Future-oriented precision creation: recent advances in the intelligent design and synthesis of fine chemicals

Junpeng Chen , Qilei Liu , Lei Zhang

ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (5) : 35

PDF (2631KB)
ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (5) :35 DOI: 10.1007/s11705-026-2658-2
REVIEW ARTICLE

Future-oriented precision creation: recent advances in the intelligent design and synthesis of fine chemicals

Author information +
History +
PDF (2631KB)

Abstract

Fine chemicals serve as the cornerstone of modern industry, and the level of their research and development is directly linked to a nation’s core competitiveness. However, traditional trial-and-error research and development paradigm faces severe challenges, including long development cycles, high costs, and low efficiency. In recent years, the rapid advancement of artificial intelligence has brought a disruptive transformation to the chemical research paradigm, enabling an end-to-end intelligent creation process that integrates molecular structure design with synthetic pathway planning, all driven by functional requirements. This article provides a systematic review of the latest research advances at the intersection of artificial intelligence and chemical engineering, focusing on three core aspects: intelligent structure-property relationship models, efficient molecular design methods, and intelligent synthetic pathway planning. It first explores how to construct high-precision property prediction models by integrating mechanistic knowledge with data. Second, it elaborates on novel inverse molecular design methods that shift the focus from screening to de novo design. Finally, it discusses how to bridge the gap from design to manufacturing through the intelligent planning of synthetic routes. This review aims to highlight the immense potential of artificial intelligence in driving the transformation of the fine chemicals industry toward greener, high-value-added, and more intelligent processes, and to provide an outlook on its future directions.

Graphical abstract

Keywords

fine chemicals / artificial intelligence / structure-property relationship / de novo design / intelligent synthetic route planning / AI for science paradigm

Cite this article

Download citation ▾
Junpeng Chen, Qilei Liu, Lei Zhang. Future-oriented precision creation: recent advances in the intelligent design and synthesis of fine chemicals. ENG. Chem. Eng., 2026, 20(5): 35 DOI:10.1007/s11705-026-2658-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Spasiano D , Marotta R , Malato S , Fernandez-Ibañez P , Di Somma I . Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B: Environmental, 2015, 170: 90–123

[2]

Zhang L , Ren Y , Liu W , Wang A , Zhang T . Single-atom catalyst: a rising star for green synthesis of fine chemicals. National Science Review, 2018, 5(5): 653–672

[3]

Guo J , Suástegui M , Sakimoto K K , Moody V M , Xiao G , Nocera D G , Joshi N S . Light-driven fine chemical production in yeast biohybrids. Science, 2018, 362(6416): 813–816

[4]

Konnerth H , Matsagar B M , Chen S S , Prechtl M H G , Shieh F K , Wu K C W . Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coordination Chemistry Reviews, 2020, 416: 213319

[5]

Gao Y , Ge L , Xu H , Davey K , Zheng Y , Qiao S Z . Electrocatalytic refinery of biomass-based 5-hydroxymethylfurfural to fine chemicals. ACS Catalysis, 2023, 13(17): 11204–11231

[6]

Ciriminna R , Pagliaro M . Green chemistry in the fine chemicals and pharmaceutical industries. Organic Process Research & Development, 2013, 17(12): 1479–1484

[7]

Sheldon R A . Metrics of green chemistry and sustainability: past, present, and future. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 32–48

[8]

De S , Dokania A , Ramirez A , Gascon J . Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catalysis, 2020, 10(23): 14147–14185

[9]

Angelo J S , Guedes I A , Barbosa H J C , Dardenne L E . Multi-and many-objective optimization: present and future in de novo drug design. Frontiers in Chemistry, 2023, 11: 1288626

[10]

Xia X , Liu Y , Zheng C , Zhang X , Wu Q , Gao X , Zeng X , Su Y . Evolutionary multiobjective molecule optimization in an implicit chemical space. Journal of Chemical Information and Modeling, 2024, 64(13): 5161–5174

[11]

