Tailoring the stable Li2O-rich solid electrolyte interphase by lithium crosslinking strategy for polymer-based all-solid-state lithium batteries

Hong Zhang , Zixin Xiao , Libin Diao , Zhenjun Song , Haoran Xu , Yu Cheng , Lin Xu , Liqiang Mai

ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (2) : 13

PDF (4046KB)
ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (2) :13 DOI: 10.1007/s11705-026-2633-y
RESEARCH ARTICLE

Tailoring the stable Li2O-rich solid electrolyte interphase by lithium crosslinking strategy for polymer-based all-solid-state lithium batteries

Author information +
History +
PDF (4046KB)

Abstract

Polymer-based solid-state electrolytes with high flexibility and excellent processability present great prospects in all-solid-state lithium batteries. However, when encountering interface stability problems, the application of polymer-based solid-state electrolytes in all-solid-state lithium batteries is puzzling. In this work, we proposed a lithium crosslinking strategy to regulate the interfacial chemistry by tailoring an effective Li2O-rich solid electrolyte interphase layer attributed to introducing 15-crown-5 into the polymer matrix. Specifically, crosslinking the 15-crown-5 with Li+ in polymer-based solid-state electrolytes boosts the Li+ transport by weakening the coordination between Li+ and polymer chains. The crosslinked 15-crown-5 moves along with the Li+ to the anode and decomposes to form the Li2O-rich solid electrolyte interphase with faster Li+ diffusion kinetics, resulting in uniform lithium deposition and suppressing the dendrite penetration. Therefore, the symmetric Li-Li cell could stably maintain cycling over 1100 h without short-circuiting. The LiFePO4||Li full battery presents high retention of capacity (92.75%) over 500 cycles at 1 C. Also, the NCM811||Li full battery can be well-operated in 300 cycles with the capacity retention of 81.44% at 1 C. This study inspires the development of high-performance all-solid-state lithium batteries by rationally tailoring interface chemistry components by regulating the coordinated structure of Li+ at the molecular level.

Graphical abstract

Keywords

polymer-based solid-state electrolytes / lithium crosslinking strategy / lithium oxide / solid electrolyte interphase / all-solid-state lithium batteries

Cite this article

Download citation ▾
Hong Zhang, Zixin Xiao, Libin Diao, Zhenjun Song, Haoran Xu, Yu Cheng, Lin Xu, Liqiang Mai. Tailoring the stable Li2O-rich solid electrolyte interphase by lithium crosslinking strategy for polymer-based all-solid-state lithium batteries. ENG. Chem. Eng., 2026, 20(2): 13 DOI:10.1007/s11705-026-2633-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao X , Shen L , Zhang N , Yang J , Liu G , Wu J , Yao X . Stable binder boosting sulfide solid electrolyte thin membrane for all-solid-state lithium batteries. Energy Materials Advances, 2024, 5: 0074

[2]

Zeng H , Yu K , Li J , Yuan M , Wang J , Wang Q , Lai A , Jiang Y , Yan X , Zhang G . et al. Beyond LiF: tailoring Li2O-dominated solid electrolyte interphase for stable lithium metal batteries. ACS Nano, 2024, 18(3): 1969–1981

[3]

Tan S J , Yue J , Chen Z , Feng X X , Zhang J , Yin Y X , Zhang L , Zheng J C , Luo Y , Xin S . et al. Asymmetric fire-retardant quasi-solid electrolytes for safe and stable high-voltage lithium metal battery. Energy Materials Advances, 2024, 5: 0076

[4]

Liang H , Wang L , Wang A , Song Y , Wu Y , Yang Y , He X . Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Letters, 2023, 15(1): 42

[5]

Li M , Yang S , Li B . Advances in electrolyte–anode interface engineering of solid-state lithium metal batteries. Interdisciplinary Materials, 2024, 3(6): 805–834

[6]

Li Z , Zhang H , Sun X , Yang Y . Mitigating interfacial instability in polymer electrolyte-based solid-state lithium metal batteries with 4 V cathodes. ACS Energy Letters, 2020, 5(10): 3244–3253

[7]

