PDF
(1902KB)
Abstract
High-entropy alloys are described as materials that have equiatomic and multi-element compositions. Their unique atomic structure may provide alternative electrocatalysts for water electrolysis over traditional and expensive noble metal-based catalysts, delivering superior catalytic activity and stability. Among various high-entropy alloys synthesis methods, electrodeposition stands out as a versatile and cost-effective approach due to its mild conditions and precise control over composition and deposition properties. This review focuses on noble metal-free high-entropy alloys prepared by electrodeposition, with applications in water electrolysis. The impacts of alloying elements and electrodeposition parameters on the morphology, composition, and electrochemical performance of the resulting coatings for hydrogen evolution reaction and oxygen evolution reaction are also examined. The roles of key alloying elements are discussed, including their individual contributions during the electrodeposition process, interactions within the bath, and effects on the final coating. The review also discusses critical deposition parameters such as bath chemistry, pH value, current density, temperature, and bath agitation, and their influences on properties and electrochemical activity of electrodeposited coatings. Finally, future research directions and recommendations in several key areas are outlined to address important knowledge gaps for further advancing the optimization and application of electrodeposited high-entropy alloys as effective electrocatalysts for water electrolysis.
Graphical abstract
Keywords
hydrogen
/
high-entropy alloys (HEAs)
/
electrodeposition (ED)
/
water electrolysis
/
electrocatalysts
Cite this article
Download citation ▾
Daniela Arango, Antonio G. De Crisci, Rafal Gieleciak, Mathieu L’Abbe, Jinwen Chen.
Electrodeposited high-entropy alloys as electrocatalysts in water electrolysis for hydrogen production: a review on impacts of composition and synthesis parameters.
Front. Chem. Sci. Eng., 2025, 19(12): 119 DOI:10.1007/s11705-026-2627-9
| [1] |
George E P , Raabe D , Ritchie R O . High-entropy alloys. Nature Reviews Materials, 2019, 4(8): 515–534
|
| [2] |
Yu M , Wang K , Vredenburg H . Insights into low-carbon hydrogen production methods: green, blue, and aqua hydrogen. International Journal of Hydrogen Energy, 2021, 46(41): 21261–21273
|
| [3] |
Amini Horri B , Ozcan H . Green hydrogen production by water electrolysis: current status and challenges. Current Opinion in Green and Sustainable Chemistry, 2024, 47: 100932
|
| [4] |
Sadik-Zada E R . Political economy of green hydrogen rollout: a global perspective. Sustainability, 2021, 13(23): 13464
|
| [5] |
Wang S , Lu A , Zhong C J . Hydrogen production from water electrolysis: role of catalysts. Nano Convergence, 2021, 8(1): 4
|
| [6] |
Suermann M , Takanohashi K , Lamibrac A , Schmidt T J , Büchi F N . Influence of operating conditions and material properties on the mass transport losses of polymer electrolyte water electrolysis. Journal of the Electrochemical Society, 2017, 164(9): F973–F980
|
| [7] |
Zhang Q , Li Y , Luo F , Yang Z . Navigating the energy crisis: design principles and challenge in the development of high-performance catalysts for electrolytic water splitting. Chemical Communications, 2025, 61(58): 10747–10763
|
| [8] |
Priya K , Sathishkumar K , Rajasekar N . A comprehensive review on parameter estimation techniques for proton exchange membrane fuel cell modelling. Renewable & Sustainable Energy Reviews, 2018, 93: 121–144
|
| [9] |
Barros R L G , Kelleners M H , van Bemmel L , van der Leegte T V , van der Schaaf J , de Groot M T . Elucidating the increased ohmic resistances in zero-gap alkaline water electrolysis. Electrochimica Acta, 2024, 507: 145161
|
| [10] |
Li W , Liu Y , Azam A , Liu Y , Yang J , Wang D , Sorrell C C , Zhao C , Li S . Unlocking efficiency: minimizing energy loss in electrocatalysts for water splitting. Advanced Materials, 2024, 36(42): 2404658
|
| [11] |
Schmidt G , Suermann M , Bensmann B , Hanke-Rauschenbach R , Neuweiler I . Modeling overpotentials related to mass transport through porous transport layers of PEM water electrolysis cells. Journal of the Electrochemical Society, 2020, 167(11): 114511
|
| [12] |
Xin Y , Li S , Qian Y , Zhu W , Yuan H , Jiang P , Guo R , Wang L . High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catalysis, 2020, 10(19): 11280–11306
|
| [13] |
Nakaya Y , Furukawa S . Catalysis of alloys: classification, principles, and design for a variety of materials and reactions. Chemical Reviews, 2023, 123(9): 5859–5947
|
| [14] |
Suryanto B H R , Wang Y , Hocking R K , Adamson W , Zhao C . Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nature Communications, 2019, 10(1): 5599
