
Liu Y, McCue A J, Miao C, Feng J, Li D, Anderson J A. Palladium phosphide nanoparticles as highly selective catalysts for the selective hydrogenation of acetylene. Journal of Catalysis, 2018, 364: 406–414

DOI

10
Gärtner C A, van Veen A C, Lercher J A. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem, 2013, 5(11): 3196–3217

DOI

11
Esmaeili E, Mortazavi Y, Khodadadi A A, Rashidi A M, Rashidzadeh M. The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene. Applied Surface Science, 2012, 263: 513–522

DOI

12
Ravanchi M T, Sahebdelfar S, Komeili S. Acetylene selective hydrogenation: a technical review on catalytic aspects. Reviews in Chemical Engineering, 2018, 34(2): 215–237

DOI

13
Ayodele O B, Cai R, Wang J, Ziouani Y, Liang Z, Chiara Spadaro M, Kovnir K, Arbiol J, Akola J, Palmer R, . Synergistic computational-experimental discovery of highly selective PtCu nanocluster catalysts for acetylene semihydrogenation. ACS Catalysis, 2019, 10(1): 451–457

DOI

14
Zhang S, Chen C Y, Jang B W L, Zhu A M. Radio-frequency H2 plasma treatment of AuPd/TiO2 catalyst for selective hydrogenation of acetylene in excess ethylene. Catalysis Today, 2015, 256: 161–169

DOI

15
Gulyaeva Y K, Kaichev V V, Zaikovskii V I, Kovalyov E V, Suknev A P, Bal’zhinimaev B S. Selective hydrogenation of acetylene over novel Pd/fiberglass catalysts. Catalysis Today, 2015, 245: 139–146

DOI

16
Komeili S, Takht Ravanchi M, Rahimi Fard M, Taeb A. Effect of Ni-modified alpha alumina on the textural properties as a catalyst support. In 8th International Chemical Engineering Congress (IChEC 2014), Kish Island, Iran. 2014

17
McKenna F, Mantarosie L, Wells R, Hardacre C, Anderson J. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catalysis Science & Technology, 2012, 2(3): 632–638

DOI

18
Yang B, Burch R, Hardacre C, Headdock G, Hu P. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: a density functional theory study. Journal of Catalysis, 2013, 305: 264–276

DOI

19
Hu M, Wang X. Effect of N3 species on selective acetylene hydrogenation over Pd/SAC catalysts. Catalysis Today, 2016, 263: 98–104

DOI

20
Crespo-Quesada M, Yoon S, Jin M, Prestianni A, Cortese R, Cárdenas-Lizana F, Duca D, Weidenkaff A, Kiwi-Minsker L. Shape-dependence of Pd nanocrystal carburization during acetylene hydrogenation. Journal of Physical Chemistry C, 2015, 119(2): 1101–1107

DOI

21
Jin Q, He Y, Miao M, Guan C, Du Y, Feng J, Li D. Highly selective and stable PdNi catalyst derived from layered double hydroxides for partial hydrogenation of acetylene. Applied Catalysis A, General, 2015, 500: 3–11

DOI

22
Kim W J, Moon S H. Modified Pd catalysts for the selective hydrogenation of acetylene. Catalysis Today, 2012, 185(1): 2–16

DOI

23
Jin Y, Datye A K, Rightor E, Gulotty R, Waterman W, Smith M, Holbrook M, Maj J, Blackson J. The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene. Journal of Catalysis, 2001, 203(2): 292–306

DOI

24
Mei D, Sheth P A, Neurock M, Smith C M. First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd (111). Journal of Catalysis, 2006, 242(1): 1–15

DOI

25
Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catalysis Reviews, 2006, 48(02): 91–144

DOI

26
Tejeda-Serrano M, Mon M, Ross B, Gonell F, Ferrando-Soria J, Corma A, Leyva-Pérez A, Armentano D, Pardo E. Isolated Fe(III)-O sites catalyze the hydrogenation of acetylene in ethylene flows under front-end industrial conditions. Journal of the American Chemical Society, 2018, 140(28): 8827–8832

DOI

27
Albani D, Shahrokhi M, Chen Z, Mitchell S, Hauert R, López N, Pérez-Ramírez J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nature Communications, 2018, 9(1): 2634–2644

DOI

28
He Y, Liu Y, Yang P, Du Y, Feng J, Cao X, Yang J, Li D. Fabrication of a PdAg mesocrystal catalyst for the partial hydrogenation of acetylene. Journal of Catalysis, 2015, 330: 61–70

