Minute-level interfacial polymerization of covalent organic framework membranes for high-flux nanofiltration

Junjie Liu , Bingqian Kang , Xinyi Zhao , Yingzhou Lu , Hongwei Fan

ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (5) : 31

PDF (2265KB)
ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (5) :31 DOI: 10.1007/s11705-026-2654-6
RESEARCH ARTICLE

Minute-level interfacial polymerization of covalent organic framework membranes for high-flux nanofiltration

Author information +
History +
PDF (2265KB)

Abstract

Covalent organic framework (COF) membranes are promising for water treatment applications owing to their uniform pores and outstanding chemical stability. However, the harsh conditions and low synthetic efficiency of conventional solvothermal synthesis of COF membranes have severely hindered their practical development. Herein, we developed a dynamic interfacial polymerization strategy to rapidly construct a TpPa-1 selective layer on a polyacrylonitrile substrate within only 3 min. This method enabled the rapid and efficient fabrication of COF membranes by confining the reaction region to shorten the diffusion path of the monomers while exploiting the intrinsic high reactivity of TpPa-1 monomers. The rapid fabrication resulted in a thinner selective layer and enhanced permeance performance. In the methyl blue/Na2SO4 nanofiltration test, the separation factor reached 212, with a permeance of 865 L∙m–2∙h–1∙MPa–1, outperforming most previously reported COF membranes.

Graphical abstract

Keywords

covalent organic framework membranes / dynamic interfacial polymerization / rapid and efficient synthesis / dye desalination / nanofiltration

Cite this article

Download citation ▾
Junjie Liu, Bingqian Kang, Xinyi Zhao, Yingzhou Lu, Hongwei Fan. Minute-level interfacial polymerization of covalent organic framework membranes for high-flux nanofiltration. ENG. Chem. Eng., 2026, 20(5): 31 DOI:10.1007/s11705-026-2654-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Halepoto H , Gong T , Memon H . Current status and research trends of textile wastewater treatments—a bibliometric-based study. Frontiers in Environmental Science, 2022, 10: 1042256

[2]

Thamaraiselvan C , Noel M . Membrane processes for dye wastewater treatment: recent progress in fouling control. Critical Reviews in Environmental Science and Technology, 2015, 45(10): 1007–1040

[3]

Tripathi M , Singh S , Pathak S , Kasaudhan J , Mishra A , Bala S , Garg D , Singh R , Singh P , Singh P K . et al. Recent strategies for the remediation of textile dyes from wastewater: a systematic review. Toxics, 2023, 11(11): 940

[4]

Yao H , Yu H , Zhang B , Chen K , Yi Q , Xie H , Hu X , Tang T , Cheng Y , Tao X . et al. Approximately 1 nm-sized artificial tunnels in wrinkled graphene-graphene oxide composite membranes for efficient dye/dye separation and dye desalination. Chemical Engineering Journal, 2022, 445: 136753

[5]

Gan B , Peng L , Liu W , Zhang L , Wang L , Long L , Guo H , Song X , Yang Z , Tang C . Ultra-permeable silk-based polymeric membranes for vacuum-driven nanofiltration. Nature Communications, 2024, 15(1): 8656

[6]

Liu Y , Zhu J , Chi M , Van Eygen G , Guan K , Matsuyama H . Comprehensive review of nanofiltration membranes for efficient resource recovery from textile wastewater. Chemical Engineering Journal, 2025, 506: 160132

[7]

Liu L , Qu S , Yang Z , Chen Y . Fractionation of dye/NaCl mixtures using loose nanofiltration membranes based on the incorporation of WS2 in self-assembled layer-by-layer polymeric electrolytes. Industrial & Engineering Chemistry Research, 2020, 59(40): 18160–18169

[8]

Feng Y , Meng X , Zhang Z , Zhang L . Dye retention and desalination behavior of MoS2 doped high-flux β-CD/TDI polyurethane nanofiltration membrane. Journal of Membrane Science, 2022, 656: 120643

[9]

Di J , Wang H , Zhang L , Chen Z , Zhang Y , Mamba B , Qiu M , Guo J , Shao L . Recent progress in advanced polyamide nanofiltration membranes via interfacial polymerization for desalination and beyond. Desalination, 2024, 592: 118167

[10]

Du Y , Pramanik B , Zhang Y , Jegatheesan V . Resource recovery from RO concentrate using nanofiltration: impact of active layer thickness on performance. Environmental Research, 2023, 231: 116265

[11]

Filimon A , Dobos A , Onofrei M , Serbezeanu D . Polyvinyl alcohol-based membranes: a review of research progress on design and predictive modeling of properties for targeted application. Polymers, 2025, 17(8): 1016

[12]

Côté A , Benin A , Ockwig N , O’Keeffe M , Matzger A , Yaghi O . Porous, crystalline, and covalent organic frameworks. Science, 2005, 310(5751): 1166–1170

[13]

