Tailoring ammonia adsorption in UiO-67 via defect and metal site engineering

Guilian Wang , Ka Tsun Wong , Yihan Lu , Yuhui Huang , S. C. Edman Tsang , Pu Zhao

ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (4) : 28

PDF (2741KB)
ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (4) :28 DOI: 10.1007/s11705-026-2653-7
RESEARCH ARTICLE

Tailoring ammonia adsorption in UiO-67 via defect and metal site engineering

Author information +
History +
PDF (2741KB)

Abstract

NH3 has emerged as a promising carbon-free energy carrier, yet its toxicity and environmental impact drive the need for adsorbents with tunable adsorption properties. Metal-organic frameworks (MOFs), particularly UiO-67, offer an ideal platform due to their high porosity and structural versatility. This work demonstrates two complementary strategies for tailoring NH3 adsorption in UiO-67: defect engineering via modulator-induced linker vacancies using acids of varying acidity, and post-synthetic metalation with copper to introduce open metal sites. Defect engineering enables nearly 10-fold control over defect density, leading to tunable stepwise NH3 adsorption isotherms, while copper functionalization enhances uptake by over 50% in the optimal sample. Structural changes were systematically characterized, allowing correlation between material structure and adsorption performance. The study establishes defect control and metal incorporation as effective and complementary approaches for designing application-specific NH3 MOF adsorbents.

Graphical abstract

Keywords

metal-organic frameworks / ammonia adsorption / defect engineering / metal site engineering / adsorption tuning

Cite this article

Download citation ▾
Guilian Wang, Ka Tsun Wong, Yihan Lu, Yuhui Huang, S. C. Edman Tsang, Pu Zhao. Tailoring ammonia adsorption in UiO-67 via defect and metal site engineering. ENG. Chem. Eng., 2026, 20(4): 28 DOI:10.1007/s11705-026-2653-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo J , Chen P . Catalyst: NH3 as an energy carrier. Chemistry, 2017, 3(5): 709–712

[2]

Rouwenhorst K H R , Van der Ham A G J , Mul G , Kersten S R A . Islanded ammonia power systems: technology review & conceptual process design. Renewable & Sustainable Energy Reviews, 2019, 114: 109339

[3]

Green L Jr . An ammonia energy vector for the hydrogen economy. International Journal of Hydrogen Energy, 1982, 7(4): 355–359

[4]

Zhang M , Ma J F , Zhu Z L , Huang Y Q , He G , Yuan S J . Rigid rhombus Al(bpdc) metal-organic framework for efficient and reversible ammonia adsorption: synthesis, performance, and mechanism. Separation and Purification Technology, 2025, 362: 131860

[5]

Qajar A , Peer M , Andalibi M R , Rajagopalan R , Foley H C . Enhanced ammonia adsorption on functionalized nanoporous carbons. Microporous and Mesoporous Materials, 2015, 218: 15–23

[6]

Islamoglu T , Chen Z , Wasson M C , Buru C T , Kirlikovali K O , Afrin U , Mian M R , Farha O K . Metal-organic frameworks against toxic chemicals. Chemical Reviews, 2020, 120(16): 8130–8160

[7]

Li J R , Sculley J , Zhou H C . Metal-organic frameworks for separations. Chemical Reviews, 2012, 112(2): 869–932

[8]

Hu Z , Deibert B J , Li J . Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chemical Society Reviews, 2014, 43(16): 5815–5840

[9]

Barros B S , de Lima Neto O J , de Oliveira Frós A C , Kulesza J . Metal-organic framework nanocrystals. ChemistrySelect, 2018, 3(26): 7459–7471

[10]

Zhao D , Timmons D J , Yuan D , Zhou H C . Tuning the topology and functionality of metal-organic frameworks by ligand design. Accounts of Chemical Research, 2011, 44(2): 123–133

[11]

Martin R L , Haranczyk M . Construction and characterization of structure models of crystalline porous polymers. Crystal Growth & Design, 2014, 14(5): 2431–2440

