Flow and magnetic-driven rotating gliding arc reactors for enhanced nitrogen fixation

Yue Feng , Shanghe Dai , Mengying Zhu , Yuting Gao , Bohan Chen , Jieping Fan , Tianyu Li , Renwu Zhou

ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (1) : 6

PDF (2312KB)
ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (1) : 6 DOI: 10.1007/s11705-026-2628-8
RESEARCH ARTICLE

Flow and magnetic-driven rotating gliding arc reactors for enhanced nitrogen fixation

Author information +
History +
PDF (2312KB)

Abstract

A rotating gliding arc (RGA) device driven by synergistic flow and magnetic fields was developed for enhanced nitrogen fixation. The effects of flow field distribution, magnetic field intensity, and N2/O2 ratio on fixation performance were investigated. A uniform tangential inlet improved arc stability, suppressed reverse breakdown, and extended the operating range of the RGA, resulting in the highest fixation efficiency. At an air flow rate of 3 L∙min–1, the device achieved an NOx concentration of 7623 ppm in the effluent, with an energy cost as low as 3.6 MJ·mol–1. This configuration also enhanced plasma non-equilibrium, promoting nitrogen excitation and reactive species generation. Increasing magnetic field strength improved efficiency up to 200 mT, beyond which gains plateaued. An N2/O2 ratio of 6:4 yielded optimal nitrogen excitation and fixation performance.

Graphical abstract

Keywords

rotating gliding arc / nitrogen fixation / plasma non-equilibrium / magnetic field / flow field distribution

Cite this article

Download citation ▾
Yue Feng, Shanghe Dai, Mengying Zhu, Yuting Gao, Bohan Chen, Jieping Fan, Tianyu Li, Renwu Zhou. Flow and magnetic-driven rotating gliding arc reactors for enhanced nitrogen fixation. ENG. Chem. Eng., 2026, 20(1): 6 DOI:10.1007/s11705-026-2628-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li D , Zan L , Chen S , Shi Z J , Chen P , Xi Z , Deng D . Direct conversion of N2 and O2: status, challenge, and perspective. National Science Review, 2022, 9(12): nwac042

[2]

Patil B , Wang Q , Hessel V , Lang J . Plasma N2-fixation: 1900–2014. Catalysis Today, 2015, 256: 49–66

[3]

Wang Q , Gao L , Li Y , Shakoor N , Sun Y , Jiang Y , Zhu G , Wang F , Shen Y , Rui Y . et al. Nano-agriculture and nitrogen cycling: opportunities and challenges for sustainable farming. Journal of Cleaner Production, 2023, 421: 138489

[4]

Iravani S , Zarepour A , Khosravi A , Varma R S , Zarrabi A . Next-generation nitrogen fixation strategy: empowering electrocatalysis with MXenes. Green Chemistry, 2024, 26(16): 8942–8968

[5]

Chen J G , Crooks R M , Seefeldt L C , Bren K L , Bullock R M , Darensbourg M Y , Holland P L , Hoffman B , Janik M J , Jones A K . et al. Beyond fossil fuel-driven nitrogen transformations. Science, 2018, 360(6391): eaar6611

[6]

Kandemir T , Schuster M E , Senyshyn A , Behrens M , Schlögl R . The haber-bosch process revisited: on the real structure and stability of “ammonia iron” under working condition. Angewandte Chemie International Edition, 2013, 52(48): 12723–12726

[7]

Zhou D , Zhou R , Zhou R , Liu B , Zhang T , Xian Y , Cullen P J , Lu X , Ostrikov K K . Sustainable ammonia production by non-thermal plasmas: status, mechanisms, and opportunities. Chemical Engineering Journal, 2021, 421: 129544

[8]

Rafiqul I , Weber C , Lehmann B , Voss A . Energy efficiency improvements in ammonia production—perspectives and uncertainties. Energy, 2005, 30(13): 2487–2504

[9]

Feng Y , Cai Y , Wang Y , Li T , Luo S , Liang W , Zheng S , Xie T , Yang Q Y , Yong X . et al. Enhanced ammonia synthesis using surface microdischarge with metal-loaded nickel foam electrodes. Chemical Engineering Journal, 2025, 510: 161553

[10]

Lv Z J , Wei J , Zhang W X , Chen P , Deng D , Shi Z J , Xi Z . Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N−C bond formation. National Science Review, 2020, 7(10): 1564–1583

[11]

Wu T , Fan W , Zhang Y , Zhang F . Electrochemical synthesis of ammonia: progress and challenges. Materials Today Physics, 2021, 16: 100310

[12]

Yao Y , Wang J , Shahid U B , Gu M , Wang H , Li H , Shao M . Electrochemical synthesis of ammonia from nitrogen under mild conditions: current status and challenges. Electrochemical Energy Reviews, 2020, 3(2): 239–270

[13]

