Highly conductive and cost-effective quaternary (Yb2O3)x(Sc2O3)0.10‒x(CeO2)0.01(ZrO2)0.89 (x = 0.04–0.10) electrolytes for efficient and durable solid oxide fuel cells

Zhiyi Chen , Fujun Liang , Jiongyuan Huang , Changgen Lin , Jiaqi Qian , Na Ai , Chengzhi Guan , Kongfa Chen , Jiujun Zhang

ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (3) : 21

PDF (2428KB)
ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (3) :21 DOI: 10.1007/s11705-026-2645-7
RESEARCH ARTICLE

Highly conductive and cost-effective quaternary (Yb2O3)x(Sc2O3)0.10‒x(CeO2)0.01(ZrO2)0.89 (x = 0.04–0.10) electrolytes for efficient and durable solid oxide fuel cells

Author information +
History +
PDF (2428KB)

Abstract

(Sc2O3)0.1(CeO2)0.01(ZrO2)0.89 possesses excellent ionic conductivity among various stabilized ZrO2 electrolyte materials for solid oxide fuel cells. However, its practical application is limited by susceptibility to phase transition and the high cost of Sc2O3 raw material. Herein, we address these challenges by partially replacing Sc2O3 in (Sc2O3)0.1(CeO2)0.01(ZrO2)0.89 with low-cost Yb2O3. Quaternary (Yb2O3)x(Sc2O3)0.10‒x(CeO2)0.01(ZrO2)0.89 (x = 0.04−0.10) electrolyte discs are fabricated by coupling tape casting and in situ solid-state reaction. All Yb2O3 doped electrolytes exhibit a single cubic phase structure. With increasing in Yb2O3 amount, the grain boundary resistance decreases, leading to improved conductivity at low temperatures. (Yb2O3)0.06(Sc2O3)0.04(CeO2)0.01(ZrO2)0.89 exhibits the ionic conductivity of 0.088 and 0.0020 S∙cm‒1 at 800 and 500 °C, respectively. In addition, both the thermal expansion coefficient and three-point bending strength of the electrolytes increase with higher Yb2O3 amount, satisfying the criteria for advanced electrolyte materials in solid oxide fuel cells. A single cell configuration comprising a Ni-Gd0.2Ce0.8O1.9 anode|200 μm thick (Yb2O3)0.06(Sc2O3)0.04(CeO2)0.01(ZrO2)0.89|La0.6Sr0.4Co0.2Fe0.8O3 cathode achieves a peak power density of 0.65 W∙cm‒2 at 800 °C and operates stably for 100 h without noticeable degradation. The present findings provide a new approach for the development of cost-effective and highly conductive ZrO2-based electrolyte for efficient and durable solid oxide fuel cells.

Graphical abstract

Keywords

solid oxide fuel cells / 10Sc1CeSZ electrolyte / ytterbium doping / phase transition

Cite this article

Download citation ▾
Zhiyi Chen, Fujun Liang, Jiongyuan Huang, Changgen Lin, Jiaqi Qian, Na Ai, Chengzhi Guan, Kongfa Chen, Jiujun Zhang. Highly conductive and cost-effective quaternary (Yb2O3)x(Sc2O3)0.10‒x(CeO2)0.01(ZrO2)0.89 (x = 0.04–0.10) electrolytes for efficient and durable solid oxide fuel cells. ENG. Chem. Eng., 2026, 20(3): 21 DOI:10.1007/s11705-026-2645-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma W , Morales-Vidal J , Tian J , Liu M T , Jin S , Ren W , Taubmann J , Chatzichristodoulou C , Luterbacher J , Chen H M . et al. Encapsulated Co–Ni alloy boosts high-temperature CO2 electroreduction. Nature, 2025, 641(8065): 1156–1161

[2]

Jiang S P . Solid-state electrochemistry and solid oxide fuel cells: status and future prospects. Electrochemical Energy Reviews, 2022, 5(S1): 21

[3]

Yu G , Chen S , Dan C , Kaisheng L , Ke D , Zhigang Z , Taikai L , Kui W , Min L , Hanlin L . Low-pressure plasma sprayed dense scandia-stabilized zirconia electrolyte and its effect on SOFC performance. Journal of Alloys and Compounds, 2024, 977: 173276

[4]