Bohacek R S , McMartin C , Guida W C . The art and practice of structure-based drug design: a molecular modeling perspective. Medicinal Research Reviews, 1996, 16(1): 3–50

[12]

Sarkar C , Das B , Rawat V S , Wahlang J B , Nongpiur A , Tiewsoh I , Lyngdoh N M , Das D , Bidarolli M , Sony H T . Artificial intelligence and machine learning technology driven modern drug discovery and development. International Journal of Molecular Sciences, 2023, 24(3): 2026

[13]

Shi Y F , Yang Z X , Ma S , Kang P L , Shang C , Hu P , Liu Z P . Machine learning for chemistry: basics and applications. Engineering, 2023, 27: 70–83

[14]

Coley C W , Green W H , Jensen K F . Machine learning in computer-aided synthesis planning. Accounts of Chemical Research, 2018, 51(5): 1281–1289

[15]

Rajpurkar P , Chen E , Banerjee O , Topol E J . AI in health and medicine. Nature Medicine, 2022, 28(1): 31–38

[16]

Wang H , Fu T , Du Y , Gao W , Huang K , Liu Z , Chandak P , Liu S , Katwyk P V , Deac A . et al. Scientific discovery in the age of artificial intelligence. Nature, 2023, 620(7972): 47–60

[17]

Schneider P , Walters W P , Plowright A T , Sieroka N , Listgarten J , Goodnow R A Jr , Fisher J , Jansen J M , Duca J , Rush T S . et al. Rethinking drug design in the artificial intelligence era. Nature Reviews. Drug Discovery, 2020, 19(5): 353–364

[18]

Huang B , von Rudorff G F , von Lilienfeld O A . The central role of density functional theory in the AI age. Science, 2023, 381(6654): 170–175

[19]

Ding R , Chen J , Chen Y , Liu J , Bando Y , Wang X . Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chemical Society Reviews, 2024, 53(23): 11390–11461

[20]

Cai H , Zhang H , Zhao D , Wu J , Wang L . FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction. Briefings in Bioinformatics, 2022, 23(6): bbac408

[21]

Choudhary K , DeCost B . Atomistic line graph neural network for improved materials property predictions. npj Computational Materials, 2021, 7(1): 1–8

[22]

Jiang J , Chen L , Ke L , Dou B , Zhang C , Feng H , Zhu Y , Qiu H , Zhang B , Wei G W . A review of transformer models in drug discovery and beyond. Journal of Pharmaceutical Analysis, 2025, 15(6): 101081

[23]

Irwin R , Dimitriadis S , He J , Bjerrum E J . Chemformer: a pre-trained transformer for computational chemistry. Machine Learning: Science and Technology, 2022, 3(1): 015022

[24]

Walters W P , Barzilay R . Applications of deep learning in molecule generation and molecular property prediction. Accounts of Chemical Research, 2021, 54(2): 263–270

[25]

Mouchlis V D , Afantitis A , Serra A , Fratello M , Papadiamantis A G , Aidinis V , Lynch I , Greco D , Melagraki G . Advances in de novo drug design: from conventional to machine learning methods. International Journal of Molecular Sciences, 2021, 22(4): 1676

[26]

Oniani D , Hilsman J , Zang C , Wang J , Cai L , Zawala J , Wang Y . Emerging opportunities of using large language models for translation between drug molecules and indications. Scientific Reports, 2024, 14(1): 10738

[27]

Omee S S , Fu N , Dong R , Hu M , Hu J . Structure-based out-of-distribution (OOD) materials property prediction: a benchmark study. npj Computational Materials, 2024, 10(1): 144

[28]

Chang R , Wang Y X , Ertekin E . Towards overcoming data scarcity in materials science: unifying models and datasets with a mixture of experts framework. npj Computational Materials, 2022, 8(1): 1–9

[29]

Tropsha A , Isayev O , Varnek A , Schneider G , Cherkasov A . Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Nature Reviews. Drug Discovery, 2024, 23(2): 141–155

