Beyond Haber-Bosch: emerging pathways for sustainable ammonia synthesis

Feng Yu

ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (5) : 33

PDF (1957KB)
ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (5) :33 DOI: 10.1007/s11705-026-2656-4
VIEWS & COMMENTS

Beyond Haber-Bosch: emerging pathways for sustainable ammonia synthesis

Author information +
History +
PDF (1957KB)

Graphical abstract

Cite this article

Download citation ▾
Feng Yu. Beyond Haber-Bosch: emerging pathways for sustainable ammonia synthesis. ENG. Chem. Eng., 2026, 20(5): 33 DOI:10.1007/s11705-026-2656-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo J P , Chen P . Ammonia history in the making. Nature Catalysis, 2021, 4(9): 734–735

[2]

Chen J G , Crooks R M , Seefeldt L C , Bren K L , Bullock R M , Darensbourg M Y , Holland P L , Hoffman B , Janik M J , Jones A K . et al. Beyond fossil fuel-driven nitrogen transformations. Science, 2018, 360(6391): eaar6611

[3]

Schlögl R . Catalytic synthesis of ammonia—a ‘never-ending story’. Angewandte Chemie International Edition, 2003, 42(18): 2004–2008

[4]

Xu G M , Cai C , Wang T . Toward Sabatier optimal for ammonia synthesis with paramagnetic phase of ferromagnetic transition metal catalysts. Journal of the American Chemical Society, 2022, 144(50): 23089–23095

[5]

Wang P , Chang F , Gao W , Guo J , Wu G , He T , Chen P . Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nature Chemistry, 2017, 9(1): 64–70

[6]

Dai B , Li Z C , Li W Q , Li J , Lu X J , Qian K L , Jiang R Q , Zou Y , Lu Y F , Zhang Q . et al. Precise vacancy fitting of horizontal dinitrogen for ammonia synthesis. Journal of the American Chemical Society, 2025, 147(45): 41308–41319

[7]

Li Z C , Zhang M X , Su X Z , Lu Y F , Li J , Zhang Q , Li W Q , Qian K L , Lu X J , Dai B . et al. Machine learning-assisted Ru-N bond regulation for ammonia synthesis. Nature Communications, 2025, 16(1): 7818

[8]

Yu F . NO hydrogeneration to synthetic N2 or NH3. International Journal of Hydrogen Energy, 2024, 61: 1043–1046

[9]

Yu F . Reflection and prospects on N1 chemistry. Chemical Industry and Engineering Progress, 2023, 42(12): 6136–6140

[10]

Yu F , Li Y . A Fe-based denitriation catalyst preparation method for synthetic ammonia and its applicaigton. Chinese Patent, CN114210372A, 2022,

[11]

Cui D , Li Y , Pan K , Liu J , Wang Q , Liu M , Cao P , Dan J , Dai B , Yu F . NO hydrogenation to NH3 over FeCu/TiO2 catalyst with improved activity. Frontiers of Chemical Science and Engineering, 2023, 17(12): 1973–1985

[12]

Cui D , Tang Y , Liu H , Pan K , Zhou X , Wang Q , Dan J , Wang N , Pfeiffer H , Yu F . Unravelling a new non-noble metal supported catalyst (CuO-Fe2O3/TiO2) for NO selective catalytic reduction with H2. Molecular Catalysis, 2025, 584: 115265

[13]

Li Y , Wang W , Tian J , Cui D , Yuan J , Fang B , Yin N , Li Z , Yu F . Highly efficient hydrogenation of NO to NH3 via a Fe2O3/TiO2 catalyst. Chinese Journal of Catalysis, 2025, 71: 330–339

[14]

Liang J , Liu P Y , Li Q Y , Li T S , Yue L C , Luo Y S , Liu Q , Li N , Tang B , Alshehri A A . et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angewandte Chemie International Edition, 2022, 61(18): e202202087

[15]

Eugene E V T , Bjorn A . Electrolytic reduction of molecular nitrogen. Journal of the American Chemical Society, 1968, 90(16): 4492–4493

[16]

Boese S W , Archer V S . Electrochemical reduction of nitrate in the presence of ytterbium(III). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 138(2): 273–294

[17]

Kordali V , Kyriacou G , Lambrou C . Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chemical Communications, 2000, 17: 1673–1674