Xu X , Wu X , Xu K , Xu H , Chen H , Huang N . Pore partition in two-dimensional covalent organic frameworks. Nature Communications, 2023, 14(1): 3360

[14]

Yusran Y , Miao B , Qiu S , Fang Q . Functional covalent organic frameworks: design principles to potential applications. Accounts of Materials Research, 2024, 5(10): 1263–1278

[15]

Asif M , Kim S , Nguyen T , Mahmood J , Yavuz C . Covalent organic framework membranes and water treatment. Journal of the American Chemical Society, 2024, 146(6): 3567–3584

[16]

Zhang C , Xiao T , He J , Lu B , Li X , Zhai J , Fan X . Room-temperature synthesis of a COFs membrane via LBL self-assembly strategy for energy harvesting. Small, 2023, 19(37): 2301512

[17]

Banjerdteerakul K , Peng H , Li K . COF-based nanofiltration membrane for effective treatment of wastewater containing pharmaceutical residues. Journal of Membrane Science, 2023, 681: 121780

[18]

Zhao X , Sun J , Cheng X , Qiu Q , Ma G , Jiang C , Pan J . Colloidal 2D covalent organic framework-tailored nanofiltration membranes for precise molecular sieving. ACS Applied Materials & Interfaces, 2023, 15(46): 53924–53934

[19]

Bai W , Wang J , Ying Y , Liu D , Yang Q . Two-dimensional covalent organic framework membranes for molecular and ion separation. Industrial & Engineering Chemistry Research, 2025, 64(11): 5782–5804

[20]

Lu H , Wang C , Chen J , Ge R , Leng W , Dong B , Huang J , Gao Y . A novel 3D covalent organic framework membrane grown on a porous α-Al2O3 substrate under solvothermal conditions. Chemical Communications, 2015, 51(85): 15562–15565

[21]

Shi X , Xiao A , Zhang C , Wang Y . Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra-to nanofiltration. Journal of Membrane Science, 2019, 576: 116–122

[22]

Zhao G , Li L , Gao H , Zhao Z , Pang Z , Pei C , Qu Z , Dong L , Rao D , Caro J . et al. Polyamide nanofilms through a non-isothermal-controlled interfacial polymerization. Advanced Functional Materials, 2024, 34(18): 2313026

[23]

Wang R , Shi X , Xiao A , Zhou W , Wang Y . Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. Journal of Membrane Science, 2018, 566: 197–204

[24]

Qu Y , Zha Y , Du X , Xu S , Zhang M , Xu L , Jia H . Interfacial polymerization of self-standing covalent organic framework membranes at alkane/ionic liquid interfaces for dye separation. ACS Applied Polymer Materials, 2022, 4(10): 7528–7536

[25]

Wu Y , Wang Y , Xu F , Qu K , Dai L , Cao H , Xia Y , Lei L , Huang K , Xu Z . Solvent-induced interfacial polymerization enables highly crystalline covalent organic framework membranes. Journal of Membrane Science, 2022, 659: 120799

[26]

Zhao G , Gao H , Qu Z , Fan H , Meng H . Anhydrous interfacial polymerization of sub-1 Å sieving polyamide membrane. Nature Communications, 2023, 14(1): 7624

[27]

Ji S , Li Z , Dai Y , Jiang X , Ruan X , Zheng W , He G A . ‘rigid and flexible’ molecular sieving membrane constructed by in-situ polymerization of COFs to repair defects in MOF membrane. Separation and Purification Technology, 2025, 371: 133253

[28]

Meng W , Xue Q , Zhu J , Zhang K . Exploiting sulfonated covalent organic frameworks to fabricate long-lasting stability and chlorine-resistant thin-film nanocomposite nanofiltration membrane. NPJ Clean Water, 2024, 7(1): 23

[29]

Shi X , Xiao A , Zhang C , Wang Y . Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra- to nanofiltration. Journal of Membrane Science, 2019, 576: 116–122

[30]

Wu T , Qian Y , Zhu Z , Yu W , Zhang L , Liu J , Shen X , Zhou X , Qian T , Yan C . Imine-linked 3D covalent organic framework membrane featuring highly charged sub-1 nm channels for exceptional lithium-ion sieving. Advanced Materials, 2025, 37(8): 2415509

[31]

Wang P , Peng Y , Zhu C , Yao R , Song H , Kun L , Yang W . Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angewandte Chemie International Edition, 2021, 60(35): 19047–19052

[32]

Suhalim N , Kasim N , Mahmoudi E , Shamsudin I , Mohammad A , Mohamed Z , Jamari N . Rejection mechanism of ionic solute removal by nanofiltration membranes: an overview. Nanomaterials, 2022, 12(3): 437

[33]

Ryan M , Yang N , Kwac K , Wilhelm K , Chi B , Weix D , Cho M , Zanni M . The hydrogen-bonding dynamics of water to a nitrile-functionalized electrode is modulated by voltage according to ultrafast 2D IR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(52): e2314998120

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2265KB)

Supplementary files

Supplementary materials

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/