[30]

Jiménez-Luna J , Grisoni F , Schneider G . Drug discovery with explainable artificial intelligence. Nature Machine Intelligence, 2020, 2(10): 573–584

[31]

Khalid S , Yazdani M H , Azad M M , Elahi M U , Raouf I , Kim H S . Advancements in physics-informed neural networks for laminated composites: a comprehensive review. Mathematics, 2025, 13(1): 17

[32]

Rudin C . Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 2019, 1(5): 206–215

[33]

Li Z , Jiang M , Wang S , Zhang S . Deep learning methods for molecular representation and property prediction. Drug Discovery Today, 2022, 27(12): 103373

[34]

Jones R O . Density functional theory: its origins, rise to prominence, and future. Reviews of Modern Physics, 2015, 87(3): 897–923

[35]

Hollingsworth S A , Dror R O . Molecular dynamics simulation for all. Neuron, 2018, 99(6): 1129–1143

[36]

Nandy A , Duan C R , Taylor M G , Liu F , Steeves A H , Kulik H J . Computational discovery of transition-metal complexes: from high-throughput screening to machine learning. Chemical Reviews, 2021, 121(16): 9927–10000

[37]

Karniadakis G E , Kevrekidis I G , Lu L , Perdikaris P , Wang S F , Yang L . Physics-informed machine learning. Nature Reviews. Physics, 2021, 3(6): 422–440

[38]

Schmidt J , Marques M R G , Botti S , Marques M A L . Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials, 2019, 5(1): 83

[39]

Nordness O , Kelkar P , Lyu Y , Baldea M , Stadtherr M A , Brennecke J F . Predicting thermophysical properties of dialkylimidazolium ionic liquids from sigma profiles. Journal of Molecular Liquids, 2021, 334: 116019

[40]

Xue F , Zhang M , Li S , Gao X , Wohlschlegel J A , Huang W , Yang Y , Deng W . SE(3)-equivariant ternary complex prediction towards target protein degradation. Nature Communications, 2025, 16(1): 5514

[41]

Unke O T , Bogojeski M , Gastegger M , Geiger M , Smidt T , Müller K R . SE(3)-equivariant prediction of molecular wavefunctions and electronic densities. Paper presented at the Advances in neural information processing systems, 2021,

[42]

Zdrazil B , Felix E , Hunter F , Manners E J , Blackshaw J , Corbett S , de Veij M , Ioannidis H , Lopez D M , Mosquera J F . et al. The ChEMBL database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Research, 2023, 52(D1): D1180–D1192

[43]

Kim S , Chen J , Cheng T , Gindulyte A , He J , He S , Li Q , Shoemaker B A , Thiessen P A , Yu B , Zaslavsky L , Zhang J , Bolton E E . PubChem 2025 update. Nucleic Acids Research, 2024, 53(D1): D1516–D1525

[44]

Irwin J J , Tang K G , Young J , Dandarchuluun C , Wong B R , Khurelbaatar M , Moroz Y S , Mayfield J , Sayle R A . ZINC20—a free ultralarge-scale chemical database for ligand discovery. Journal of Chemical Information and Modeling, 2020, 60(12): 6065–6073

[45]

Tingle B I , Tang K G , Castanon M , Khurelbaatar M , Dandarchuluun C , Moroz Y S , Irwin J J . ZINC-22—a free multi-billion-scale database of tangible compounds for ligand discovery. Journal of Chemical Information and Modeling, 2023, 63(4): 1166–1176

[46]

Sushko I , Novotarskyi S , Körner R , Pandey A K , Rupp M , Teetz W , Brandmaier S , Abdelaziz A , Prokopenko V V , Tanchuk V Y . et al. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. Journal of Computer-Aided Molecular Design, 2011, 25(6): 533–554

[47]

Knox C , Wilson M , Klinger C M , Franklin M , Oler E , Wilson A , Pon A , Cox J , Chin N E , Strawbridge S A . et al. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Research, 2024, 52(D1): D1265–D1275