[18]

Yang C , Tang Y , Liu X , Zhang M , Pu J , Yang Q , Zhao Y , Gao H , Wang G , Yu F . Highly efficient N2 electroreduction to NH3 on Cu7·2S4/C with sulfur vacancies synthesized using a continuous microchannel reactor. International Journal of Hydrogen Energy, 2024, 67: 251–258

[19]

Tao H , Choi C , Ding L X , Jiang Z , Han Z , Jia M , Fan Q , Gao Y , Wang H , Robertson A W . et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem, 2019, 5(1): 204–214

[20]

Suryanto B H R , Du H L , Wang D B , Chen J , Simonov A N , MacFarlane D R . Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nature Catalysis, 2019, 2(4): 290–296

[21]

Li K , Andersen S Z , Statt M J , Saccoccio M , Bukas V J , Krempl K , Sažinas R , Pedersen J B , Shadravan V , Zhou Y . et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science, 2021, 374(6575): 1593–1597

[22]

Du H L , Chatti M , Hodgetts R Y , Cherepanov P V , Nguyen C K , Matuszek K , MacFarlane D R , Simonov A N . Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature, 2022, 609(7928): 722–727

[23]

MacFarlane D R , Cherepanov P V , Choi J , Suryanto B H R , Hodgetts R Y , Bakker J M , Vallana F M F , Simonov A N . A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186–1205

[24]

Long J , Chen S M , Zhang Y L , Guo C X , Fu X Y , Deng D H , Xiao J P . Direct electrochemical ammonia synthesis from nitric oxide. Angewandte Chemie International Edition, 2020, 59(24): 9711–9718

[25]

Shao J Q , Jing H J , Wei P F , Fu X Y , Pang L , Song Y P , Ye K , Li M R , Jiang L Z , Ma J Y . et al. Electrochemical synthesis of ammonia from nitric oxide using a copper-tin alloy catalyst. Nature Energy, 2023, 8(11): 1273–1283

[26]

Han S , Yang K , Gao L , Li T , Huang Y , Zhou J , Zhang B , Zhu J , Wu J , Zhang B . et al. Synthesis of liquid nitrogenous fertilizer via a nitrogen conversion balance. Nature Sustainability, 2025, 8(9): 1068–1076

[27]

John J , Macfarlane D R , Simonov A N . The why and how of NOx electroreduction to ammonia. Nature Catalysis, 2023, 6(12): 1125–1130

[28]

Zhang S , Zhang R , Guo Y , Zhi C . Ammonia synthesis from nitrate reduction by the modulation of a built-in electric field and external stimuli. EES Catalysis, 2025, 3(2): 235–253

[29]

Shi X , Huang W H , Rong J , Xie M , Wa Q , Zhang P , Wei H , Zhou H , Yeh M H , Pao C W . et al. Revealing and modulating catalyst reconstruction for highly efficient electrosynthesis of ammonia. Nature Communications, 2025, 16(1): 6161

[30]

Xu H , Yang Y , Han A , Yao C , Zhang H , Luo Y , Fu Z , Lu Y , Liu G , Li F . et al. Promoting ampere-level nitrate reduction to ammonia through strong oxide–oxide interaction. Angewandte Chemie International Edition, 2025, 64(39): e202510450

[31]

Zhang G , Li Y , He C , Ren X , Zhang P , Mi H . Recent progress in 2D catalysts for photocatalytic and electrocatalytic artificial nitrogen reduction to ammonia. Advanced Energy Materials, 2021, 11(11): 2003294

[32]

Schrauzer G N , Guth T D . Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 1977, 99(22): 7189–7193

[33]

Akihiko K , Kazunari D , Ken-ichi M , Takaharu O . Reduction of nitrate ions into nitrite and ammonia over some photocatalysts. Journal of Catalysis, 1992, 135(1): 300–303

[34]

Zhao Y , Zhao Y , Waterhouse G I N , Zheng L , Cao X , Teng F , Wu L Z , Tung C H , O’Hare D , Zhang T . Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Advanced Materials, 2017, 29(42): 1703828

[35]

Han Q , Wu C , Jiao H , Xu R , Wang Y , Xie J , Guo Q , Tang J . Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for efficient photocatalytic ammonia synthesis. Advanced Materials, 2021, 33(9): 2008180