[12]

Yaghi O M , O’Keeffe M , Ockwig N W , Chae H K , Eddaoudi M , Kim J . Reticular synthesis and the design of new materials. Nature, 2003, 423(6941): 705–714

[13]

Ali Akbar Razavi S , Morsali A . Linker functionalized metal-organic frameworks. Coordination Chemistry Reviews, 2019, 399: 213023

[14]

Millward A R , Yaghi O M . Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005, 127(51): 17998–17999

[15]

Rowsell J L C , Yaghi O M . Strategies for hydrogen storage in metal-organic frameworks. Angewandte Chemie International Edition, 2005, 44(30): 4670–4679

[16]

Kreno L E , Leong K , Farha O K , Allendorf M , Van Duyne R P , Hupp J T . Metal-organic framework materials as chemical sensors. Chemical Reviews, 2012, 112(2): 1105–1125

[17]

Xu C , Orbell W , Wang G , Li B , Ng B K Y , Wu T S , Soo Y L , Luan Z X , Tang K , Wu X P . et al. Direct visualisation of metal-defect cooperative catalysis in Ru-doped defective MOF-808. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(30): 19018–19028

[18]

Kandiah M , Nilsen M H , Usseglio S , Jakobsen S , Olsbye U , Tilset M , Larabi C , Quadrelli E A , Bonino F , Lillerud K P . Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010, 22(24): 6632–6640

[19]

Howarth A J , Liu Y , Li P , Li Z , Wang T C , Hupp J T , Farha O K . Chemical, thermal, and mechanical stabilities of metal-organic frameworks. Nature Reviews Materials, 2016, 1(3): 15018

[20]

Duan C , Yu Y , Xiao J , Li Y , Yang P , Hu F , Xi H . Recent advancements in metal-organic frameworks for green applications. Green Energy & Environment, 2021, 6(1): 33–49

[21]

Cavka J H , Jakobsen S , Olsbye U , Guillou N , Lamberti C , Bordiga S , Lillerud K P . A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851

[22]

Bai Y , Dou Y , Xie L H , Rutledge W , Li J R , Zhou H C . Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45(8): 2327–2367

[23]

Zhang M , Chen Y P , Bosch M , Gentle T III , Wang K , Feng D , Wang Z U , Zhou H C . Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology. Angewandte Chemie International Edition, 2014, 53(3): 815–818

[24]

Caratelli C , Hajek J , Meijer E J , Waroquier M , Van Speybroeck V . Dynamic interplay between defective UiO-66 and protic solvents in activated processes. Chemistry, 2019, 25(67): 15315–15325

[25]

Ahmadijokani F , Molavi H , Rezakazemi M , Tajahmadi S , Bahi A , Ko F , Aminabhavi T M , Li J R , Arjmand M . UiO-66 metal-organic frameworks in water treatment: a critical review. Progress in Materials Science, 2022, 125: 100904

[26]

Schaate A , Roy P , Godt A , Lippke J , Waltz F , Wiebcke M , Behrens P . Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chemistry, 2011, 17(24): 6643–6651

[27]

Tsuruoka T , Furukawa S , Takashima Y , Yoshida K , Isoda S , Kitagawa S . Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angewandte Chemie International Edition, 2009, 48(26): 4739–4743

[28]

Wang K , Li C , Liang Y , Han T , Huang H , Yang Q , Liu D , Zhong C . Rational construction of defects in a metal-organic framework for highly efficient adsorption and separation of dyes. Chemical Engineering Journal, 2016, 289: 486–493

[29]

Shearer G C , Chavan S , Bordiga S , Svelle S , Olsbye U , Lillerud K P . Defect engineering: tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chemistry of Materials, 2016, 28(11): 3749–3761

[30]

Feng Y , Chen Q , Jiang M , Yao J . Tailoring the properties of UiO-66 through defect engineering: a review. Industrial & Engineering Chemistry Research, 2019, 58(38): 17646–17659

[31]