[48]

Berman H M , Westbrook J , Feng Z , Gilliland G , Bhat T N , Weissig H , Shindyalov I N , Bourne P E . The Protein Data Bank. Nucleic Acids Research, 2000, 28(1): 235–242

[49]

Ishii M , Ito T , Sado H , Kuwajima I . NIMS polymer database poLyInfo (I): an overarching view of half a million data points. Science and Technology of Advanced Materials: Methods, 2024, 4(1): 2354649

[50]

Jain A , Ong S P , Hautier G , Chen W , Richards W D , Dacek S , Cholia S , Gunter D , Skinner D , Ceder G . et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Materials, 2013, 1(1): 011002

[51]

Mu T C , Rarey J , Gmehling J . Group contribution prediction of surface charge density profiles for COSMO-RS(OI). AIChE Journal. American Institute of Chemical Engineers, 2007, 53(12): 3231–3240

[52]

Klamt A . Conductor-like screening model for real solvents—a new approach to the quantitative calculation of solvation phenomena. Journal of Physical Chemistry, 1995, 99(7): 2224–2235

[53]

Islam M R , Chen C C . COSMO-SAC sigma profile generation with conceptual segment concept. Industrial & Engineering Chemistry Research, 2015, 54(16): 4441–4454

[54]

Suresh C H , Remya G S , Anjalikrishna P K . Molecular electrostatic potential analysis: a powerful tool to interpret and predict chemical reactivity. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2022, 12(5): e1601

[55]

Gadre S R , Suresh C H , Mohan N . Electrostatic potential topology for probing molecular structure, bonding and reactivity. Molecules, 2021, 26(11): 3289

[56]

Zhao L , von Hopffgarten M , Andrada D M , Frenking G . Energy decomposition analysis. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2018, 8(3): e1345

[57]

Barone V , Alessandrini S , Biczysko M , Cheeseman J R , Clary D C , McCoy A B , Dirisio R J , Neese F , Melosso M , Puzzarini C . Computational molecular spectroscopy. Nature Reviews. Methods Primers, 2021, 1(1): 38

[58]

Yang T , Zhou D , Ye S , Li X , Li H , Feng Y , Jiang Z , Yang L , Ye K , Shen Y . et al. Catalytic structure design by AI generating with spectroscopic descriptors. Journal of the American Chemical Society, 2023, 145(49): 26817–26823

[59]

Qi Y , Zhao L , Tang H , Zhang L , Gani R . Computer aided formulation design based on molecular dynamics simulation: detergents with fragrance. Computers & Chemical Engineering, 2025, 192: 108919

[60]

Lapierre J , Hub J S . Converging PMF calculations of antibiotic permeation across an outer membrane porin with subkilocalorie per mole accuracy. Journal of Chemical Information and Modeling, 2023, 63(16): 5319–5330

[61]

Liu S , Wang H , Yang J . Investigation of equilibrium and convergence in MD simulations of asphalt system. Construction & Building Materials, 2025, 468: 140317

[62]

Ziada S , Diharce J , Raimbaud E , Aci-Sèche S , Ducrot P , Bonnet P . Estimation of drug-target residence time by targeted molecular dynamics simulations. Journal of Chemical Information and Modeling, 2022, 62(22): 5536–5549

[63]

Rogers D , Hahn M . Extended-connectivity fingerprints. Journal of Chemical Information and Modeling, 2010, 50(5): 742–754

[64]

Liu R , Zhou D . Using molecular fingerprint as descriptors in the QSPR study of lipophilicity. Journal of Chemical Information and Modeling, 2008, 48(3): 542–549

[65]

Heid E , Greenman K P , Chung Y , Li S C , Graff D E , Vermeire F H , Wu H , Green W H , Mcgill C J . Chemprop: a machine learning package for chemical property prediction. Journal of Chemical Information and Modeling, 2023, 64(1): 9–17