|
| [15] |
Du M , Lv X , Cao Z , Wang Q , Qu J . Review of catalytic electrodes containing iron-cobalt-nickel composite components for water electrolysis. ChemPhysChem, 2025, 26(3): e202400500
|
| [16] |
Huner B , Demir N , Kaya M F . Hydrogen evolution reaction performance of Ni-Co-coated graphene-based 3D printed electrodes. ACS Omega, 2023, 8(6): 5958–5974
|
| [17] |
Huo L , Jin C , Jiang K , Bao Q , Hu Z , Chu J . Applications of nickel-based electrocatalysts for hydrogen evolution reaction. Advanced Energy and Sustainability Research, 2022, 3(4): 2100189
|
| [18] |
Liu J , Du Y , Zheng D , Wang S , Hou Y , Zhang J , Lu X F . Nickel-based anode electrocatalysts for hydrogen production. ACS Materials Letters, 2024, 6(2): 466–481
|
| [19] |
Mehta A , Sohn Y . High entropy and sluggish diffusion ‘core’ effects in senary FCC Al-Co-Cr-Fe-Ni-Mn alloys. ACS Combinatorial Science, 2020, 22(12): 757–767
|
| [20] |
Kamaruddin H , Zhang J , Yu L , Wei Y , Huang Y . A review of noble metal-free high entropy alloys for water splitting applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(17): 9933–9961
|
| [21] |
Carroll R , Lee C , Tsai C W , Yeh J W , Antonaglia J , Brinkman B A W , LeBlanc M , Xie X , Chen S , Liaw P K . . Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys. Scientific Reports, 2015, 5(1): 16997
|
| [22] |
Yeh J W . . US patent, 2002159914A1, ,
|
| [23] |
Ding J , Inoue A , Han Y , Kong F L , Zhu S L , Wang Z , Shalaan E , Al-Marzouki F . High entropy effect on structure and properties of (Fe,Co,Ni,Cr)-B amorphous alloys. Journal of Alloys and Compounds, 2017, 696: 345–352
|
| [24] |
Mu R , Wang Y , Niu S , Sun K , Yang Z . Wetting of FeCoCrNiTi0.2 high entropy alloy on the (HfZrTiTaNb)C high entropy ceramic. Journal of the European Ceramic Society, 2023, 43(16): 7263–7272
|
| [25] |
Qiu Y , Thomas S , Gibson M A , Fraser H L , Birbilis N . Corrosion of high entropy alloys. NPJ Materials Degradation, 2017, 1(1): 15
|
| [26] |
Wu W H , Yang C C , Yeh L . Industrial development of high-entropy alloys. Annales de Chimie-Science des materiaux, 2006, 31(6): 737–747
|
| [27] |
Qin Y C , Wang F Q , Wang X M , Wang M W , Zhang W L , An W K , Wang X P , Ren Y L , Zheng X , Lv D C . . Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Metals, 2021, 40(9): 2354–2368
|
| [28] |
Choi S , Kwon J , Park C , Park K , Park H B , Paik U , Song T . FeCoNiCuIr high-entropy alloy catalysts for hydrogen evolution reactions with improved desorption behavior by tuning antibonding orbital filling. Energy & Fuels, 2023, 37(23): 18128–18136
|
| [29] |
Carroll Z L , Haché M J R , Wang B , Chen L , Wu S , Erb U , Thorpe S , Zou Y . Electrodeposited NiFeCoMoW high-entropy alloys with nanoscale amorphous structure as effective hydrogen evolution electrocatalysts. ACS Applied Energy Materials, 2024, 7(19): 8412–8422
|
| [30] |
Li P , Yao Y , Ouyang W , Liu Z , Yin H , Wang D . A stable oxygen evolution splitting electrocatalysts high entropy alloy FeCoNiMnMo in simulated seawater. Journal of Materials Science and Technology, 2023, 138: 29–35
|
| [31] |
Li P , Wan X , Su J , Liu W , Guo Y , Yin H , Wang D . A single-phase FeCoNiMnMo high-entropy alloy oxygen evolution anode working in alkaline solution for over 1000 h. ACS Catalysis, 2022, 12(19): 11667–11674
|
| [32] |
Zheng J , Li Y , Xu W , Sun B , Xu T , Liu S , Zhu X , Liu Y , Zhang S , Ge M . . Growth modulation of high-entropy alloys for electrocatalytic methanol oxidation reaction. Inorganic Chemistry, 2024, 63(43): 20697–20704
|
| [33] |
Pedersen J K , Batchelor T A A , Bagger A , Rossmeisl J . High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catalysis, 2020, 10(3): 2169–2176
|
| [34] |
Nellaiappan S , Katiyar N K , Kumar R , Parui A , Malviya K D , Pradeep K G , Singh A K , Sharma S , Tiwary C S , Biswas K . High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization. ACS Catalysis, 2020, 10(6): 3658–3663
|
| [35] |
Qi L , Guan J . Electronic structure modulation of high entropy materials for advanced electrocatalysis. Green Energy & Environment, 2025, 10(5): 917–936
|
| [36] |
Chen Z , Wen J , Wang C , Kang X . Convex cube-shaped Pt34Fe5Ni20Cu31Mo9Ru high entropy alloy catalysts toward high-performance multifunctional electrocatalysis. Small, 2022, 18(45): 2204255
|
| [37] |
Zhang G , Ming K , Kang J , Huang Q , Zhang Z , Zheng X , Bi X . High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 279: 19–23
|
| [38] |
Zhu H , Sun S , Hao J , Zhuang Z , Zhang S , Wang T , Kang Q , Lu S , Wang X , Lai F . . A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy & Environmental Science, 2023, 16(2): 619–628
|
| [39] |
Yuan G , Wu M , Ruiz Pestana L . Density functional theory-machine learning characterization of the adsorption energy of oxygen intermediates on high-entropy alloys made of earth-abundant metals. Journal of Physical Chemistry C, 2023, 127(32): 15809–15818