DOI

29
Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2: Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catalysis Reviews, 2008, 50(3): 379–469

DOI

30
Moses J M, Weiss A H, Matusek K, Guczi L. The effect of catalyst treatment on the selective hydrogenation of acetylene over palladium/alumina. Journal of Catalysis, 1984, 86(2): 417–426

DOI

31
Backman A, Masel R. An electron energy-loss spectroscopy study analysis of the surface species formed during ethylene hydrogenation on Pt (111). Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 1991, 9(3): 1789–1792

DOI

32
Shin E W, Kang J H, Kim W J, Park J D, Moon S H. Performance of Si-modified Pd catalyst in acetylene hydrogenation: the origin of the ethylene selectivity improvement. Applied Catalysis A, General, 2002, 223(1–2): 161–172

DOI

33
Duca D, Frusteri F, Parmaliana A, Deganello G. Selective hydrogenation of acetylene in ethylene feedstocks on Pd catalysts. Applied Catalysis A, General, 1996, 146(2): 269–284

DOI

34
Duca D, Arena F, Parmaliana A, Deganello G. Hydrogenation of acetylene in ethylene rich feedstocks: comparison between palladium catalysts supported on pumice and alumina. Applied Catalysis A, General, 1998, 172(2): 207–216

DOI

35
Larsson M, Jansson J, Asplund S. Incorporation of deuterium in coke formed on an acetylene hydrogenation catalyst. Journal of Catalysis, 1996, 162(2): 365–367

DOI

36
Larsson M, Jansson J, Asplund S. The role of coke in acetylene hydrogenation on Pd/α-Al2O3. Journal of Catalysis, 1998, 178(1): 49–57

DOI

37
Park Y H, Price G L. Temperature-programmed-reaction study on the effect of carbon monoxide on the acetylene reaction over palladium/alumina. Industrial & Engineering Chemistry Research, 1991, 30(8): 1700–1707

DOI

38
Park Y H, Price G L. Deuterium tracer study on the effect of carbon monoxide on the selective hydrogenation of acetylene over palladium/alumina. Industrial & Engineering Chemistry Research, 1991, 30(8): 1693–1699

DOI

39
Sheth P A, Neurock M, Smith C M. A first-principles analysis of acetylene hydrogenation over Pd (111). Journal of Physical Chemistry B, 2003, 107(9): 2009–2017

DOI

40
Borodziński A, Cybulski A. The kinetic model of hydrogenation of acetylene-ethylene mixtures over palladium surface covered by carbonaceous deposits. Applied Catalysis A, General, 2000, 198(1–2): 51–66

DOI

41
Rose M, Mitsui T, Dunphy J, Borg A, Ogletree D, Salmeron M, Sautet P. Ordered structures of CO on Pd (111) studied by STM. Surface Science, 2002, 512(1–2): 48–60

DOI

42
He Y, Fan J, Feng J, Luo C, Yang P, Li D. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: effect of support acidic and basic properties. Journal of Catalysis, 2015, 331: 118–127

DOI

43
Cao Y, Sui Z, Zhu Y, Zhou X, Chen D. Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: promotional effect of indium and composition-dependent performance. ACS Catalysis, 2017, 7(11): 7835–7846

DOI

44
Trimm D L, Liu I O, Cant N W. The effect of carbon monoxide on the oligomerization of acetylene in hydrogen over a Ni/SiO2 catalyst. Journal of Molecular Catalysis A Chemical, 2009, 307(1–2): 13–20

DOI

45
Bazzazzadegan H, Kazemeini M, Rashidi A. A high performance multi-walled carbon nanotube-supported palladium catalyst in selective hydrogenation of acetylene-ethylene mixtures. Applied Catalysis A, General, 2011, 399(1–2): 184–190

DOI

46
Sarkany A, Horvath A, Beck A. Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO2 catalysts. Applied Catalysis A, General, 2002, 229(1–2): 117–125

DOI

47
Imbihl R, Behm R, Schlögl R. Bridging the pressure and material gap in heterogeneous catalysis. Physical Chemistry Chemical Physics, 2007, 9(27): 3459–3459

DOI

48
Molero H, Bartlett B, Tysoe W. The hydrogenation of acetylene catalyzed by palladium: hydrogen pressure dependence. Journal of Catalysis, 1999, 181(1): 49–56

DOI

49
Inoue Y, Yasumori I. Pressure jump and isotope replacement studies of acetylene hydrogenation on palladium surface. Journal of Physical Chemistry, 1971, 75(7): 880–887