[66]

Guo L , Zhao Y , Liu Q , Zhang L , Du J , Meng Q . Temperature-dependent small-molecule solubility prediction using moe-enhanced directed message passing neural networks. Journal of Chemical Information and Modeling, 2025, 65(14): 7463–7477

[67]

Schütt K T , Sauceda H E , Kindermans P J , Tkatchenko A , Müller K R . SchNet—a deep learning architecture for molecules and materials. Journal of Chemical Physics, 2018, 148(24): 241722

[68]

Schütt K T , Unke O T , Gastegger M . Equivariant message passing for the prediction of tensorial properties and molecular spectra. Paper presented at the International Conference on Machine Learning, 2021, 9377–9388

[69]

Rong Y , Bian Y , Xu T , Xie W , Wei Y , Huang W , Huang J . Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information Processing Systems, 2020, 33: 12559–12571

[70]

Ji X , Wang Z , Gao Z , Zheng H , Zhang L , Ke G. E W . Uni-Mol2: exploring molecular pretraining model at scale. arXiv Preprint. , 2024,

[71]

Xia J , Zhao C , Hu B , Gao Z , Tan C , Liu Y , Li S , Li S Z . Mole-BERT: rethinking pre-training graph neural networks for molecules. The Eleventh International Conference on Learning Representations, 2023, 417–422

[72]

Liu Q , Zhang L , Tang K , Liu L , Du J , Meng Q , Gani R . Machine learning-based atom contribution method for the prediction of surface charge density profiles and solvent design. AIChE Journal. American Institute of Chemical Engineers, 2021, 67(2): e17110

[73]

Geerlings P , Chamorro E , Chattaraj P K , De Proft F , Gázquez J L , Liu S , Morell C , Toro-Labbbé A , Vela A , Ayers P . Conceptual density functional theory: status, prospects, issues. Theoretical Chemistry Accounts, 2020, 139(2): 36

[74]

Domingo L R , Ríos-Gutiérrez M , Pérez P . Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules, 2016, 21(6): 748

[75]

Liu Q , Xiang S , Du J , Meng Q , Chen J , Gao M , Xing B , Zhang L . Improved prediction of reaction kinetics for amine absorbent-based carbon capture using reactive site-based transition state conformer search method. Fuel, 2024, 361: 130730

[76]

Zhou G , Gao Z , Ding Q , Zheng H , Xu H , Wei Z , Zhang L , Ke G . Uni-Mol: a universal 3D molecular representation learning framework. In The Eleventh International Conference on Learning Representations, 2023,

[77]

Xia J , Zhu Y , Du Y , Li S Z . A systematic survey of chemical pre-trained models. , 2022,

[78]

Chen C , Tanaka K , Funatsu K . Random forest approach to qspr study of fluorescence properties combining quantum chemical descriptors and solvent conditions. Journal of Fluorescence, 2018, 28(2): 695–706

[79]

Polishchuk P G , Muratov E N , Artemenko A G , Kolumbin O G , Muratov N N , Kuz’min V E . Application of random forest approach to QSAR prediction of aquatic toxicity. Journal of Chemical Information and Modeling, 2009, 49(11): 2481–2488

[80]

Gilmer JSchoenholz S SRiley P FVinyals ODahl G E. Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 1263–1272

[81]

Veličković P , Cucurull G , Casanova A , Romero A , Liò P , Bengio Y . Graph Attention Networks. arXiv e-prints, arXiv:1710.10903, 2017,

[82]

Zhang L , Mao H , Zhuang Y , Wang L , Liu L , Dong Y , Du J , Xie W , Yuan Z . Odor prediction and aroma mixture design using machine learning model and molecular surface charge density profiles. Chemical Engineering Science, 2021, 245: 116947

[83]

Ren K , Tang K , Zhao Y , Zhang L , Du J , Meng Q , Liu Q . Generic machine learning potential for accelerating transition state search in organic synthesis. , 2025,

[84]