|
| [40] |
Yang P , Jiang Z , Shi Y , Ren X , Liang L , Shao Q , Zhu K . Enhancement of oxygen evolution reaction performance of FeCoNiCrMn high entropy alloy thin film electrodes through in-situ reconstruction. Journal of Alloys and Compounds, 2023, 947: 169699
|
| [41] |
Ahmad A , Nairan A , Feng Z , Zheng R , Bai Y , Khan U , Gao J . Unlocking the potential of high entropy alloys in electrochemical water splitting: a review. Small, 2024, 20(29): 2311929
|
| [42] |
Li P , Wu B , Du K , Liu Z , Gao E , Yin H , Wang D . Highly stable single-phase FeCoNiMnX (X = Cr, Mo, W) high-entropy alloy catalysts with submicrometer size for efficient oxygen evolution. ACS Sustainable Chemistry & Engineering, 2023, 11(38): 14246–14254
|
| [43] |
Hao J , Zhuang Z , Cao K , Gao G , Wang C , Lai F , Lu S , Ma P , Dong W , Liu T . . Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nature Communications, 2022, 13(1): 2662
|
| [44] |
Shi Y , Yang B , Liaw P K . Corrosion-resistant high-entropy alloys: a review. Metals, 2017, 7(2): 43
|
| [45] |
Shuang S , Ding Z Y , Chung D , Shi S Q , Yang Y . Corrosion resistant nanostructured eutectic high entropy alloy. Corrosion Science, 2020, 164: 108315
|
| [46] |
Quiambao K F , McDonnell S J , Schreiber D K , Gerard A Y , Freedy K M , Lu P , Saal J E , Frankel G S , Scully J R . Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions. Acta Materialia, 2019, 164: 362–376
|
| [47] |
Zhao Y , Wu J , Cao X , Li D , Huang P , Gao H , Gu Q , Zhang J , Wang G , Liu H . High-entropy materials for water splitting: an atomic nanoengineering approach to sustainable hydrogen production. Advanced Materials, 2025, 37(36): 2506117
|
| [48] |
Zhang T , Zhao H F , Chen Z J , Yang Q , Gao N , Li L , Luo N , Zheng J , Bao S D , Peng J . . High-entropy alloy enables multi-path electron synergism and lattice oxygen activation for enhanced oxygen evolution activity. Nature Communications, 2025, 16(1): 3327
|
| [49] |
Huang K , Xia J , Lu Y , Zhang B , Shi W , Cao X , Zhang X , Woods L M , Han C , Chen C . . Self-reconstructed spinel surface structure enabling the long-term stable hydrogen evolution reaction/oxygen evolution reaction efficiency of FeCoNiRu high-entropy alloyed electrocatalyst. Advanced Science, 2023, 10(14): 2300094
|
| [50] |
Wu J , Wang H , Liu N , Jia B , Zheng J . High-entropy materials in electrocatalysis: understanding, design, and development. Small, 2024, 20(43): 2403162
|
| [51] |
Zhou Q , Liao L , Zhou H , Li D , Tang D , Yu F . Innovative strategies in design of transition metal-based catalysts for large-current-density alkaline water/seawater electrolysis. Materials Today Physics, 2022, 26: 100727
|
| [52] |
Nørskov J K , Bligaard T , Logadottir A , Kitchin J , Chen J G , Pandelov S , Stimming U . Trends in the exchange current for hydrogen evolution. Journal of the Electrochemical Society, 2005, 152(3): J23
|
| [53] |
Li C , Baek J B . Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega, 2020, 5(1): 31–40
|
| [54] |
Chen Z W , Li J , Ou P , Huang J E , Wen Z , Chen L , Yao X , Cai G , Yang C C , Singh C V . . Unusual sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions. Nature Communications, 2024, 15(1): 359
|
| [55] |
Wang B , Liu W , Leng Y , Yu X , Wang C , Hu L , Zhu X , Wu C , Yao Y , Zou Z . Strain engineering of high-entropy alloy catalysts for electrocatalytic water splitting. iScience, 2023, 26(4): 106326
|
| [56] |
Yeh C H , Hsu W D , Liu B H , Yang C S , Kuan C Y , Chang Y C , Huang K S , Jhang S S , Lu C Y , Liaw P K . . Low-frequency conductivity of low wear high-entropy alloys. Nature Communications, 2024, 15(1): 4554
|
| [57] |
Kumar A , Mucalo M , Bolzoni L , Li Y , Qu Y , Yang F . Facile synthesis of a NiMnFeCrCu high entropy alloy for electrocatalytic oxygen evolution reactions. Materials Today Sustainability, 2023, 22: 100360
|
| [58] |
Lone N F , Czerwinski F , Chen D . Present challenges in development of lightweight high entropy alloys: a review. Applied Materials Today, 2024, 39: 102296
|
| [59] |
Caramarin S , Badea I C , Mosinoiu L F , Mitrica D , Serban B A , Vitan N , Cursaru L M , Pogrebnjak A . Structural particularities, prediction, and synthesis methods in high-entropy alloys. Applied Sciences, 2024, 14(17): 7576
|
| [60] |
Haché M J , Zou Y , Erb U . Thermal stability of electrodeposited nanostructured high-entropy alloys. Surface and Coatings Technology, 2024, 482: 130719
|
| [61] |
Haché M J , Tam J , Erb U , Zou Y . Electrodeposited NiFeCo-(Mo, W) high-entropy alloys with nanocrystalline and amorphous structures. Journal of Alloys and Compounds, 2023, 952: 170026
|
| [62] |