Haering C , Roosen A , Schichl H , Schnöller M . Degradation of the electrical conductivity in stabilised zirconia system: Part II: Scandia-stabilised zirconia. Solid State Ionics, 2005, 176(3–4): 261–268

[5]

Xue Q , Huang X , Wang L , Dong J , Xu H , Zhang J . Effects of Sc doping on phase stability of Zr1–xScxO2 and phase transition mechanism: first-principles calculations and Rietveld refinement. Materials & Design, 2017, 114: 297–302

[6]

Barbashov V I , Chaika E V . Conductivity of ScSZ ceramics in vicinity of polymorphic phase transitions. ECS Transactions, 2019, 91(1): 1185–1192

[7]

Müller M A , Schweizer D , Seiler V . Wealth effects of rare earth prices and China’s rare earth elements policy. Journal of Business Ethics, 2016, 138(4): 627–648

[8]

Arifin N A , Afifi A A , Samreen A , Hafriz R S R M , Muchtar A . Characteristic and challenges of scandia stabilized zirconia as solid oxide fuel cell material—in depth review. Solid State Ionics, 2023, 399: 116302

[9]

Arachi Y , Sakai H , Yamamoto O , Takeda Y , Imanishai N . Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system. Solid State Ionics, 1999, 121(1): 133–139

[10]

Agarkov D , Borik M , Korableva G , Kulebyakin A , Kuritsyna I , Larina N , Lomonova E , Milovich F , Myzina V , Ryabochkina P . et al. Stability of the structural and transport characteristics of (ZrO2)0.99–x(Sc2O3)x(R2O3)0.01 (R-Yb, Y, Tb, Gd) electrolytic membranes to high-temperature exposure. Membranes, 2023, 13(3): 312

[11]

Vijaya Lakshmi V , Bauri R . Phase formation and ionic conductivity studies on ytterbia co-doped scandia stabilized zirconia (0.9ZrO2-0.09Sc2O3-0.01Yb2O3) electrolyte for SOFCs. Solid State Sciences, 2011, 13(8): 1520–1525

[12]

Mosiałek M , Hanif M B , Šalkus T , Kežionis A , Kazakevičius E , Orliukas A F , Socha R P , Łasocha W , Dziubaniuk M , Wyrwa J . et al. Synthesis of Yb and Sc stabilized zirconia electrolyte (Yb0.12Sc0.08Zr0.8O2–δ) for intermediate temperature SOFCs: microstructural and electrical properties. Ceramics International, 2023, 49(10): 15276–15283

[13]

Jeon H J , Kim K J , Kim M Y , Choi S W , Lee M S , Oh M Y , Kim H S . Fabrication and electrochemical characterization of SOFC single cell with 6Yb4ScSZ electrolyte powder by tape-casting and co-sintering. Journal of the Ceramic Society of Japan, 2015, 123(1436): 229–234

[14]

Yuan F , Wang J , Miao H , Guo C , Wang W G . Investigation of the crystal structure and ionic conductivity in the ternary system (Yb2O3)x-(Sc2O3)(0.11−x)-(ZrO2)0.89 (x = 0–0.11). Journal of Alloys and Compounds, 2013, 549: 200–205

[15]

Escardino A , Belda A , Orts M J , Gozalbo A . Ceria-doped scandia-stabilized zirconia (10Sc2O3·1CeO2·89ZrO2) as electrolyte for SOFCs: sintering and ionic conductivity of thin, flat sheets. International Journal of Applied Ceramic Technology, 2017, 14(4): 532–542

[16]

Shin H C , Yu J H , Lim K T , Lee H L , Baik K H H C . Effects of partial substitution of CeO2 with M2O3 (M = Yb, Gd, Sm) on electrical degradation of Sc2O3 and CeO2 Co-doped ZrO2. Journal of the Korean Ceramic Society, 2016, 53(5): 500–505

[17]

Omar S , Belda A , Escardino A , Bonanos N . Ionic conductivity ageing investigation of 1Ce10ScSZ in different partial pressures of oxygen. Solid State Ionics, 2011, 184(1): 2–5

[18]

Ma Y , He B , Wang J , Cheng M , Zhong X , Huang J . Porous/dense bilayer BaZr0.8Y0.2O3-δ electrolyte matrix fabricated by tape casting combined with solid-state reactive sintering for protonic ceramic fuel cells. International Journal of Hydrogen Energy, 2021, 46(15): 9918–9926