Mehta P , Barboun P , Herrera F A , Kim J , Rumbach P , Go D B , Hicks J C , Schneider W F . Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nature Catalysis, 2018, 1(4): 269–275

[14]

Huang Z , Xiao A , Liu D , Lu X , Ostrikov K . Plasma-water-based nitrogen fixation: status, mechanisms, and opportunities. Plasma Processes and Polymers, 2022, 19(4): 2100198

[15]

Tsonev I , O’Modhrain C , Bogaerts A , Gorbanev Y . Nitrogen fixation by an arc plasma at elevated pressure to increase the energy efficiency and production rate of NOx. ACS Sustainable Chemistry & Engineering, 2023, 11(5): 1888–1897

[16]

Gorbanev Y , Vervloessem E , Nikiforov A , Bogaerts A . Nitrogen fixation with water vapor by nonequilibrium plasma: toward sustainable ammonia production. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2996–3004

[17]

Navascués P , Obrero-Pérez J M , Cotrino J , González-Elipe A R , Gómez-Ramírez A . Unraveling discharge and surface mechanisms in plasma-assisted ammonia reactions. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 14855–14866

[18]

Winter L R , Chen J G . N2 fixation by plasma-activated processes. Joule, 2021, 5(2): 300–315

[19]

Cherkasov N , Ibhadon A , Fitzpatrick P . A review of the existing and alternative methods for greener nitrogen fixation. Chemical Engineering and Processing, 2015, 90: 24–33

[20]

Rusanov V D , Fridman A , Sholin G V E . The physics of a chemically active plasma withnonequilibrium vibrational excitation of molecules. Soviet Physics Uspekhi, 1981, 24(6): 447–474

[21]

Delikonstantis E , Cameli F , Scapinello M , Rosa V , Van Geem K M , Stefanidis G D . Low-carbon footprint chemical manufacturing using plasma technology. Current Opinion in Chemical Engineering, 2022, 38: 100857

[22]

Zhou R , Zhou D , Liu B , Nie L , Xian Y , Zhang T , Zhou R , Lu X , Ostrikov K K , Cullen P J . Controlling energy transfer in plasma-driven ammonia synthesis by adding Helium gas. ACS Sustainable Chemistry & Engineering, 2023, 11(5): 1828–1836

[23]

Mei K , Chen S , Yang W , Chen G F , Ding L X , Wang H . Carbon dioxide mixed air promoting plasma-driven nitrogen oxidation conversion. Chemical Engineering Science, 2025, 301: 120759

[24]

Wu S , Liao Y , Feng K , Zheng F , Xiao W . Nitrogen fixation by atmospheric microwave plasma with local electric field enhancement. Journal of Physics D: Applied Physics, 2025, 58(1): 015205

[25]

Wang W , Patil B , Heijkers S , Hessel V , Bogaerts A . Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling. ChemSusChem, 2017, 10(10): 2145–2157

[26]

Lee D H , Kim K T , Kang H S , Jo S , Song Y H . Optimization of NH3 decomposition by control of discharge mode in a rotating arc. Plasma Chemistry and Plasma Processing, 2014, 34(1): 111–124

[27]

Malik M A , Jiang C , Heller R , Lane J , Hughes D , Schoenbach K H . Ozone-free nitric oxide production using an atmospheric pressure surface discharge—a way to minimize nitrogen dioxide co-production. Chemical Engineering Journal, 2016, 283: 631–638

[28]

Asisov R , Givotov V , Rusanov V , Fridman A . High energy chemistry. Soviet Physics Uspekhi, 1980, 14: 366

[29]

Angineni J , Reddy P M K , Anga S , Somaiah P V . Nitrogen fixation by simple gling arc plasma reactor at elevated pressure for synthesis of aqueous nitrogen fertilizer. Plasma Processes and Polymers, 2025, 22(3): 2400209

[30]

Li S , van Raak T , Kriek R , De Felice G , Gallucci F . Gliding arc reactor under AC pulsed mode operation: spatial performance profile for NOx synthesis. ACS Sustainable Chemistry & Engineering, 2023, 11(34): 12821–12832

[31]

Meng X , Lu N , Shang K , Jiang N . Dielectric-boosted gliding arc discharge for N2 fixation into NOx. Plasma Chemistry and Plasma Processing, 2024, 44(4): 1513–1528

[32]

Patil B , Rovira Palau J , Hessel V , Lang J , Wang Q . Plasma nitrogen oxides synthesis in a milli-scale gliding arc reactor: investigating the electrical and process parameters. Plasma Chemistry and Plasma Processing, 2016, 36(1): 241–257

[33]

Ananthanarasimhan J , Shivapuji A M , Leelesh P , Rao L . Effect of gas dynamics on discharge modes and plasma chemistry in rotating gliding arc reactor. IEEE Transactions on Plasma Science, 2021, 49(2): 502–506

[34]