Shojaei Z , Khayati G R , Darezereshki E . Review of electrodeposition methods for the preparation of high-entropy alloys. International Journal of Minerals Metallurgy and Materials, 2022, 29(9): 1683–1696
|
| [63] |
Erb U . Electrodeposited nanocrystals: synthesis, properties, and industrial applications. Nanostructured Materials, 1995, 6(5): 533–538
|
| [64] |
Brenner A . Electrodeposition of Alloys—Principles and Practice. Massachusetts: Academic Press, 1963,
|
| [65] |
Nechvoglod O , Ostovari Moghaddam A , Pratskova S , Trofimova S , Samodurova M , Trofimov E . A review on high-entropy alloys coatings fabricated by electrodeposition: the correlation between composition, properties, and processing parameters. Journal of the Minerals Metals & Materials Society, 2025, 77(3): 1005–1028
|
| [66] |
ShahAChauhanBRaiRMundotiyaB. Electrodeposition of High-Entropy Alloy Coating: A Brief of the Deposition Parameters. Hyderabad: IIP Series, 2024, 61–74
|
| [67] |
Yao C Z , Zhang P , Liu M , Li G R , Ye J Q , Liu P , Tong Y X . Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy. Electrochimica Acta, 2008, 53(28): 8359–8365
|
| [68] |
Ujah C O , Kallon D V , Aigbodion V S . Corrosion characteristics of high-entropy alloys prepared by spark plasma sintering. International Journal of Advanced Manufacturing Technology, 2024, 132(1): 63–82
|
| [69] |
Ipadeola A K , Lebechi A K , Gaolatlhe L , Haruna A B , Chitt M , Eid K , Abdullah A M , Ozoemena K I . Porous high-entropy alloys as efficient electrocatalysts for water-splitting reactions. Electrochemistry Communications, 2022, 136: 107207
|
| [70] |
Kante M V , Weber M L , Ni S , van den Bosch I C G , van der Minne E , Heymann L , Falling L J , Gauquelin N , Tsvetanova M , Cunha D M . . A high-entropy oxide as high-activity electrocatalyst for water oxidation. ACS Nano, 2023, 17(6): 5329–5339
|
| [71] |
Fan L , Ji Y , Wang G , Chen J , Chen K , Liu X , Wen Z . High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. Journal of the American Chemical Society, 2022, 144(16): 7224–7235
|
| [72] |
Song L , Ma C , Shi P , Zhu X , Qu K , Zhu L , Lu Q , Wang A L . Self-supported FeCoNiCuP high-entropy alloy nanosheet arrays for efficient glycerol oxidation and hydrogen evolution in seawater electrolytes. Green Chemistry, 2024, 26(21): 10921–10928
|
| [73] |
Song H , Wang J , Zhang Z , Shai X , Guo Y . Synergistic balancing hydrogen and hydroxyl adsorption/desorption of nickel sulfide via cation and anion dual-doping for boosting alkaline hydrogen evolution. Chemical Engineering Journal, 2021, 420: 129842
|
| [74] |
Liu Z , Ma H , Kang N , Jiang X , Chu M , Xie G , Liu X , Liu X . Nanoscale Raspberry-like Ni-Fe-Co-Mn-V high-entropy alloy electrocatalysts: a pathway to ultrlow overpotential hydrogen evolution. Materials Today Chemistry, 2024, 42: 102404
|
| [75] |
Zhang Z J , Yu N , Dong Y L , Han G , Hu H , Chai Y M , Dong B . High entropy catalysts in electrolytic water splitting: a review from properties to applications. Chemical Engineering Journal, 2024, 498: 155736
|
| [76] |
Wang L , Meng Q , Xiao M , Liu C , Xing W , Zhu J . Insights into the dynamic surface reconstruction of electrocatalysts in oxygen evolution reaction. Renewables, 2024, 2: 272–296
|
| [77] |
Liu P F , Yin H , Fu H Q , Zu M Y , Yang H G , Zhao H . Activation strategies of water-splitting electrocatalysts. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(20): 10096–10129
|
| [78] |
Li W , Liu P , Liaw P K . Microstructures and properties of high-entropy alloy films and coatings: a review. Materials Research Letters, 2018, 6(4): 199–229
|
| [79] |
Ye Y F , Wang Q , Lu J , Liu C T , Yang Y . High-entropy alloy: challenges and prospects. Materials Today, 2016, 19(6): 349–362
|
| [80] |
Zhang F X , Song H Q . Effect of atomic size mismatch and chemical complexity on the local lattice distortion of BCC solid solution alloys. Materials Today Communications, 2022, 33: 104367
|
| [81] |
Tong Y , Velisa G , Zhao S , Guo W , Yang T , Jin K , Lu C , Bei H , Ko J Y P , Pagan D C . . Evolution of local lattice distortion under irradiation in medium- and high-entropy alloys. Materialia, 2018, 2: 73–81
|
| [82] |
Wang Y , Yang H , Zhang Z , Meng X , Cheng T , Qin G , Li S . Far-from-equilibrium electrosynthesis ramifies high-entropy alloy for alkaline hydrogen evolution. Journal of Materials Science and Technology, 2023, 166: 234–240
|
| [83] |
Priamushko T , Kormányos A , Cherevko S . What do we know about the electrochemical stability of high-entropy alloys. Current Opinion in Chemical Engineering, 2024, 44: 101020
|
| [84] |
Gu F , Zhang Q , Chen X H , Li T , Fu H C , Luo H Q , Li N B . Electronic regulation and core-shell hybrids engineering of palm-leaf-like NiFe/Co(PO3)2 bifunctional electrocatalyst for efficient overall water splitting. International Journal of Hydrogen Energy, 2022, 47(66): 28475–28485