DOI

50
Riyapan S, Zhang Y, Wongkaew A, Pongthawornsakun B, Monnier J R, Panpranot J. Preparation of improved Ag-Pd/TiO2 catalysts using the combined strong electrostatic adsorption and electroless deposition methods for the selective hydrogenation of acetylene. Catalysis Science & Technology, 2016, 6(14): 5608–5617

DOI

51
Parker S F, Walker H C, Callear S K, Grünewald E, Petzold T, Wolf D, Möbus K, Adam J, Wieland S D, Jiménez-Ruiz M, . The effect of particle size, morphology and support on the formation of palladium hydride in commercial catalysts. Chemical Science (Cambridge), 2019, 10(2): 480–489

DOI

52
Torres D, Cinquini F, Sautet P. Pressure and temperature effects on the formation of a Pd/C surface carbide: insights into the role of Pd/C as a selective catalytic state for the partial hydrogenation of acetylene. Journal of Physical Chemistry C, 2013, 117(21): 11059–11065

DOI

53
Guo Z, Huang Q, Luo S, Chu W. Atmospheric discharge plasma enhanced preparation of Pd/TiO2 catalysts for acetylene selective hydrogenation. Topics in Catalysis, 2017, 60(12–14): 1009–1015

DOI

54
Guo Z, Liu Y, Liu Y, Chu W. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene. Applied Surface Science, 2018, 442: 736–741

DOI

55
Hong J, Chu W, Chen M, Wang X, Zhang T. Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene. Catalysis Communications, 2007, 8(3): 593–597

DOI

56
Gigola C, Aduriz H, Bodnariuk P. Particle size effect in the hydrogenation of acetylene under industrial conditions. Applied Catalysis, 1986, 27(1): 133–144

DOI

57
Han Y, Peng D, Xu Z, Wan H, Zheng S, Zhu D. TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene. Chemical Communications, 2013, 49(75): 8350–8352

DOI

58
Den Hartog A, Deng M, Jongerius F, Ponec V. Hydrogenation of acetylene over various group VIII metals: effect of particle size and carbonaceous deposits. Journal of Molecular Catalysis, 1990, 60(1): 99–108

DOI

59
Huang F, Deng Y, Chen Y, Cai X, Peng M, Jia Z, Ren P, Xiao D, Wen X, Wang N, et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. Journal of the American Chemical Society, 2018, 140(41): 13142–13146

DOI

60
Armbrüster M, Kovnir K, Behrens M, Teschner D, Grin Y, Schlögl R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. Journal of the American Chemical Society, 2010, 132(42): 14745–14747

DOI

61
Zhou S, Shang L, Zhao Y, Shi R, Waterhouse G I, Huang Y C, Zheng L, Zhang T. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Advanced Materials, 2019, 31(18): 1900509–1900515

DOI

62
Cao Y, Fu W, Sui Z, Duan X, Chen D, Zhou X. Kinetics insights and active sites discrimination of Pd-catalyzed selective hydrogenation of acetylene. Industrial & Engineering Chemistry Research, 2019, 58(5): 1888–1895

DOI

63
Komhom S, Mekasuwandumrong O, Praserthdam P, Panpranot J. Improvement of Pd/Al2O3 catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3 support. Catalysis Communications, 2008, 10(1): 86–91

DOI

64
McCue A J, McRitchie C J, Shepherd A M, Anderson J A. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319: 127–135

DOI

65
McCue A J, Shepherd A M, Anderson J A. Optimisation of preparation method for Pd doped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catalysis Science & Technology, 2015, 5(5): 2880–2890

DOI

66
Meunier F, Maffre M, Schuurman Y, Colussi S, Trovarelli A. Acetylene semi-hydrogenation over Pd-Zn/CeO2: relevance of CO adsorption and methanation as descriptors of selectivity. Catalysis Communications, 2018, 105: 52–55

DOI

67
Albani D, Capdevila-Cortada M, Vilé G, Mitchell S, Martin O, López N, Pérez-Ramírez J. Semihydrogenation of acetylene on indium oxide: proposed single-ensemble catalysis. Angewandte Chemie International Edition, 2017, 56(36): 10755–10760

DOI

68
Kuhn M, Lucas M, Claus P. Long-time stability vs deactivation of Pd-Ag/Al2O3 egg-shell catalysts in selective hydrogenation of acetylene. Industrial & Engineering Chemistry Research, 2015, 54(26): 6683–6691