Tang K , Zhao Y , Zhang L , Du J , Meng Q , Liu Q . Accelerating transition state search and ligand screening for organometallic catalysis with reactive machine learning potential. Journal of Chemical Theory and Computation, 2025, 21(18): 8933–8949

[85]

Ross J , Belgodere B , Chenthamarakshan V , Padhi I , Mroueh Y , Das P . Large-scale chemical language representations capture molecular structure and properties. Nature Machine Intelligence, 2022, 4(12): 1256–1264

[86]

Geiger M , Smidt T . E3nn: Euclidean Neural Networks. arXiv preprint, 2022,

[87]

Geiger M , Smidt T , Alby M , Miller B K , Boomsma W , Dice B . Euclidean Neural Networks: E3nn. , 2022,

[88]

Zhong Z , Song J , Feng Z , Liu T , Jia L , Yao S , Hou T , Song M . Recent advances in deep learning for retrosynthesis. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2024, 14(1): e1694

[89]

Omranpour A , Elsner J , Lausch K N , Behler J . Machine learning potentials for heterogeneous catalysis. ACS Catalysis, 2025, 15(3): 1616–1634

[90]

Behler J . Four generations of high-dimensional neural network potentials. Chemical Reviews, 2021, 121(16): 10037–10072

[91]

Friederich P , Häse F , Proppe J , Aspuru-Guzik A . Machine-learned potentials for next-generation matter simulations. Nature Materials, 2021, 20(6): 750–761

[92]

Wu G , Zhao Y , Zhang L , Du J , Meng Q , Liu Q . Machine learning potential model for accelerating quantum chemistry-driven property prediction and molecular design. AIChE Journal. American Institute of Chemical Engineers, 2025, 71(5): e18741

[93]

Anstine D M , Isayev O . Machine learning interatomic potentials and long-range physics. Journal of Physical Chemistry A, 2023, 127(11): 2417–2431

[94]

Leelananda S P , Lindert S . Computational methods in drug discovery. Beilstein Journal of Organic Chemistry, 2016, 12: 2694–2718

[95]

Muravyev N V , Fershtat L , Zhang Q . Synthesis, design and development of energetic materials: Quo Vadis. Chemical Engineering Journal, 2024, 486: 150410

[96]

Luukkonen S , van den Maagdenberg H W , Emmerich M T M , van Westen G J P . Artificial intelligence in multi-objective drug design. Current Opinion in Structural Biology, 2023, 79: 102537

[97]

Lee Y S , Graham E J , Galindo A , Jackson G , Adjiman C S . A comparative study of multi-objective optimization methodologies for molecular and process design. Computers & Chemical Engineering, 2020, 136: 106802

[98]

Batool M , Ahmad B , Choi S . A structure-based drug discovery paradigm. International Journal of Molecular Sciences, 2019, 20(11): 2783

[99]

Jensen J H . A graph-based genetic algorithm and generative model/monte carlo tree search for the exploration of chemical space. Chemical Science, 2019, 10(12): 3567–3572

[100]

Du Y , Jamasb A R , Guo J , Fu T , Harris C , Wang Y , Duan C , Liò P , Schwaller P , Blundell T L . Machine learning-aided generative molecular design. Nature Machine Intelligence, 2024, 6(6): 589–604

[101]

Ling C , Ouyang Y , Li Q , Bai X , Mao X , Du A , Wang J . A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods, 2019, 3(9): 1800376

[102]

Wang S , Gao H , Li L , Hui K S , Dinh D A , Wu S , Kumar S , Chen F , Shao Z , Hui K N . High-throughput identification of highly active and selective single-atom catalysts for electrochemical ammonia synthesis through nitrate reduction. Nano Energy, 2022, 100: 107517

[103]

Chai S , Liu Q , Liang X , Guo Y , Zhang S , Xu C , Du J , Yuan Z , Zhang L , Gani R . A grand product design model for crystallization solvent design. Computers & Chemical Engineering, 2020, 135: 106764