[19]

Duan C , Tong J , Shang M , Nikodemski S , Sanders M , Ricote S , Almansoori A , O’Hayre R . Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science, 2015, 349(6254): 1321–1326

[20]

Lin C , Zhang Y , Qian J , Chen Z , Huang J , Ai N , Jiang S P , Wang X , Shao Y , Chen K . Coupling of tape casting and in situ solid-state reaction for manufacturing La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte of efficient solid oxide cells. Journal of the European Ceramic Society, 2024, 44(6): 3818–3823

[21]

Qian J , Lin C , Chen Z , Huang J , Ai N , Jiang S P , Zhou X , Wang X , Shao Y , Chen K . High-performance, stable buffer-layer-free La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte-supported solid oxide cell with a nanostructured nickel-based hydrogen electrode. Applied Catalysis B: Environment and Energy, 2024, 346: 123742

[22]

Qian J , Huang J , Chen Z , Cheng Z , Zhang H , Lin C , Tian D , Ai N , Guan C , Jiang S P . et al. Heterogeneous La0.75Sr0.25Cr0.5Mn0.5O3-based nanocomposite hydrogen electrode for efficient and durable solid oxide cells. Advanced Functional Materials, 2025, e09938

[23]

Wang B , Yue Z , Chen Z , Zhang Y , Fang H , Ai N , Wang R , Yang F , Guan C , Jiang S P . et al. Facile construction of nanostructured cermet anodes with strong metal-oxide interaction for efficient and durable solid oxide fuel cells. Small, 2023, 19(46): 2304425

[24]

Zhang H , Xiong R , Chen Z , Cheng Z , Huang J , Sa B , Ai N , Zhang L , Chan S H , Guan C . et al. Efficient and robust nanocomposite cermet anode with strong metal-oxide interaction for direct ammonia solid oxide fuel cells. Advanced Functional Materials, 2025, 35(38): 2501223

[25]

Zou Y , Lin T , Sun Y , Chen Z , Guan C , Li Y , Jiang S P , Ai N , Chen K . Anodic polarization creates an electrocatalytically active Ni anode/electrolyte interface and mitigates the coarsening of Ni phase in SOFC. Electrochimica Acta, 2021, 391: 138912

[26]

Zhang F , Weng Q , Zhang Y , Ai N , Jiang S P , Guan C , Shao Y , Fang H , Luo Y , Chen K . Facile preparation of electrodes of efficient electrolyte-supported solid oxide fuel cells using a direct assembly approach. Electrochimica Acta, 2022, 424: 140643

[27]

Ai N , Zou Y , Chen Z , Chen K , Jiang S P . Progress on direct assembly approach for in situ fabrication of electrodes of reversible solid oxide cells. Materials Reports: Energy, 2021, 1(2): 100023

[28]

Ishii T , Iwata T , Tajima Y , Yamaji A . Structural phase transition and ion conductivity in 0.88ZrO2-0.12Sc2O3. Solid State Ionics, 1992, 57(1-2): 153–157

[29]

Zhang S , Savaniu C , Irvine J T . Fluorite materials for SOFC electrolyte applications. ECS Transactions, 2019, 91(1): 1111–1119

[30]

Kulyk V , Duriagina Z , Vasyliv B , Vavrukh V , Kovbasiuk T , Lyutyy P , Vira V . The effect of sintering temperature on the phase composition, microstructure, and mechanical properties of yttria-stabilized zirconia. Materials, 2022, 15(8): 2707

[31]

Wei X , Hou G , An Y , Yang P , Zhao X , Zhou H , Chen J . Effect of doping CeO2 and Sc2O3 on structure, thermal properties and sintering resistance of YSZ. Ceramics International, 2021, 47(5): 6875–6883

[32]

Zhu D , Miller R A . Sintering and creep behavior of plasma-sprayed zirconia-and hafnia-based thermal barrier coatings. Surface and Coatings Technology, 1998, 108: 114–120

[33]

Bokov A , Rodrigues Neto J B , Lin F , Castro R H . Size-induced grain boundary energy increase may cause softening of nanocrystalline yttria-stabilized zirconia. Journal of the American Ceramic Society, 2020, 103(3): 2001–2011

[34]