DOI

69
Azizi Y, Petit C, Pitchon V. Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2 catalyst. Journal of Catalysis, 2008, 256(2): 338–344

DOI

70
Jia J, Haraki K, Kondo J N, Domen K, Tamaru K. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. Journal of Physical Chemistry B, 2000, 104(47): 11153–11156

DOI

71
Kameoka S, Krajčí M, Tsai A P. Highly selective semi-hydrogenation of acetylene over porous gold with twin boundary defects. Applied Catalysis A, General, 2019, 569: 101–109

DOI

72
Lee J W, Liu X, Mou C Y. Selective hydrogenation of acetylene over SBA-15 supported Au-Cu bimetallic catalysts. Journal of the Chinese Chemical Society (Taipei), 2013, 60(7): 907–914

DOI

73
Liu X, Mou C Y, Lee S, Li Y, Secrest J, Jang B W L. Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene. Journal of Catalysis, 2012, 285(1): 152–159

DOI

74
Peng S, Sun X, Sun L, Zhang M, Zheng Y, Su H, Qi C. Selective Hydrogenation of acetylene over gold nanoparticles supported on CeO2 pretreated under different atmospheres. Catalysis Letters, 2019, 149(2): 465–472

DOI

75
Pongthawornsakun B, Mekasuwandumrong O, Aires F J C S, Büchel R, Baiker A, Pratsinis S E, Panpranot J. Variability of particle configurations achievable by 2-nozzle flame syntheses of the Au-Pd-TiO2 system and their catalytic behaviors in the selective hydrogenation of acetylene. Applied Catalysis A, General, 2018, 549: 1–7

DOI

76
Zhang Y, Diao W, Williams C T, Monnier J R. Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Applied Catalysis A, General, 2014, 469: 419–426

DOI

77
Rodríguez J, Marchi A, Borgna A, Monzón A. Effect of Zn content on catalytic activity and physicochemical properties of Ni-based catalysts for selective hydrogenation of acetylene. Journal of Catalysis, 1997, 171(1): 268–278

DOI

78
Chen Y, Chen J. Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts: promotional effect of In. Applied Surface Science, 2016, 387: 16–27

DOI

79
Riley C, De La Riva A, Zhou S, Wan Q, Peterson E, Artyushkova K, Farahani M D, Friedrich H B, Burkemper L, Atudorei N V, . Synthesis of nickel-doped ceria catalysts for selective acetylene hydrogenation. ChemCatChem, 2019, 11(5): 1526–1533

DOI

80
Pei G X, Liu X Y, Wang A, Su Y, Li L, Zhang T. Selective hydrogenation of acetylene in an ethylene-rich stream over silica supported Ag-Ni bimetallic catalysts. Applied Catalysis A, General, 2017, 545: 90–96

DOI

81
Trimm D L, Liu I O, Cant N W. The selective hydrogenation of acetylene over a Ni/SiO2 catalyst in the presence and absence of carbon monoxide. Applied Catalysis A, General, 2010, 374(1–2): 58–64

DOI

82
Wang L, Li F, Chen Y, Chen J. Selective hydrogenation of acetylene on SiO2-supported Ni-Ga alloy and intermetallic compound. Journal of Energy Chemistry, 2019, 29: 40–49

DOI

83
Matselko O, Zimmermann R R, Ormeci A, Burkhardt U, Gladyshevskii R, Grin Y, Armbrüster M. Revealing electronic influences in the semihydrogenation of acetylene. Journal of Physical Chemistry C, 2018, 122(38): 21891–21896

DOI

84
Köhler D, Heise M, Baranov A I, Luo Y, Geiger D, Ruck M, Armbrüster M. Synthesis of BiRh nanoplates with superior catalytic performance in the semihydrogenation of acetylene. Chemistry of Materials, 2012, 24(9): 1639–1644

DOI

85
Hu M, Zhang J, Zhu W, Chen Z, Gao X, Du X, Wan J, Zhou K, Chen C, Li Y. 50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Research, 2018, 11(2): 905–912

DOI

86
Hu M, Zhao S, Liu S, Chen C, Chen W, Zhu W, Liang C, Cheong W C, Wang Y, Yu Y, . MOF-confined sub-2 nm atomically ordered intermetallic PdZn nanoparticles as high-performance catalysts for selective hydrogenation of acetylene. Advanced Materials, 2018, 30(33): 1801878–1801884