[104]

Zhao Y , Liu Q , Wu X , Zhang L , Du J , Meng Q . De novo drug design framework based on mathematical programming method and deep learning model. AIChE Journal. American Institute of Chemical Engineers, 2022, 68(9): e17748

[105]

Spiegel J O , Durrant J D . Autogrow4: an open-source genetic algorithm for de novo drug design and lead optimization. Journal of Cheminformatics, 2020, 12(1): 25

[106]

Lim J , Ryu S , Kim J W , Kim W Y . Molecular generative model based on conditional variational autoencoder for de novo molecular design. Journal of Cheminformatics, 2018, 10(1): 31–40

[107]

Weiss T , Yanes E M , Chakraborty S , Cosmo L , Bronstein A M , Gershoni-Poranne R . Guided diffusion for inverse molecular design. Nature Computational Science, 2023, 3(10): 873–882

[108]

Fuhr A S , Sumpter B G . Deep generative models for materials discovery and machine learning-accelerated innovation. Frontiers in Materials, 2022, 9: 865270

[109]

Zhao Y , Liu Q , Du J , Meng Q , Sun L , Zhang L . Accelerating factor Xa inhibitor discovery with a de novo drug design pipeline. Chinese Journal of Chemical Engineering, 2024, 72: 85–94

[110]

Katoch S , Chauhan S S , Kumar V . A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 2021, 80(5): 8091–8126

[111]

Garrido-Merchán E C , Hernández-Lobato D . Dealing with categorical and integer-valued variables in Bayesian optimization with gaussian processes. Neurocomputing, 2020, 380: 20–35

[112]

Gardner J RKusner M JXu ZWeinberger K QCunningham J P. Bayesian optimization with inequality constraints. In: Proceedings of the 31st International Conference on Machine Learning. 2014, 32: 937-945 (CYCLE 2)

[113]

Hu T , Qin L , Zhou L , Zheng X , Zhu L . Analysis and optimization of methanol production and temperature gradient in CO2 hydrogenation fixed bed reactors using CFD and Bayesian optimization. Chemical Engineering Science, 2026, 321: 123030

[114]

Gangwal A , Lavecchia A . Unleashing the power of generative AI in drug discovery. Drug Discovery Today, 2024, 29(6): 103992

[115]

Hasselgren C , Oprea T I . Artificial intelligence for drug discovery: are we there yet. Annual Review of Pharmacology and Toxicology, 2024, 64(1): 527–550

[116]

Landrum G , Tosco P , Kelley B , Rodriguez R , Cosgrove D , Vianello R . RDKit: 2025_09_3 (Q3 2025) Release. Zenodo, 2025,

[117]

van Deursen R , Ertl P , Tetko I V , Godin G . Gen: highly efficient SMILES explorer using autodidactic generative examination networks. Journal of Cheminformatics, 2020, 12(1): 22

[118]

Kang S G , Morrone J A , Weber J K , Cornell W D . Analysis of training and seed bias in small molecules generated with a conditional graph-based variational autoencoder-insights for practical AI-driven molecule generation. Journal of Chemical Information and Modeling, 2022, 62(4): 801–816

[119]

Kao P Y , Yang Y C , Chiang W Y , Hsiao J Y , Cao Y , Aliper A , Ren F , Aspuru-Guzik A , Zhavoronkov A , Hsieh M H , Lin Y C . Exploring the advantages of quantum generative adversarial networks in generative chemistry. Journal of Chemical Information and Modeling, 2023, 63(11): 3307–3318

[120]

Bai Q , Tan S , Xu T , Liu H , Huang J , Yao X . MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Briefings in Bioinformatics, 2021, 22(3): 161

[121]

Ho J , Jain A , Abbeel P . Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 2020, 33: 6840–6851

[122]

Hoogeboom E , Satorras V G , Vignac C , Welling M . Equivariant diffusion for molecule generation in 3D. In: International Conference on Machine Learning, 2022, 8867–8887