Kaliyaperumal C , Sankarakumar A , Paramasivam T . Grain size engineering in nanocrystalline Y2Zr2O7: a detailed study on the grain size correlated electrical properties. Journal of Alloys and Compounds, 2020, 831: 154782

[35]

Kambale K , Mahajan A , Butee S . Effect of grain size on the properties of ceramics. Metal Powder Report, 2019, 74(3): 130–136

[36]

Nechache A , Hody S . Alternative and innovative solid oxide electrolysis cell materials: a short review. Renewable & Sustainable Energy Reviews, 2021, 149: 111322

[37]

Xu J , Gai Z . Data processing of AC impedance based on Zview and origin software. Physical Experiment of College, 2018, 31(3): 90–96

[38]

Zhang J , Lenser C , Menzler N H , Guillon O . Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500 °C. Solid State Ionics, 2020, 344: 115138

[39]

Agarkov D A , Borik M A , Volkova T V , Eliseeva G A , Kulebyakin A V , Larina N A , Lomonova E E , Myzina V A , Ryabochkina P A , Tabachkova N Y . Phase composition and local structure of scandia and yttria stabilized zirconia solid solution. Journal of Luminescence, 2020, 222: 117170

[40]

Wang H , Lei Z , Jiang W , Xu X , Jing J , Zheng Z , Yang Z , Peng S . High-conductivity electrolyte with a low sintering temperature for solid oxide fuel cells. International Journal of Hydrogen Energy, 2022, 47(21): 11279–11287

[41]

Brodnikovska I , Brodnikovskyi Y , Brychevskyi M , Vasylyev O . Joint impedance spectroscopy analysis of 10Sc1CeSZ and 8YSZ solid electrolytes for SOFC. Powder Metallurgy and Metal Ceramics, 2019, 57(11–12): 723–730

[42]

Agarkov D A , Agarkova E A , Borik M A , Buzaeva E M , Korableva G M , Kulebyakin A V , Kuritsyna I E , Kyashkin V M , Lomonova E E , Milovich F O . et al. Comparative analysis of the structure and electrical properties of single crystal and ceramic (ZrO2)0.90(Sc2O3)0.09(Yb2O3)0.01 solid electrolyte. Journal of Solid State Electrochemistry, 2024, 28(6): 1963–1970

[43]

Mathur L , Jeon S Y , Namgung Y , Hanantyo M P G , Park J , Islam M S , Sengodan S , Song S J . Ternary co-doped ytterbium-scandium stabilized zirconia electrolyte for solid oxide fuel cells. Solid State Ionics, 2024, 408: 116507

[44]

Liu Y , Shao Z , Mori T , Jiang S P . Development of nickel based cermet anode materials in solid oxide fuel cells—now and future. Materials Reports: Energy, 2021, 1(1): 100003

[45]

Jiang S P . Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells—a review. International Journal of Hydrogen Energy, 2019, 44(14): 7448–7493

[46]

Orlovskaya N , Lukich S , Subhash G , Graule T , Kuebler J . Mechanical properties of 10 mol % Sc2O3-1 mol % CeO2-89 mol % ZrO2 ceramics. Journal of Power Sources, 2010, 195(9): 2774–2781

[47]

Zhou X , Feng Z , Zhu L , Xu J , Miyagi L , Dong H , Sheng H , Wang Y , Li Q , Ma Y . et al. High-pressure strengthening in ultrafine-grained metals. Nature, 2020, 579(7797): 67–72

[48]

Liu X , Lin P , Qian J , Zhang H , Ai N , Guan C , Wang X , Shao Y , Jiang S P , Chen K . Modulating the structural stability of NiFe metal-supported solid oxide fuel cells. International Journal of Hydrogen Energy, 2025, 114: 1–8

[49]

Zhang H , Luo S , Lin P , Lin X , Liu X , Qian J , Lin C , Cheng Z , Ai N , Jiang S P . et al. Structural robustness engineering for nife metal-supported solid oxide fuel cells. Catalysts, 2025, 15(9): 832

[50]

Zhang Z M , Li J H , Liang Y N , Gao Y , Li C X . Yb/Sc Co-doped ZrO2 electrolytes enabled by Al2O3 sintering aid: high conductivity and enhanced stability for solid oxide fuel cells (SOFCs). International Journal of Hydrogen Energy, 2025, 139: 425–434

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2428KB)

Supplementary files

Supplementary materials

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/