DOI

87
Hu M, Yang W, Liu S, Zhu W, Li Y, Hu B, Chen Z, Shen R, Cheong W C, Wang Y, . Topological self-template directed synthesis of multi-shelled intermetallic Ni3Ga hollow microspheres for the selective hydrogenation of alkyne. Chemical Science (Cambridge), 2019, 10(2): 614–619

DOI

88
Primo A, Neatu F, Florea M, Parvulescu V, Garcia H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 2014, 5(1): 1–9

DOI

89
Yang J, Zhang F, Lu H, Hong X, Jiang H, Wu Y, Li Y. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angewandte Chemie International Edition, 2015, 54(37): 10889–10893

DOI

90
Guilin Z, Puguang W, Jiang Z, Pinliang Y, Can L. Selective hydrogenation of acetylene over a MoP catalyst. Chinese Journal of Catalysis, 2011, 32(1–2): 27–30

91
Borodziński A. The effect of palladium particle size on the kinetics of hydrogenation of acetylene-ethylene mixtures over Pd/SiO2 catalysts. Catalysis Letters, 2001, 71(3–4): 169–175

DOI

92
Asplund S. Coke formation and its effect on internal mass transfer and selectivity in Pd-catalysed acetylene hydrogenation. Journal of Catalysis, 1996, 158(1): 267–278

DOI

93
Kim S K, Kim C, Lee J H, Kim J, Lee H, Moon S H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 306: 146–154

DOI

94
Leviness S, Nair V, Weiss A H, Schay Z, Guczi L. Acetylene hydrogenation selectivity control on PdCu/Al2O3 catalysts. Journal of Molecular Catalysis, 1984, 25(1–3): 131–140

DOI

95
McGown W T, Kemball C, Whan D A, Scurrell M S. Hydrogenation of acetylene in excess ethylene on an alumina supported palladium catalyst in a static system. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1977, 73: 632–647

96
Osswald J, Kovnir K, Armbrüster M, Giedigkeit R, Jentoft R E, Wild U, Grin Y, Schlögl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene: Part II: Surface characterization and catalytic performance. Journal of Catalysis, 2008, 258(1): 219–227

DOI

97
Panpranot J, Kontapakdee K, Praserthdam P. Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO2 in selective acetylene hydrogenation. Journal of Physical Chemistry B, 2006, 110(15): 8019–8024

DOI

98
Pei G X, Liu X Y, Wang A, Li L, Huang Y, Zhang T, Lee J W, Jang B W, Mou C Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New Journal of Chemistry, 2014, 38(5): 2043–2051

DOI

99
Pei G X, Liu X Y, Wang A, Lee A F, Isaacs M A, Li L, Pan X, Yang X, Wang X, Tai Z, . Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catalysis, 2015, 5(6): 3717–3725

DOI

100
Ryndin Y A, Stenin M, Boronin A, Bukhtiyarov V, Zaikovskii V. Effect of Pd/C dispersion on its catalytic properties in acetylene and vinylacetylene hydrogenation. Applied Catalysis, 1989, 54(1): 277–288

DOI

101
Tracey S, Palermo A, Vazquez J P H, Lambert R M. In situ electrochemical promotion by sodium of the selective hydrogenation of acetylene over platinum. Journal of Catalysis, 1998, 179(1): 231–240

DOI

102
Xu Y, Jiang Y, Xu H, Wang Q, Huang W, He H, Zhai Y, Di S, Guo L, Xu X, . Highly selectivity catalytic hydrogenation of acetylene on Al2O3 supported palladium-imidazolium based ionic liquid phase. Applied Catalysis A, General, 2018, 567: 12–19

DOI

103
Zhang Q, Li J, Liu X, Zhu Q. Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene. Applied Catalysis A, General, 2000, 197(2): 221–228

DOI

104
Bond G C. Supported metal catalysts: some unsolved problems. Chemical Society Reviews, 1991, 20(4): 441–475

DOI

105
Bugaev A L, Guda A A, Lazzarini A, Lomachenko K A, Groppo E, Pellegrini R, Piovano A, Emerich H, Soldatov A V, Bugaev L A, . In situ formation of hydrides and carbides in palladium catalyst: when XANES is better than EXAFS and XRD. Catalysis Today, 2017, 283: 119–126

DOI

106
Vilé G, Pérez-Ramírez J. Beyond the use of modifiers in selective alkyne hydrogenation: silver and gold nanocatalysts in flow mode for sustainable alkene production. Nanoscale, 2014, 6(22): 13476–13482