Tang W , Shen N , Xiong X , Liu H , Sun X , Guo J , Jiang F , Wang T , Wang J , Ma Y . et al. Competitive roles of conductivity and lithiophility in composite lithium metal anode. Energy Materials Advances, 2024, 5: 0084

[8]

Li M , Yang S , Li B . Advances in electrolyte-anode interface engineering of solid-state lithium metal batteries. Interdisciplinary Materials, 2024, 3(6): 805–834

[9]

Han Z , Wild J F , Chen J J , Yang Y . Modeling silane deposition in nanoporous carbon for high-capacity Si/C composite anodes. Energy Materials Advances, 2024, 5: 0111

[10]

Peled E . The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of the Electrochemical Society, 1979, 126(12): 2047–2051

[11]

Li J , Hu X , Li T . Simulation of solid electrolyte interphase growth for lithium batteries based on kinetic Monte Carlo. Energy Materials Advances, 2024, 5: 0137

[12]

Hobold G M , Wang C , Steinberg K , Li Y , Gallant B M . High lithium oxide prevalence in the lithium solid-electrolyte interphase for high Coulombic efficiency. Nature Energy, 2024, 9(5): 580–591

[13]

Jagger B , Pasta M . Solid electrolyte interphases in lithium metal batteries. Joule, 2023, 7(10): 2228

[14]

Lv X , Liu J , Li C , Yu F , Xiao D , Zhao S , Wu Y , Chen Y . Probing a solid electrolyte interphase layer with sub-nanometer pores using redox mediators. eScience, 2025, 5(3): 100351

[15]

Peled E , Menkin S . Review—SEI: past, present, and future. Journal of the Electrochemical Society, 2017, 164(7): 1703–1719

[16]

Pan Z , Chen H , Zeng Y , Ding Y , Pu X , Chen Z . Fluorine chemistry in lithium-ion and sodium-ion batteries. Energy Materials, 2023, 3(6): 300054

[17]

Tan J , Matz J , Dong P , Shen J , Ye M . A growing appreciation for the role of LiF in the solid electrolyte interphase. Advanced Energy Materials, 2021, 11(16): 2100046

[18]

Wan H , Xu J , Wang C . Designing electrolytes and interphases for high-energy lithium batteries. Nature Reviews: Chemistry, 2023, 8(1): 30–44

[19]

Dopilka A , Larson J M , Cha H , Kostecki R . Synchrotron near-field infrared nanospectroscopy and nanoimaging of lithium fluoride in solid electrolyte interphases in Li-ion battery anodes. ACS Nano, 2024, 18(23): 15270–15283

[20]

Lowe J S , Siegel D J . Modeling the interface between lithium metal and its native oxide. ACS Applied Materials & Interfaces, 2020, 12(41): 46015–46026

[21]

Ramasubramanian A , Yurkiv V , Foroozan T , Ragone M , Shahbazian-Yassar R , Mashayek F . Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries. Journal of Physical Chemistry C, 2019, 123(16): 10237–10245

[22]

Zhang H , Deng J , Xu H , Xu H , Xiao Z , Fei F , Peng W , Lin X , Cheng Y , Liu Q . et al. Molecule crowding strategy in polymer electrolytes inducing stable interfaces for all-solid-state lithium batteries. Advanced Materials, 2024, 36(31): 2403848

[23]

Yang Y F , Chiou C Y , Liu C W , Chen C L , Lee J T . Crown ethers as electrolyte additives to modulate the electrochemical potential of lithium organic batteries. Journal of Physical Chemistry C, 2019, 123(36): 21950–21958

[24]

Wang H , Li X , Zeng Q , Li Z , Liu Y , Guan J , Jiang Y , Chen L , Cao Y , Li R . et al. A novel hyperbranched polyurethane solid electrolyte for room temperature ultra-long cycling lithium-ion batteries. Energy Storage Materials, 2024, 66(25): 103188

[25]

Ruan D , Tan L , Chen S , Fan J , Nian Q , Chen L , Wang Z , Ren X . Solvent versus anion chemistry: unveiling the structure-dependent reactivity in tailoring electrochemical interphases for lithium-metal batteries. JACS Au, 2023, 3(3): 953–963