[36]

Mao C , Li H , Gu H , Wang J , Zou Y , Qi G , Xu J , Deng F , Shen W , Li J . et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem, 2019, 5(10): 2702–2717

[37]

Li J , Wang J , Shen S , Chen R , Liu M , Dong F . Beyond purification: highly efficient and selective conversion of NO into ammonia by coupling continuous absorption and photoreduction under ambient conditions. Environmental Science & Technology, 2023, 57(13): 5445–5452

[38]

Zhao B B , Hu W , Guan C X , Mao J , Zhang Y L , Huang R , Yu L , Deng D H . Direct ammonia synthesis from nitrogen and water at mild conditions. Journal of the American Chemical Society, 2025, 147(51): 47654–47662

[39]

Tang Y , Song Y , Jia J , Liu Z P , Zeng H , Yang X , Rui Z B . Engineering green ammonia photoproduction from nitrogen: advances, challenges, and perspectives. Journal of Energy Chemistry, 2026, 112: 111–154

[40]

Mehta P , Barboun P , Herrera F A , Kim J , Rumbach P , Go D B , Hicks J C , Schneider W F . Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nature Catalysis, 2018, 1(4): 269–275

[41]

Kameoka S , Kuroda M , Aoyagi K , Ito S , Kunimori K . Formation of novel Al2O3 surface (Al-O-star) by plasma-excited nitrogen and its catalytic application—production of ammonia and oxygen from nitrogen and water. Applied Surface Science, 1997, 121: 351–354

[42]

Zhang T , Zhou R , Zhang S , Zhou R , Ding J , Li F , Hong J , Dou L , Shao T , Murphy A B . et al. Sustainable ammonia synthesis from nitrogen and water by one-step plasma catalysis. , 2023, 6: e12344

[43]

Shah J , Wu T , Lucero J , Carreon M A , Carreon M L . Nonthermal plasma synthesis of ammonia over Ni-MOF-74. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 377–383

[44]

Zeng X , Zhang S , Hu X C , Zhang C , Ostrikov K , Shao T . Recent advances in plasma-enabled ammonia synthesis: state-of-the-art, challenges, and outlook. Faraday Discussions, 2023, 243: 473–491

[45]

Li L Q , Tang C , Cui X Y , Zheng Y , Wang X S , Xu H L , Zhang S , Shao T , Davey K , Qiao S Z . Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction. Angewandte Chemie International Edition, 2021, 60(25): 14131–14137

[46]

Ren Y W , Yu C , Wang L S , Tan X Y , Wang Z , Wei Q B , Zhang Y F , Qiu J S . Microscopic-level insights into the mechanism of enhanced NH3 synthesis in plasma-enabled cascade N2 oxidation-electroreduction system. Journal of the American Chemical Society, 2022, 144(23): 10193–10200

[47]

Liu W , Xia M , Zhao C , Chong B , Chen J , Li H , Ou H , Yang G . Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions. Nature Communications, 2024, 15(1): 3524

[48]

Wang J , Zhang C , Mou S , Li J , Chen R , Xiao L , Wu W , Dong F . Solar ammonia synthesis: near-complete conversion of intermediated nitrogen energy carrier via the N2-NO-NH3 route. ACS Nano, 2025, 19(22): 20702–20710

[49]

Xiao L , Mou S Y , Lin X Y , Wu K Y , Liu S Y , Dai W D , Yang W P , Tang C Y , Long C , Dong F . Techno-economic assessment of plasma-driven air oxidation coupled with electroreduction synthesis of ammonia. Green Energy Environ, 2025, 10(9): 1901–1910

[50]

Huang P W , Hatzell M C . Prospects and good experimental practices for photocatalytic ammonia synthesis. Nature Communications, 2022, 13(1): 7908

[51]

Collado L , Pizarro A H , Barawi M , Garcia-Tecedor M , Liras M , O’Shea V A D . Light-driven nitrogen fixation routes for green ammonia production. Chemical Society Reviews, 2024, 53(23): 11334–11389

RIGHTS & PERMISSIONS

Higher Education Press

PDF (1957KB)

68

Accesses

0

Citation

Detail

Sections
Recommended

/