DOI

107
Luo Y, Alarcón Villaseca S, Friedrich M, Teschner D, Knop-Gericke A, Armbrüster M. Addressing electronic effects in the semi-hydrogenation of ethyne by InPd2 and intermetallic Ga-Pd compounds. Journal of Catalysis, 2016, 338: 265–272

DOI

108
Vignola E, Steinmann S N, Le Mapihan K, Vandegehuchte B D, Curulla D, Sautet P. Acetylene adsorption on Pd-Ag alloys: evidence for limited island formation and strong reverse segregation from Monte Carlo simulations. Journal of Physical Chemistry C, 2018, 122(27): 15456–15463

DOI

109
Feng Q, Zhao S, Wang Y, Dong J, Chen W, He D, Wang D, Yang J, Zhu Y, Zhu H, . Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. Journal of the American Chemical Society, 2017, 139(21): 7294–7301

DOI

110
Menezes W, Altmann L, Zielasek V, Thiel K, Bäumer M. Bimetallic Co-Pd catalysts: study of preparation methods and their influence on the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 300: 125–135

DOI

111
Khan N A, Shaikhutdinov S, Freund H J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catalysis Letters, 2006, 108(3–4): 159–164

DOI

112
López N, Vargas-Fuentes C. Promoters in the hydrogenation of alkynes in mixtures: insights from density functional theory. Chemical Communications, 2012, 48(10): 1379–1391

DOI

113
Krajčí M, Hafner J. Selective semi-hydrogenation of acetylene: atomistic scenario for reactions on the polar threefold surfaces of GaPd. Journal of Catalysis, 2014, 312: 232–248

DOI

114
Bridier B, Hevia M A, López N, Pérez-Ramírez J. Permanent alkene selectivity enhancement in copper-catalyzed propyne hydrogenation by temporary CO supply. Journal of Catalysis, 2011, 278(1): 167–172

DOI

115
Cherkasov N, Ibhadon A O, McCue A J, Anderson J A, Johnston S K. Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Applied Catalysis A, General, 2015, 497: 22–30

DOI

116
Kruppe C M, Krooswyk J D, Trenary M. Selective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu (111) single-atom alloy. ACS Catalysis, 2017, 7(12): 8042–8049

DOI

117
Miegge P, Rousset J, Tardy B, Massardier J, Bertolini J. Pd1Ni99 and Pd5Ni95: Pd surface segregation and reactivity for the hydrogenation of 1,3-butadiene. Journal of Catalysis, 1994, 149(2): 404–413

DOI

118
Long Y, Li J, Wu L, Wang Q, Liu Y, Wang X, Song S, Zhang H. Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene. Nano Research, 2019, 12(4): 869–875

DOI

119
Choe K, Zheng F, Wang H, Yuan Y, Zhao W, Xue G, Qiu X, Ri M, Shi X, Wang Y, . Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angewandte Chemie, 2020, 132(9): 3679–3686

DOI

120
Lorenz H, Zhao Q, Turner S, Lebedev O I, Van Tendeloo G, Klötzer B, Rameshan C, Pfaller K, Konzett J, Penner S. Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming: a comparative study. Applied Catalysis A, General, 2010, 381(1–2): 242–252

DOI

121
Cao Y, Zhang H, Ji S, Sui Z, Jiang Z, Wang D, Zaera F, Zhou X, Duan X, Li Y. Adsorption site regulation to guide atomic design of Ni-Ga catalysts for acetylene semi-hydrogenation. Angewandte Chemie, 2020, 132(28): 11744–11749

DOI

122
Albani D, Shahrokhi M, Chen Z, Mitchell S, Hauert R, López N, Pérez-Ramírez J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nature Communications, 2018, 9(1): 1–11

DOI

123
Liang Y, Liu Q, Asiri A M, Sun X, Luo Y. Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catalysis, 2014, 4(11): 4065–4069

DOI

124
Xing Z, Liu Q, Asiri A M, Sun X. High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catalysis, 2014, 5(1): 145–149

DOI

125
Shao L, Zhang W, Armbrüster M, Teschner D, Girgsdies F, Zhang B, Timpe O, Friedrich M, Schlögl R, Su D S. Nanosizing intermetallic compounds onto carbon nanotubes: active and selective hydrogenation catalysts. Angewandte Chemie International Edition, 2011, 50(43): 10231–10235

DOI

126
Fang P, Tang Z J, Huang J H, Cen C P, Tang Z X, Chen X B. Using sewage sludge as a denitration agent and secondary fuel in a cement plant: a case study. Fuel Processing Technology, 2015, 137: 1–7