You T , Wang C , Yang C , Wang F , Xia W . Experimental study of the discharge characteristics of a 3D vortex gliding arc plasmatron. Contributions to Plasma Physics, 2023, 63(2): e202200120

[35]

Long Y , Wang X , Zhang H , Wang K , Ong W L , Bogaerts A , Li K , Lu C , Li X , Yan J . et al. Plasma chemical looping: unlocking high-efficiency CO2 conversion to clean CO at mild temperatures. JACS Au, 2024, 4(7): 2462–2473

[36]

Gangoli S , Gutsol A , Fridman A . A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics. Plasma Sources Science & Technology, 2010, 19(6): 065003

[37]

Li Z , Nie L , Liu D , Lu X . An atmospheric pressure glow discharge in air stabilized by a magnetic field and its application on nitrogen fixation. Plasma Processes and Polymers, 2022, 19(12): 2200071

[38]

Zhang H , Zhu F , Tu X , Bo Z , Cen K , Li X . Characteristics of atmospheric pressure rotating gliding arc plasmas. Plasma Science & Technology, 2016, 18(5): 473–477

[39]

Li Z , Wu E , Nie L , Liu D , Lu X . Magnetic field stabilized atmospheric pressure plasma nitrogen fixation: effect of electric field and gas temperature. Physics of Plasmas, 2023, 30(8): 083502

[40]

Chen H , Wu A , Mathieu S , Gao P , Li X , Xu B Z , Yan J , Tu X . Highly efficient nitrogen fixation enabled by an atmospheric pressure rotating gliding arc. Plasma Processes and Polymers, 2021, 18(7): 2000200

[41]

Zhang Y , Liu B , Luo J , Nie L , Xian Y , Lu X . Research on key influencing factors and mechanisms of improved nitrogen fixation efficiency in magnetic-driven gliding arc. Journal of Physics D: Applied Physics, 2024, 57(12): 125204

[42]

Angineni J , Reddy P M K , Anga S , Somaiah P V . Sustainable nitrogen fixation by novel gliding arc plasma reactor for the production of nitrogen fertilizers. Plasma Processes and Polymers, 2024, 21(9): 2400059

[43]

Ramakers M , Heijkers S , Tytgat T , Lenaerts S , Bogaerts A . Combining CO2 conversion and N2 fixation in a gliding arc plasmatron. Journal of CO2 Utilization, 2019, 33: 121–130

[44]

Patil B S , Peeters F , van Rooij G J , Medrano J , Gallucci F , Lang J , Wang Q , Hessel V . Plasma assisted nitrogen oxide production from air: using pulsed powered gliding arc reactor for a containerized plant. AIChE Journal, 2018, 64(2): 526–537

[45]

Shemlev V M , Saveliev A V , Kennedy L A . Plasma chemical reactor with exploding water jet. Plasma Chemistry and Plasma Processing, 2009, 29(4): 275–290

[46]

Li T , Gao Y , Fan J , Wang X , Feng Y , Qu Z , Gan D , Sun J , Liu D , Tu X . et al. Chemical insights into nitrogen oxidation via surface dielectric barrier discharge plasma driven by different power supplies. Plasma Processes and Polymers, 2025, 22(3): 2400257

[47]

Bruggeman P J , Sadeghi N , Schram D , Linss V . Gas temperature determination from rotational lines in non-equilibrium plasmas: a review. Plasma Sources Science & Technology, 2014, 23(2): 023001

[48]

Welzel T , Dunger T , Kupfer H , Richter F . A time-resolved Langmuir double-probe method for the investigation of pulsed magnetron discharges. Journal of Applied Physics, 2004, 96(12): 6994–7001

[49]

Liu J , Kong M . Sub-60 C atmospheric helium-water plasma jets: modes, electron heating, and downstream reaction chemistry. Journal of Physics D: Applied Physics, 2011, 44(34): 345203

[50]

Liu Z J , Wang W C , Zhang L , Wang S , Yang D Z , Zhang S , Tang K . Electrical and optical characteristics of diffuse nanosecond pulsed discharge plasma using a needle-array electrode in atmospheric air. Journal of Applied Physics, 2014, 115(20): 203302

[51]

Zhang S , Wang W C , Yang D Z , Yuan H , Zhao Z L , Sun H , Shao T . Nanosecond pulsed uniform dielectric barrier discharge in atmospheric air: a brief spectroscopic analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 207: 294–300

[52]

Pei X , Gidon D , Yang Y J , Xiong Z , Graves D B . Reducing energy cost of NOx production in air plasmas. Chemical Engineering Journal, 2019, 362: 217–228

[53]

Wu A J , Zhang H , Li X D , Lu S Y , Du C M , Yan J H . Determination of spectroscopic temperatures and electron density in rotating gliding arc discharge. IEEE Transactions on Plasma Science, 2015, 43(3): 836–845

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2312KB)

Supplementary files

Supplementary materials

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/