|
| [85] |
López Ríos M , Socorro Perdomo P P , Voiculescu I , Geanta V , Crăciun V , Boerasu I , Mirza Rosca J C . Effects of nickel content on the microstructure, microhardness, and corrosion behavior of high-entropy AlCoCrFeNix alloys. Scientific Reports, 2020, 10(1): 21119
|
| [86] |
He L , Wang N , Sun B , Zhong L , Yao M , Hu W , Komarneni S . High-entropy FeCoNiMn (oxy) hydroxide as high-performance electrocatalyst for OER and boosting clean carrier production under quasi-industrial condition. Journal of Cleaner Production, 2022, 356: 131680
|
| [87] |
Bian H , Wang C , Zhao S , Han G , Xie G , Qi P , Liu X , Zeng Y , Zhang D , Wang P . Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis. International Journal of Hydrogen Energy, 2024, 57: 651–659
|
| [88] |
Yang Z Z , Zhang C , Zeng G M , Tan X F , Wang H , Huang D L , Yang K H , Wei J J , Ma C , Nie K . Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: a review. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(8): 4141–4173
|
| [89] |
Gupta A K , Choudhari A , Rane A , Tiwari A , Sharma P , Gupta A , Sapale P , Tirumala R T A , Muthaiah R , Kumar A . Advances in nickel-containing high-entropy alloys: from fundamentals to additive manufacturing. Materials, 2024, 17(15): 3826
|
| [90] |
Li K , He J , Guan X , Tong Y , Ye Y , Chen L , Chen P . Phosphorus-modified amorphous high-entropy cofenicrmn compound as high-performance electrocatalyst for hydrazine-assisted water electrolysis. Small, 2023, 19(42): 2302130
|
| [91] |
Han M , Wang C , Zhong J , Han J , Wang N , Seifitokaldani A , Yu Y , Liu Y , Sun X , Vomiero A . . Promoted self-construction of β-NiOOH in amorphous high entropy electrocatalysts for the oxygen evolution reaction. Applied Catalysis B: Environmental, 2022, 301: 120764
|
| [92] |
Huang Q . Electrodeposition of FeCoNiCu quaternary system. Dissertation for the Doctoral Degree. Baton Rouge: Louisiana State University and Agricultural & Mechanical College, 2004,
|
| [93] |
Reddy K S K J , Chokkakula L P , Dey S R . Strategies to engineer FeCoNiCuZn high entropy alloy composition through aqueous electrochemical deposition. Electrochimica Acta, 2023, 453: 142350
|
| [94] |
Chang S Q , Cheng C C , Cheng P Y , Huang C L , Lu S Y . Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chemical Engineering Journal, 2022, 446: 137452
|
| [95] |
Huang C L , Lin Y G , Chiang C L , Peng C K , Raja D S , Hsieh C T , Chen Y A , Chang S Q , Yeh Y X , Lu S Y . Atomic scale synergistic interactions lead to breakthrough catalysts for electrocatalytic water splitting. Applied Catalysis B: Environmental, 2023, 320: 122016
|
| [96] |
Schweckandt D S , del Carmen Aguirre M . Electrodeposition of Ni-Co alloys determination of properties to be used as coins. Procedia Materials Science, 2015, 8: 91–100
|
| [97] |
Oliveira J A M , de Almeida A F , Campos A R N , Prasad S , Alves J J N , de Santana R A C . Effect of current density, temperature, and bath pH on properties of Ni-W-Co alloys obtained by electrodeposition. Journal of Alloys and Compounds, 2021, 853: 157104
|
| [98] |
Nourmohammadi Khiarak B , Shariati K , Mojaddami M , Zamani Z , Zekiy A O , Simchi A . Efficient electrocatalytic overall water splitting on a Cu-based high entropy alloy: an electrochemical study. Energy & Fuels, 2022, 36(8): 4502–4509
|
| [99] |
Yu C , Wang X W , He W X , Zheng Z Y , Dang X J , Zhang Y F . Electrodeposition of FeCoNiCuMn high-entropy alloy nanoparticles as efficient bifunctional electrolytic water catalyst. Surfaces and Interfaces, 2024, 46: 104084
|
| [100] |
Guo F , Yu J , Xiao J , Luoluo Q , Yang H , Guo Y . Preparation of FeCoNiCr high entropy alloy coatings and optimization of process parameters. Rare Metal Materials and Engineering, 2021, 50(7): 2337–2342
|
| [101] |
Li Y , Liu Y , Shen J , Lan A , Jin X , Han L , Qiao J . High-entropy amorphous FeCoCrNi thin films with excellent electrocatalytic oxygen evolution reaction performance. Journal of Alloys and Compounds, 2024, 1005: 176089
|
| [102] |
AliyuARekhaMSrivastavaC. High Entropy Alloys. Florida: CRC Press, 2020, 313–328
|
| [103] |
Aliyu A , Srivastava C . Phase constitution, surface chemistry, and corrosion behavior of electrodeposited MnFeCoNiCu high entropy alloy-graphene oxide composite coatings. Surface and Coatings Technology, 2022, 429: 127943
|
| [104] |
Mohan M , Pandel U , Kumar K . Phase composition, surface chemistry, and electrochemical studies of electrodeposited AlMnFeCuNi high entropy alloy composite coatings incorporated with carbon nanotubes. Materials Research Express, 2024, 11(4): 046403
|
| [105] |
Fernández-Barcia M , Hoffmann V , Oswald S , Giebeler L , Wolff U , Uhlemann M , Gebert A . Electrodeposition of manganese layers from sustainable sulfate based electrolytes. Surface and Coatings Technology, 2018, 334: 261–268