DOI

127
Bauer M, Schoch R, Shao L, Zhang B, Knop-Gericke A, Willinger M, Schlögl R, Teschner D. Structure-activity studies on highly active palladium hydrogenation catalysts by X-ray absorption spectroscopy. Journal of Physical Chemistry C, 2012, 116(42): 22375–22385

DOI

128
Bruix A, Rodriguez J A, Ramírez P J, Senanayake S D, Evans J, Park J B, Stacchiola D, Liu P, Hrbek J, Illas F. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2 (111) and Pt/CeOx/TiO2 (110) catalysts. Journal of the American Chemical Society, 2012, 134(21): 8968–8974

DOI

129
Zhao J, Chen H, Xu J, Shen J. Effect of surface acidic and basic properties of the supported nickel catalysts on the hydrogenation of pyridine to piperidine. Journal of Physical Chemistry C, 2013, 117(20): 10573–10580

DOI

130
Hoxha F, Schimmoeller B, Cakl Z, Urakawa A, Mallat T, Pratsinis S E, Baiker A. Influence of support acid-base properties on the platinum-catalyzed enantioselective hydrogenation of activated ketones. Journal of Catalysis, 2010, 271(1): 115–124

DOI

131
Burton P D, Boyle T J, Datye A K. Facile, surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts. Journal of Catalysis, 2011, 280(2): 145–149

DOI

132
Teschner D, Borsodi J, Kis Z, Szentmiklósi L, Révay Z, Knop-Gericke A, Schlögl R, Torres D, Sautet P. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. Journal of Physical Chemistry C, 2010, 114(5): 2293–2299

DOI

133
Sa J, Arteaga G D, Daley R A, Bernardi J, Anderson J A. Factors influencing hydride formation in a Pd/TiO2 catalyst. Journal of Physical Chemistry B, 2006, 110(34): 17090–17095

DOI

134
Wilde M, Fukutani K, Ludwig W, Brandt B, Fischer J H, Schauermann S, Freund H J. Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation. Angewandte Chemie International Edition, 2008, 47(48): 9289–9293

DOI

135
Ludwig W, Savara A, Dostert K H, Schauermann S. Olefin hydrogenation on Pd model supported catalysts: new mechanistic insights. Journal of Catalysis, 2011, 284(2): 148–156

DOI

136
Ludwig W, Savara A, Madix R J, Schauermann S, Freund H J. Subsurface hydrogen diffusion into Pd nanoparticles: role of low-coordinated surface sites and facilitation by carbon. Journal of Physical Chemistry C, 2012, 116(5): 3539–3544

DOI

137
Tew M W, Nachtegaal M, Janousch M, Huthwelker T, van Bokhoven J A. The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silica-supported palladium nanoparticles: in situ Pd K and L 3 edge XAS. Physical Chemistry Chemical Physics, 2012, 14(16): 5761–5768

DOI

138
Vogel W, He W, Huang Q H, Zou Z, Zhang X G, Yang H. Palladium nanoparticles “breathe” hydrogen: a surgical view with X-ray diffraction. International Journal of Hydrogen Energy, 2010, 35(16): 8609–8620

DOI

139
Soldatov A, Della Longa S, Bianconi A. Relevant role of hydrogen atoms in the XANES of Pd hydride: evidence of hydrogen induced unoccupied states. Solid State Communications, 1993, 85(10): 863–868

DOI

140
D’Angelo P, Benfatto M, Della Longa S, Pavel N. Combined XANES and EXAFS analysis of Co2+, Ni2+, and Zn2+ aqueous solutions. Physical Review. B, 2002, 66(6): 064209–064216

DOI

141
Balde C P, Mijovilovich A E, Koningsberger D C, van der Eerden A M, Smith A D, de Jong K P, Bitter J H. XAFS study of the Al K-edge in NaAlH4. Journal of Physical Chemistry C, 2007, 111(31): 11721–11725

DOI

142
Mino L, Agostini G, Borfecchia E, Gianolio D, Piovano A, Gallo E, Lamberti C. Low-dimensional systems investigated by X-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases. Journal of Physics. D, Applied Physics, 2013, 46(42): 423001–423074

DOI

143
Bordiga S, Groppo E, Agostini G, van Bokhoven J A, Lamberti C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chemical Reviews, 2013, 113(3): 1736–1850

DOI

144
van Bokhoven J A, Lamberti C. Structure of aluminum, iron, and other heteroatoms in zeolites by X-ray absorption spectroscopy. Coordination Chemistry Reviews, 2014, 277: 275–290