[26]

Ma M , Shao F , Wen P , Chen K , Li J , Zhou Y , Liu Y , Jia M , Chen M , Lin X . Designing weakly solvating solid main-chain fluoropolymer electrolytes: synergistically enhancing stability toward li anodes and high-voltage cathodes. ACS Energy Letters, 2021, 6(12): 4255–4264

[27]

Sheng O , Jin C , Luo J , Yuan H , Huang H , Gan Y , Zhang J , Xia Y , Liang C , Zhang W . et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Letters, 2018, 18(5): 3104–3112

[28]

Liang X , Pang Q , Kochetkov I R , Sempere M S , Huang H , Sun X , Nazar L F . A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2(9): 17119

[29]

Wang X , Fu L , Zhan R , Wang L , Li G , Wan M , Wu X L , Seh Z W , Wang L , Sun Y . Addressing the low solubility of a solid electrolyte interphase stabilizer in an electrolyte by composite battery anode design. ACS Applied Materials & Interfaces, 2021, 13(11): 13354–13361

[30]

Ma X , Zhang D , Fu H , Rao A M , Zhou J , Fan L , Lu B . Energy band-engineered solid electrolyte interphase for stable potassium-ion batteries. Joule, 2025, 9(6): 101952

[31]

Hu X , Cheng Y , Dong G , Dong C , Zhang H , Xie J , Xu L . Cation framework nanowires enabling composite solid-state electrolyte with anion exchange platform for rapid Li+ conduction. Advanced Functional Materials, 2024, 34(32): 2316018

[32]

Wang X , Li C , Chen Z , Sun Y . Implantation of solid electrolyte interphase stabilizer within high-capacity silicon electrode enabling enhanced battery performance. Energy Materials Advances, 2024, 5: 0095

[33]

Tran T N , Cao X , Xu Y , Gao P , Zhou H , Guo F , Han K S , Liu D , Le P M L , Weller J M . et al. Enhancing cycling stability of lithium metal batteries by a bifunctional fluorinated ether. Advanced Functional Materials, 2024, 34(42): 2407012

[34]

Zhang T , Wang B , Qi X , Chang Z , Wang R , Yu B , Yang R , Wang J . Improving the safety of HED LIBs by Co-coating separators with ceramics and solid-state electrolytes. Energy Materials Advances, 2024, 5: 0085

[35]

Yoo Y-W , Oh H-S , Lee J-K , Yoon J-R , Lee S-H . Rational design of Li3V2(PO4)3/C for phosphate-based symmetric full-cell Li-ion batteries. Energy Materials Advances, 2024, 5: 0147

[36]

Wang Z Y , Zhao Z C , Yao N , Lu Y , Xue Z Q , Huang X Y , Xu P , Huang W Z , Wang Z X , Huang J Q . et al. The regulation of solid electrolyte interphase on composite lithium anodes in solid-state batteries. Angewandte Chemie International Edition, 2025, 64(2): e202414524

[37]

Xu X , Feng D , You L , Xie Y , Wu F , Zhu Y , Mei Y , Xie D . Carbon-encrusted SnS2 decorated on MXene nanosheets for advanced Li-ion battery anodes. Energy Materials Advances, 2024, 5: 0146

[38]

Dong G , Cheng Y , Zhang H , Hu X , Xu H , Abdelmaoula A E , Xu L . Molecular-scale interaction between sub-1 nm cluster chains and polymer for high-performance solid electrolyte. Energy Storage Materials, 2024, 69: 103381

[39]

Wu H , Chen X , Zhao C , Tian Y , Yang X , Sun R , Gao X . Ester-enhanced inorganic-rich solid electrolyte interphase enabled dendrite-free fast-charging lithium metal batteries. Energy Materials Advances, 2024, 5: 0130

[40]

Liu S , Ji X , Piao N , Chen J , Eidson N , Xu J , Wang P , Chen L , Zhang J , Deng T . et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angewandte Chemie International Edition, 2021, 60(7): 3661–3671

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4046KB)

Supplementary files

Supplementary materials

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/