|
| [106] |
Gan Y , Cui M , Dai X , Ye Y , Nie F , Ren Z , Yin X , Wu B , Cao Y , Cai R . . Mn-doping induced electronic modulation and rich oxygen vacancies on vertically grown NiFe2O4 nanosheet array for synergistically triggering oxygen evolution reaction. Nano Research, 2022, 15(5): 3940–3945
|
| [107] |
Asghari Alamdari A , Jahangiri H , Yagci M B , Igarashi K , Matsumoto H , Motallebzadeh A , Unal U . Exploring the role of Mo and Mn in improving the OER and HER performance of CoCuFeNi-based high-entropy alloys. ACS Applied Energy Materials, 2024, 7(6): 2423–2435
|
| [108] |
Dąbrowa J , Zajusz M , Kucza W , Cieślak G , Berent K , Czeppe T , Kulik T , Danielewski M . Demystifying the sluggish diffusion effect in high entropy alloys. Journal of Alloys and Compounds, 2019, 783: 193–207
|
| [109] |
Ahmadkhaniha D , Kruemmling J , Zanella C . Electrodeposition of high entropy alloy of Ni-Co-Cu-Mo-W from an aqueous bath. Journal of the Electrochemical Society, 2022, 169(8): 082515
|
| [110] |
Sun S , Bairachna T , Podlaha E J . Induced codeposition behavior of electrodeposited NiMoW alloys. Journal of the Electrochemical Society, 2013, 160(10): D434–D440
|
| [111] |
Donten M , Cesiulis H , Stojek Z . Electrodeposition and properties of Ni W, Fe W, and Fe Ni W amorphous alloys: a comparative study. Electrochimica Acta, 2000, 45(20): 3389–3396
|
| [112] |
Zhang B , Wang L , Cao Z , Kozlov S M , García de Arquer F P , Dinh C T , Li J , Wang Z , Zheng X , Zhang L . . High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3(12): 985–992
|
| [113] |
Bian H , Wang R , Zhang K , Zheng H , Wen M , Li Z , Li Z , Wang G , Xie G , Liu X . . Facile electrodeposition synthesis and super performance of nano-porous Ni-Fe-Cu-Co-W high entropy alloy electrocatalyst. Surface and Coatings Technology, 2023, 459: 129407
|
| [114] |
Mei Y , Feng Y , Zhang C , Zhang Y , Qi Q , Hu J . High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction. ACS Catalysis, 2022, 12(17): 10808–10817
|
| [115] |
Cheng Z , Han X , Han L , Zhang J , Liu J , Wu Z , Zhong C . Novel high-entropy FeCoNiMoZn-layered hydroxide as an efficient electrocatalyst for the oxygen evolution reaction. Nanomaterials, 2024, 14(10): 889
|
| [116] |
Wang L , Gao Z , Su K , Nguyen N T , Gao R T , Chen J , Wang L . Stacked high-entropy hydroxides promote charge transfer kinetics for photoelectrochemical water splitting. Advanced Functional Materials, 2024, 34(40): 2403948
|
| [117] |
Hegde A C , Venkatakrishna K , Eliaz N . Electrodeposition of Zn-Ni, Zn-Fe, and Zn-Ni-Fe alloys. Surface and Coatings Technology, 2010, 205(7): 2031–2041
|
| [118] |
Okonkwo B O , Jeong C , Lee H B , Jang C , Rahimi E , Davoodi A . Development and optimization of trivalent chromium electrodeposit on 304L stainless steel to improve corrosion resistance in chloride-containing environment. Heliyon, 2023, 9(12): e22538
|
| [119] |
Shi Y , Zhang B . Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45(6): 1529–1541
|
| [120] |
Li S , Wang L , Su H , Hong A N , Wang Y , Yang H , Ge L , Song W , Liu J , Ma T . . Electron redistributed S-doped nickel iron phosphides derived from one-step phosphatization of MOFs for significantly boosting electrochemical water splitting. Advanced Functional Materials, 2022, 32(23): 2200733
|
| [121] |
Bachvarov V , Arnaudova M , Rashkov R S , Zielonka A . Electrochemical deposition of alloys based on Ni-Fe-Co, containing W, P, and their characterization for hydrogen evolution reaction. Izvestiia po Himiia, 2011, 43(1): 115–119
|
| [122] |
Yang D , Hou W , Lu Y , Zhang W , Chen Y . Cobalt phosphide nanoparticles supported within network of N-doped carbon nanotubes as a multifunctional and scalable electrocatalyst for water splitting. Journal of Energy Chemistry, 2021, 52: 130–138
|
| [123] |
Chen Q , Han X , Xu Z , Chen Q , Wu Q , Zheng T , Wang P , Wang Z , Wang J , Li H . . Atomic phosphorus induces tunable lattice strain in high entropy alloys and boosts alkaline water splitting. Nano Energy, 2023, 110: 108380
|
| [124] |
Białostocka A M , Klekotka U , Kalska-Szostko B . The effect of a substrate material on composition gradients of Fe-Ni films obtained by electrodeposition. Scientific Reports, 2020, 10(1): 1029
|
| [125] |
Popescu A M J , Branzoi F , Burada M , Moreno J C , Anastasescu M , Anasiei I , Olaru M T , Constantin V . CoCrFeMnNi high-entropy alloy thin films electrodeposited on aluminum support. Coatings, 2023, 13(6): 980
|
| [126] |
Sun H , Kim H , Song S , Jung W . Copper foam-derived electrodes as efficient electrocatalysts for conventional and hybrid water electrolysis. Materials Reports: Energy, 2022, 2(2): 100092
|
| [127] |
Yu G , Xie X , Pan L , Bao Z , Cui Y . Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2(2): 213–234