DOI

145
Guda S A, Guda A A, Soldatov M A, Lomachenko K A, Bugaev A L, Lamberti C, Gawelda W, Bressler C, Smolentsev G, Soldatov A V, . Optimized finite difference method for the full-potential XANES simulations: application to molecular adsorption geometries in MOFs and metal-ligand intersystem crossing transients. Journal of Chemical Theory and Computation, 2015, 11(9): 4512–4521

DOI

146
Langhammer C, Zhdanov V P, Zorić I, Kasemo B. Size-dependent hysteresis in the formation and decomposition of hydride in metal nanoparticles. Chemical Physics Letters, 2010, 488(1–3): 62–66

DOI

147
Bugaev A L, Guda A A, Lomachenko K A, Srabionyan V V, Bugaev L A, Soldatov A V, Lamberti C, Dmitriev V P, van Bokhoven J A. Temperature- and pressure-dependent hydrogen concentration in supported PdHx nanoparticles by Pd K-edge X-ray absorption spectroscopy. Journal of Physical Chemistry C, 2014, 118(19): 10416–10423

DOI

148
Bugaev A L, Srabionyan V V, Soldatov A V, Bugaev L A, van Bokhoven J A. The role of hydrogen in formation of Pd XANES in Pd-nanoparticles. Journal of Physics: Conference Series, 2013, 430: 012028

149
Yamauchi M, Ikeda R, Kitagawa H, Takata M. Nanosize effects on hydrogen storage in palladium. Journal of Physical Chemistry C, 2008, 112(9): 3294–3299

DOI

150
Shabaev A, Papaconstantopoulos D, Mehl M, Bernstein N. First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system. Physical Review. B, 2010, 81(18): 184103–184112

DOI

151
Shegai T, Langhammer C. Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scatteringspectroscopy. Advanced Materials, 2011, 23(38): 4409–4414

DOI

152
Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson S D, Schlögl R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science, 2008, 320(5872): 86–89

DOI

153
Stacchiola D, Molero H, Tysoe W. Palladium-catalyzed cyclotrimerization and hydrogenation: from ultrahigh vacuum to high-pressure catalysis. Catalysis Today, 2001, 65(1): 3–11

DOI

154
García-Mota M, Bridier B, Pérez-Ramírez J, López N. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. Journal of Catalysis, 2010, 273(2): 92–102

DOI

155
Narehood D, Kishore S, Goto H, Adair J H, Nelson J, Gutierrez H, Eklund P. X-ray diffraction and H-storage in ultra-small palladium particles. International Journal of Hydrogen Energy, 2009, 34(2): 952–960

DOI

156
Borodziński A, Janko A. Flow reactor for kinetic studies with simultaneous X-ray phase analysis of a catalyst. Reaction Kinetics and Catalysis Letters, 1977, 7(2): 163–169

DOI

157
Frackiewicz A. Hydrogenation of ethylene on thin films of palladium and palladium hydride. 1977

158
Teschner D, Vass E, Hävecker M, Zafeiratos S, Schnörch P, Sauer H, Knop-Gericke A, Schlögl R, Chamam M, Wootsch A. Alkyne hydrogenation over Pd catalysts: a new paradigm. Journal of Catalysis, 2006, 242(1): 26–37

DOI

159
Albers P, Pietsch J, Parker S F. Poisoning and deactivation of palladium catalysts. Journal of Molecular Catalysis A Chemical, 2001, 173(1–2): 275–286

DOI

160
Pachulski A, Schödel R, Claus P. Performance and regeneration studies of Pd-Ag/Al2O3 catalysts for the selective hydrogenation of acetylene. Applied Catalysis A, General, 2011, 400(1–2): 14–24

DOI

161
Liu R J, Crozier P, Smith C, Hucul D, Blackson J, Salaita G. Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalysts. Applied Catalysis A, General, 2005, 282(1–2): 111–121

DOI

162
Ahn I Y, Lee J H, Kum S S, Moon S H. Formation of C4 species in the deactivation of a Pd/SiO2 catalyst during the selective hydrogenation of acetylene. Catalysis Today, 2007, 123(1–4): 151–157

DOI

163
Bolarinwa Ayodele O, Vinati S, Barborini E, Boddapati L, El Hajraoui K, Kröhnert J, Deepak F L, Trunschke A, Kolen’ko Y V. Selectivity boost in partial hydrogenation of acetylene via atomic dispersion of platinum over ceria. Catalysis Science & Technology, 2020, 10(22): 7471–7475

DOI

Outlines

/