[123]

Xu M , Powers A S , Dror R O , Ermon S , Leskovec J . Geometric latent diffusion models for 3D molecule generation. In: International Conference on Machine Learning, 2023, 38592–38610

[124]

Jiang Y , Yu Y , Kong M , Mei Y , Yuan L , Huang Z , Kuang K , Wang Z , Yao H , Zou J , Coley C W , Wei Y . Artificial intelligence for retrosynthesis prediction. Engineering, 2023, 25: 32–50

[125]

Mikulak-Klucznik B , Golebiowska P , Bayly A A , Popik O , Klucznik T , Szymkuc S , Gajewska E P , Dittwald P , Staszewska-krajewska O , Beker W . Computational planning of the synthesis of complex natural products. Nature, 2020, 588(7836): 83–86

[126]

Genheden S , Thakkar A , Chadimová V , Reymond J L , Engkvist O , Bjerrum E . AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. Journal of Cheminformatics, 2020, 12(1): 1–9

[127]

Wang W , Liu Q , Zhang L , Dong Y , Du J . RetroSynX: a retrosynthetic analysis framework using hybrid reaction templates and group contribution-based thermodynamic models. Chemical Engineering Science, 2022, 248: 117208

[128]

Schwaller P , Laino T , Gaudin T , Bolgar P , Hunter C A , Bekas C , Lee A A . Molecular Transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS Central Science, 2019, 5(9): 1572–1583

[129]

Zeng K , Yang B , Zhao X , Zhang Y , Nie F , Yang X , Jin Y , Xu Y . UAlign: pushing the limit of template-free retrosynthesis prediction with unsupervised SMILES alignment. Journal of Cheminformatics, 2024, 16(1): 80

[130]

Tu Z , Choure S J , Fong M H , Roh J , Levin I , Yu K , Joung J F , Morgan N , Li S C , Sun X . ASKCOS: open-source, data-driven synthesis planning. Accounts of Chemical Research, 2025, 58(11): 1764–1775

[131]

Long L , Li R , Zhang J . Artificial intelligence in retrosynthesis prediction and its applications in medicinal chemistry. Journal of Medicinal Chemistry, 2025, 68(3): 2333–2355

[132]

Jiang Y , Wei Y , Wu F , Huang Z , Kuang K , Wang Z . Learning chemical rules of retrosynthesis with pre-training. Paper presented at the Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023, 37(4): 5113–5121

[133]

Wang W , Liu Q , Dong Y , Du J , Meng Q , Zhang L . ConvPred: a deep learning-based framework for predictions of potential organic reactions. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(5): 18019

[134]

Han Y , Xu X , Hsieh C Y , Ding K , Xu H , Xu R , Hou T , Zhang Q , Chen H . Retrosynthesis prediction with an iterative string editing model. Nature Communications, 2024, 15(1): 6404

[135]

Hu H , Jiang Y , Yang Y , Chen J X . Enhanced template-free reaction prediction with molecular graphs and sequence-based data augmentation. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM, 2023, 813–822

[136]

Ishida S , Terayama K , Kojima R , Takasu K , Okuno Y . AI-driven synthetic route design incorporated with retrosynthesis knowledge. Journal of Chemical Information and Modeling, 2022, 62(6): 1357–1367

[137]

Ertl P , Schuffenhauer A . Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 2009, 1(1): 8

[138]

Coley C W , Rogers L , Green W H , Jensen K F . SCScore: synthetic complexity learned from a reaction corpus. Journal of Chemical Information and Modeling, 2018, 58(2): 252–261

[139]

Xu C , Guo L , Zhou K , Yu H , Wei C , Fan F , Zhang L . RSscore: reaction superiority learned from reaction mapping hypergraph. Chinese Journal of Chemical Engineering, 2024, 74: 203–215

RIGHTS & PERMISSIONS

Higher Education Press

PDF (2631KB)

59

Accesses

0

Citation

Detail

Sections
Recommended

/