|
| [128] |
Xu Z , Wang Y , Gao X , Peng L , Qiao Q , Xiao J , Guo F , Wang R , Yu J . Electrochemical deposition and corrosion resistance characterization of FeCoNiCr high-entropy alloy coatings. Coatings, 2023, 13(7): 1167
|
| [129] |
Ju L , Wu W , Zhou Y , Zhang Y , Wang Q . Electrodeposition of FeNiCoCrMn high-entropy alloys on copper foam for enhanced hydrogen evolution reaction—influence of additives and deposition potential. Materials Letters, 2024, 374: 137195
|
| [130] |
Zheng W , Liu M , Lee L Y S . Best practices in using foam-type electrodes for electrocatalytic performance benchmark. ACS Energy Letters, 2020, 5(10): 3260–3264
|
| [131] |
Jin Y , Zhang T , Pan N , Wang S , Zhang B , Zhu X , Hao Y , Wang X , Song L , Zhang M . Surface functionalization of carbon cloth with conductive Ni/Fe-MOFs for highly efficient oxygen evolution. Surfaces and Interfaces, 2022, 33: 102294
|
| [132] |
Zhang T , Li J , Zhang B , Wang G , Jiang K , Zheng Z , Shen J . High-entropy alloy CuCrFeNiCoP film of Cu-based as high-efficiency electrocatalyst for water splitting. Journal of Alloys and Compounds, 2023, 969: 172439
|
| [133] |
Haché M J R . Synthesis and characterization of electrodeposited nanocrystalline medium- and high-entropy alloys. Dissertation for the Doctoral Degree. Toronto: University of Toronto, 2023,
|
| [134] |
Soare V , Burada M , Constantin I , Mitrică D , Bădiliţă V , Caragea A , Târcolea M . Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Applied Surface Science, 2015, 358: 533–539
|
| [135] |
Popescu A M J , Branzoi F , Constantin I , Anastasescu M , Burada M , Mitrică D , Anasiei I , Olaru M T , Constantin V . Electrodeposition, characterization, and corrosion behavior of CoCrFeMnNi high-entropy alloy thin films. Coatings, 2021, 11(11): 1367
|
| [136] |
Wen B , Zhao X , Dong Q , Li B , Lyu X . Gradient composition design of FeCoCrMnNi high entropy alloys: an efficient and stable electrocatalyst for water splitting. Journal of Power Sources, 2025, 627: 235804
|
| [137] |
Obradović M , Stevanović R M , Despić A R . Electrochemical deposition of Ni-W alloys from ammonia-citrate electrolyte. Journal of Electroanalytical Chemistry, 2003, 552: 185–196
|
| [138] |
El-Sherik A M , Er U . Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. Journal of Materials Science, 1995, 30(22): 5743–5749
|
| [139] |
Glasscott M W , Pendergast A D , Goines S , Bishop A R , Hoang A T , Renault C , Dick J E . Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nature Communications, 2019, 10(1): 2650
|
| [140] |
Murakami Y , Murase K , Fukami K . Smooth thin film of a CoNiCu medium-entropy alloy consisting of single nanometer-sized grains formed by electrodeposition in a water-in-oil emulsion. Journal of Physical Chemistry C, 2023, 127(9): 4696–4703
|
| [141] |
Glasscott M W , Pendergast A D , Dick J E . A universal platform for the electrodeposition of ligand-free metal nanoparticles from a water-in-oil emulsion system. ACS Applied Nano Materials, 2018, 1(10): 5702–5711
|
| [142] |
Wasekar N P , Hebalkar N , Jyothirmayi A , Lavakumar B , Ramakrishna M , Sundararajan G . Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni-W alloy coatings with high tungsten content. Corrosion Science, 2020, 165: 108409
|
| [143] |
Ahmadkhaniha D , Ascani D , Fedel M , Zanella C . Electrodeposition and properties of Ni-Co-W-(Mo-Cu) high/medium entropy alloy coatings deposited from an aqueous bath. Intermetallics, 2025, 181: 108744
|
| [144] |
Xiao T , Sun C , Wang R . Electrodeposited CrMnFeCoNi Oxy-carbide film and effect of selective dissolution of Cr on oxygen evolution reaction. Journal of Materials Science and Technology, 2024, 200: 176–184
|
| [145] |
Santana R A C , Campos A R N , Medeiros E A , Oliveira A L M , Silva L M F , Prasad S . Studies on electrodeposition and corrosion behaviour of a Ni-W-Co amorphous alloy. Journal of Materials Science, 2007, 42(22): 9137–9144
|
| [146] |
Farzaneh M , Raeissi K , Golozar M . Effect of current density on deposition process and properties of nanocrystalline Ni-Co-W alloy coatings. Journal of Alloys and Compounds, 2010, 489(2): 488–492
|
| [147] |
Tsyntsaru N , Cesiulis H , Donten M , Sort J , Pellicer E , Podlaha-Murphy E J . Modern trends in tungsten alloys electrodeposition with iron group metals. Surface Engineering and Applied Electrochemistry, 2012, 48(6): 491–520
|
| [148] |
Giovanardi R , Orlando G . Chromium electrodeposition from Cr(III) aqueous solutions. Surface and Coatings Technology, 2011, 205(15): 3947–3955
|
| [149] |
Zhang W , Xia W , Li B , Li M , Hong M , Zhang Z . Influences of Co and process parameters on structure and corrosion properties of nanocrystalline Ni-W-Co ternary alloy film fabricated by electrodeposition at low current density. Surface and Coatings Technology, 2022, 439: 128457