Wu H , Chua Y S , Krungleviciute V , Tyagi M , Chen P , Yildirim T , Zhou W . Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 2013, 135(28): 10525–10532

[32]

Voorde B V D , Stassen I , Bueken B , Vermoortele F , Vos D D , Ameloot R , Tan J C , Bennett T D . Improving the mechanical stability of zirconium-based metal-organic frameworks by incorporation of acidic modulators. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(4): 1737–1742

[33]

Kaur G , Øien-Ødegaard S , Lazzarini A , Chavan S M , Bordiga S , Lillerud K P , Olsbye U . Controlling the synthesis of metal-organic framework UiO-67 by tuning its kinetic driving force. Crystal Growth & Design, 2019, 19(8): 4246–4251

[34]

Sholl D S , Lively R P . Defects in metal–organic frameworks: challenge or opportunity. Journal of Physical Chemistry Letters, 2015, 6(17): 3437–3444

[35]

Yoskamtorn T , Zhao P , Wu X P , Purchase K , Orlandi F , Manuel P , Taylor J , Li Y , Day S , Ye L . et al. Responses of defect-rich Zr-based metal-organic frameworks toward NH3 adsorption. Journal of the American Chemical Society, 2021, 143(8): 3205–3218

[36]

Binaeian E , Li Y , Yuan D . Improving ammonia uptake performance of zirconium-based metal-organic frameworks through open metal site insertion strategy. Chemical Engineering Journal, 2021, 421: 129655

[37]

Gutterød E S , Lazzarini A , Fjermestad T , Kaur G , Manzoli M , Bordiga S , Svelle S , Lillerud K P , Skúlason E , Øien-Ødegaard S . et al. Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: deciphering the role of the metal-organic framework. Journal of the American Chemical Society, 2020, 142(2): 999–1009

[38]

Gutterød E S , Øien-Ødegaard S , Bossers K , Nieuwelink A E , Manzoli M , Braglia L , Lazzarini A , Borfecchia E , Ahmadigoltapeh S , Bouchevreau B . et al. CO2 hydrogenation over Pt-containing UiO-67 Zr-MOFs—the base case. Industrial & Engineering Chemistry Research, 2017, 56(45): 13206–13218

[39]

Øien S , Agostini G , Svelle S , Borfecchia E , Lomachenko K A , Mino L , Gallo E , Bordiga S , Olsbye U , Lillerud K P . et al. Probing reactive platinum sites in UiO-67 zirconium metal-organic frameworks. Chemistry of Materials, 2015, 27(3): 1042–1056

[40]

Kitagawa S , Matsuda R . Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews, 2007, 251(21): 2490–2509

[41]

Braglia L , Borfecchia E , Maddalena L , Øien S , Lomachenko K A , Bugaev A L , Bordiga S , Soldatov A V , Lillerud K P , Lamberti C . Exploring structure and reactivity of Cu sites in functionalized UiO-67 MOFs. Catalysis Today, 2017, 283: 89–103

[42]

Shu Y , Wang D , Gu H , Zhu G S , Fan K C , Liu B Y , Zhang M , Wang J , Liu L , Zhang J . et al. Metal node control of coordinatively unsaturated sites in heterobimetallic MOFs for stable and high ammonia adsorption. Environmental Science & Technology, 2025, 59(37): 20109–20123

[43]

Shen L , Luo M , Liu Y , Liang R , Jing F , Wu L . Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production. Applied Catalysis B: Environmental, 2015, 166–167: 445–453

[44]

Forgan R S . Modulated self-assembly of metal-organic frameworks. Chemical Science, 2020, 11(18): 4546–4562

[45]

Albalad J , Xu H , Gándara F , Haouas M , Martineau-Corcos C , Mas-Ballesté R , Barnett S A , Juanhuix J , Imaz I , Maspoch D . Single-crystal-to-single-crystal postsynthetic modification of a metal-organic framework via ozonolysis. Journal of the American Chemical Society, 2018, 140(6): 2028–2031

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2741KB)

Supplementary files

Supplementary materials

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/