|
| [150] |
Zhang H M , Zuo L , Gao Y , Guo J , Zhu C , Xu J , Sun J . Amorphous high-entropy phosphoxides for efficient overall alkaline water/seawater splitting. Journal of Materials Science and Technology, 2024, 173: 1–10
|
| [151] |
Mo D , Zhang J , Chen G , Huang Z , Liu X , Cai W , Cui J , Su W . Stirred-electrodeposition construction of porous Fe-doped NiSe nanoclusters as a bifunctional catalyst for water splitting. Journal of Alloys and Compounds, 2024, 1002: 175090
|
| [152] |
ChouH LHwangB JSunC L. New and Future Developments in Catalysis. Amsterdam: Elsevier, 2013, 217–270
|
| [153] |
DenuaultGSosnaMWilliamsK J. Handbook of Electrochemistry. Amsterdam: Elsevier, 2007, 431–469
|
| [154] |
Hadipour A , Bharololoom M E . Influence of type of bath agitation (magnetic stirring and rotating disk cathode) on tribological properties of nickel electrodeposits. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54(2): 274–281
|
| [155] |
Syamsuir S , Susetyo F B , Anggrainy R , Lubi A , Soegijono B , Rosyidan C , Yudanto S D , Situmorang E U M , Nanto D . Electrolyte solution stirring effect on deposition rate, crystallographic orientation, and electrochemical behaviour of Ni film. Journal of Physics: Conference Series, 2024, 2866(1): 012001
|
| [156] |
Mamaghani K R , Naghib S M . The effect of stirring rate on electrodeposition of nanocrystalline nickel coatings and their corrosion behaviors and mechanical characteristics. International Journal of Electrochemical Science, 2017, 12(6): 5023–5035
|
| [157] |
Srimathi S , Mayanna S , Sheshadri B . Electrodeposition of binary magnetic alloys. Surface Technology, 1982, 16(4): 277–322
|
| [158] |
Farias L T D , Luna A S , Lago D C B D , Senna L F D . Influence of cathodic current density and mechanical stirring on the electrodeposition of Cu-Co alloys in citrate bath. Materials Research, 2008, 11(1): 1–9
|
| [159] |
Aliyu A , Rekha M , Srivastava C . Microstructure-electrochemical property correlation in electrodeposited CuFeNiCoCr high-entropy alloy-graphene oxide composite coatings. Philosophical Magazine, 2019, 99(6): 718–735
|
| [160] |
Liu Z , Liu Z , Zan L , Sun Y , Han H , Li Z , Wan H , Cao T , Zhu Y , Lv H . In situ anodic transition and cathodic contamination affect the overall voltage of alkaline water electrolysis. Molecules, 2024, 29(22): 5298
|
| [161] |
Freitas G , Gomes W S , Souza J P I , Pinotti C , Passamani E , Montemor M , Della Noce R . Direct electrodeposition of CoFeNiMoW high entropy alloy thin films from aqueous medium. Materials Chemistry and Physics, 2023, 309: 128438
|
| [162] |
Ashraf M A , Li C , Pham B T , Zhang D . Electrodeposition of Ni-Fe-Mn ternary nanosheets as affordable and efficient electrocatalyst for both hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2020, 45(46): 24670–24683
|
| [163] |
Baek J , Hossain M D , Mukherjee P , Lee J , Winther K T , Leem J , Jiang Y , Chueh W C , Bajdich M , Zheng X . Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction. Nature Communications, 2023, 14(1): 5936
|
| [164] |
Asim M , Hussain A , Kanwal S , Ahmad A , Aykut Y , Bayrakçeken A , Janjua N K . Rapid microwave synthesis of medium and high entropy oxides for outstanding oxygen evolution reaction performance. Materials Advances, 2024, 5(21): 8490–8504
|
| [165] |
Mohanty B , Pradhan L , Satpati B , Rajput P , Ghorbani-Asl M , Wei Y , Menezes P W , Krasheninnikov A V , Jena B K . Structural and compositional optimization of bimetallic NiCo alloy nanoparticles for promotion of alkaline hydrogen evolution reaction. Journal of Power Sources, 2025, 625: 235641
|
| [166] |
Bao F , Kemppainen E , Dorbandt I , Bors R , Xi F , Schlatmann R , Van de Krol R , Calnan S . Understanding the hydrogen evolution reaction kinetics of electrodeposited nickel-molybdenum in acidic, near-neutral, and alkaline conditions. ChemElectroChem, 2021, 8(1): 195–208
|
| [167] |
Ghadge S D , Velikokhatnyi O I , Datta M K , Shanthi P M , Tan S , Damodaran K , Kumta P N . Experimental and theoretical validation of high efficiency and robust electrocatalytic response of one-dimensional (1D) (Mn, Ir)O2:10F nanorods for the oxygen evolution reaction in PEM-based water electrolysis. ACS Catalysis, 2019, 9(3): 2134–2157
|
| [168] |
Fan Z , Mucalo M , Kennedy J , Yang F . The potential of high-entropy alloys as catalyst materials in water-splitting application. International Journal of Hydrogen Energy, 2025, 134: 64–83
|
| [169] |
Gong S , Meng Y , Jin Z , Hsu H Y , Du M , Liu F . Recent progress on the stability of electrocatalysts under high current densities toward industrial water splitting. ACS Catalysis, 2024, 14(19): 14399–14435
|
RIGHTS & PERMISSIONS
The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn