Biodegradable poly(lactic acid)-based composite open-cell foam fabricated by supercritical CO2 foaming for reusable and selective oil-adsorption

Jing Jiang , Suyu Yang , Zihui Li , Yang Yang , Changwei Zhu , Qian Li

ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (1) : 5

PDF (4605KB)
ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (1) : 5 DOI: 10.1007/s11705-026-2626-x
RESEARCH ARTICLE

Biodegradable poly(lactic acid)-based composite open-cell foam fabricated by supercritical CO2 foaming for reusable and selective oil-adsorption

Author information +
History +
PDF (4605KB)

Abstract

Addressing the growing challenge of oil pollution, this study presents a green and efficient strategy for fabricating biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate)/talc (PLA/PBAT/Talc) composite foams with high volume expansion ratio (VER), excellent compression resilience, and superior oil absorption performance via synergistic melt blending and supercritical CO2 (scCO2) batch foaming. By strategically incorporating PBAT (10 wt %) and talc (3 wt %) into the PLA matrix, and by optimizing the foaming temperatures, the melt strength and crystallization behavior were effectively tailored. The resultant PLA/PBAT-T3 foam achieved a VER exceeding 45 and an open-cell content (OCC) of 85%. Cyclic compression tests demonstrated that the PLA/PBAT-T3 foam fabricated at 100 °C exhibited the lowest permanent deformation, indicating superior structural integrity. Remarkably, the foam exhibited equilibrium oil absorption capacities (Qt) of 22.2 g·g–1 for silicone oil and 13.4 g·g–1 for cyclohexane. A significant correlation was established, revealing that Qt is directly proportional to the multiplication of VER and OCC. The foam also demonstrated excellent reusability, retaining over 85% of its initial absorption capacity after 10 consecutive absorption-desorption cycles. This work provides a viable strategy for engineering biodegradable and recyclable oil-sorbent materials, while also advancing the application potential of PLA-based composites in sustainable environmental remediation technologies.

Graphical abstract

Keywords

poly(lactic acid) / talc / supercritical carbon dioxide foaming / open-cell / cyclic compression / oil absorption.

Cite this article

Download citation ▾
Jing Jiang, Suyu Yang, Zihui Li, Yang Yang, Changwei Zhu, Qian Li. Biodegradable poly(lactic acid)-based composite open-cell foam fabricated by supercritical CO2 foaming for reusable and selective oil-adsorption. ENG. Chem. Eng., 2026, 20(1): 5 DOI:10.1007/s11705-026-2626-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J , Zhang W , Wan Z , Li S , Huang T , Fei Y . Oil spills from global tankers: status review and future governance. Journal of Cleaner Production, 2019, 227: 20–32

[2]

Gupta R K , Dunderdale G J , England M W , Hozumi A . Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(31): 16025–16058

[3]

Vásquez L C L A , Campagnolo L , Athanassiou A , Fragouli D . Expanded graphite-polyurethane foams for water-oil filtration. ACS Applied Materials & Interfaces, 2019, 11(33): 30207–30217

[4]

Nugraha M W , Wirzal M D H , Ali F B , Roza L , Sambudi N S . Electrospun polylactic acid/tungsten oxide/amino-functionalized carbon quantum dots (PLA/WO3/N-CQDs) fibers for oil/water separation and photocatalytic decolorization. Journal of Environmental Chemical Engineering, 2021, 9(5): 106033

[5]

Dilamian M , Noroozi B . Rice straw agri-waste for water pollutant adsorption: relevant mesoporous super hydrophobic cellulose aerogel. Carbohydrate Polymers, 2021, 251: 117016

[6]

Chen W , Yang J , Li B , Xu X , Jin P , Wang Z . New applications of dodecahedral bimetallic imidazolate frameworks in the robust and superior wear-resistant epoxy composites. Frontiers of Chemical Science and Engineering, 2025, 19(5): 36

[7]

Chen W , Yang J , Zhang F , Liu J , Nie S , Wang Z , Liu L . Significance of structurally inherited nickel/cobalt bimetallic phyllosilicates for enhancing the mechanical, thermal, and dry-sliding properties of epoxy composites. Construction & Building Materials, 2025, 472: 140898

[8]

Qi B , Wang N , Hu X , Cui S , Liu H , He R , Lian J , Li Y , Lu J , Li Y . Melt-blown fiber felt for efficient all-weather recovery of viscous oil spills by joule heating and photothermal effect. Journal of Hazardous Materials, 2023, 460: 132523

[9]

Yuan H , Pan Y , Wang X , Chen Q , Hu Q , Shao C , Guo Z , Liu C , Shen C , Liu X . Simple water tunable polyurethane microsphere for super-hydrophobic dip-coating and oil-water separation. Polymer, 2020, 204: 122833

[10]

Mohammed A K , Khoori A A A , Addicoat M A , Varghese S , Othman I , Jaoude M A , Polychronopoulou K , Baias M , Haija M A , Shetty D . Solvent-influenced fragmentations in free-standing three-dimensional covalent organic framework membranes for hydrophobicity switching. Angewandte Chemie, 2022, 61(13): 1–8

[11]

Shen Y , Li L , Xiao K , Xi J . Constructing three-dimensional hierarchical architectures by integrating carbon nanofibers into graphite felts for water purification. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2351–2358

[12]

Pei F , Jia H , Xu S , Zhang M , Qu Y . Preparation of superhydrophilic polyimide fibrous membranes by electrostatic spinning fabrication for the efficient separation of oil-in-water emulsions. Separation and Purification Technology, 2023, 322: 124342

[13]

Nofar M , Utz J , Geis N , Altstädt V , Ruckdäschel H . Foam 3D printing of thermoplastics: a symbiosis of additive manufacturing and foaming technology. Advanced Science, 2022, 9(11): 2105701

[14]

Liu T , Feng H , Zeng W , Jin C , Kuang T . Facile fabrication of absorption-dominated biodegradable poly(lactic acid)/polycaprolactone/multi-walled carbon nanotube foams towards electromagnetic interference shielding. Journal of Composites Science, 2023, 7(9): 395

[15]

Liu Q , Liu Y , Feng Q , Chen C , Xu Z . Preparation of antifouling and highly hydrophobic cellulose nanofibers/alginate aerogels by bidirectional freeze-drying for water-oil separation in the ocean environment. Journal of Hazardous Materials, 2023, 441: 129965

[16]

Wang Y , Yang H , Chen Z , Chen N , Pang X , Zhang L , Minari T , Liu X , Liu H , Chen J . Recyclable oil-absorption foams via secondary phase separation. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13834–13843

[17]

Wang Y , Guo F , Liao X , Li S , Yan Z , Zou F , Peng Q , Li G . High-expansion-ratio PLLA/PDLA/HNT composite foams with good thermally insulating property and enhanced compression performance via supercritical CO2. International Journal of Biological Macromolecules, 2023, 236: 123961

[18]

Wei X , Cui W , Zheng K , Wang J , Hu J , Zhou H . Bimodal cellular structure evolution in PBAT foams incorporated by carbon nanotubes and graphene nanosheets. Journal of Polymers and the Environment, 2022, 30(7): 2785–2799

[19]

Li B , Zhao G , Wang G , Zhang L , Gong J , Shi Z . Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption. Separation and Purification Technology, 2021, 257: 117949

[20]

Xiang Y , Zhen W , Zhang T , Zhao L . Effect of PGMA-saponite brushes on the rheology, crystallization, and supercritical CO2 foaming behavior of poly(lactic acid). Reactive & Functional Polymers, 2023, 183: 105497

[21]

Yu K , Wu Y , Zhang X , Hou J , Chen J . Microcellular open-cell poly(l-lactic acid)/poly(d-lactic acid) foams for oil-water separation prepared via supercritical CO2 foaming. Journal of CO2 Utilization, 2022, 65: 102219

[22]

Wang S , Yang W , Li X , Hu Z , Wang B , Li M , Dong W . Preparation of high-expansion open-cell polylactic acid foam with superior oil-water separation performance. International Journal of Biological Macromolecules, 2021, 193: 1059–1067

[23]

Li D , Zhang S , Zhao Z , Miao Z , Zhang G , Shi X . High-expansion open-cell polylactide foams prepared by microcellular foaming based on stereocomplexation mechanism with outstanding oil-water separation. Polymers, 2023, 15(9): 1984

[24]

Wei X , Meng R , Bai Y , Liu W , Zhou H , Wang X , Xu B . Hydrophobic and oleophilic open-cell foams from in-situ microfibrillation blends of poly(lactic acid) and polytetrafluoroethylene: selective oil-adsorption behaviors. International Journal of Biological Macromolecules, 2023, 227: 273–284

[25]

Hua M , Chen D , Xu Z , Fang Y , Song Y . Fabrication of high-expansion, fully degradable polylactic acid-based foam with exponent oil/water separation. Journal of Applied Polymer Science, 2022, 139(48): e53234

[26]

Wang M , He C , Yang X , Duan G , Wang W . Preparation and properties of PLA/PBAT composites modified with different filler particles. Materials Letters, 2024, 372: 136960

[27]

Ding Y , Zhang C , Luo C , Chen Y , Zhou Y , Yao B , Dong L , Du X , Ji J . Effect of talc and diatomite on compatible, morphological, and mechanical behavior of PLA/PBAT blends. E-Polymers, 2021, 21(1): 234–243

[28]

Li Y , Yin D , Liu W , Zhou H , Zhang Y , Wang X . Fabrication of biodegradable poly(lactic acid)/carbon nanotube nanocomposite foams: significant improvement on rheological property and foamability. International Journal of Biological Macromolecules: Structure, Function, and Interactions, 2020, 163: 1175–1186

[29]

Standau T , Zhao C , Murillo Castellón S M , Bonten C , Altstädt V . Chemical modification and foam processing of polylactide (PLA). Polymers, 2019, 11(2): 306

[30]

Hu Y , Shen H , Ni H , Liu Y , Zhang L , Ju G . Promoting effect of synergetic nucleating agent on crystallization behavior of polylactic acid. Journal of Applied Polymer Science, 2025, 142(17): e56796

[31]

Nofar M . Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO2. Materials & Design, 2016, 101: 24–34

[32]

Cao Y , Jiang J , Yu F . Biodegradable highly porous interconnected poly(ε-caprolactone)/poly(l-lactide-co-ε-caprolactone) scaffolds by supercritical foaming for small-diameter vascular tissue engineering. Polymers for Advanced Technologies, 2022, 33(1): 440–451

[33]

Wang J , Chai J , Wang G , Zhao J , Zhang D , Li B , Zhao H , Zhao G . Strong and thermally insulating polylactic acid/glass fiber composite foam fabricated by supercritical carbon dioxide foaming. International Journal of Biological Macromolecules, 2019, 138: 144–155

[34]

Sun C , Yu Z , Jia L , Zhang X , Zhao Y , Zhang Z . Lightweight and insulation polylactide/poly(butyleneadipate-co-terephthalate) foam with good cushioning performance prepared by supercritical CO2. Industrial Crops and Products, 2025, 223: 120067

[35]

Li Z , Jiang J , Qiao M , Xie Y , Zhang Y , Zhu C , Wang X , Li Q . Biodegradable ultra-large expansion and high open-cell PLA/PBAT foams fabricated by supercritical CO2 foaming for selective oil/water absorption. Journal of Polymers and the Environment, 2024, 32(9): 4647–4660

[36]

Qiao M , Zhang T , Jiang J , Jia C , Li Y , Wang X , Li Q . Unraveling the crystallization, mechanical, and heat resistance properties of poly(butylene adipate-co-terephthalate) through the introduction of stereocomplex crystallites. Crystals, 2025, 15(3): 247

[37]

Hou J , Ran Q , Wang Z , Zhang D , Wang Q , Xu Y , Pan H , Sheng D , Xia L , Xu W . Advanced superhydrophobic polylactic acid fibers with high porosity and biodegradability for efficient solvent recovery. International Journal of Biological Macromolecules, 2024, 279: 135534

[38]

Zhou H , Meng R , Wang L , Zhu M , Wei X , Wang X , Hu J . Preparation of open-cell chain-extend poly(lactic acid)/poly(butylene adipate-co-terephthalate) foams and their selective oil absorption characteristics. Journal of Supercritical Fluids, 2024, 204: 106114

[39]

Kenji K , Masaki N , Hoan N D , Phu P V , Khanh V T K , And W S , Tsutsumi N . Porous polylactic acid fibers synthesized by centrifugal spinning with phase separation for oil removal application. RSC Advances, 2025, 15(15): 11749–11758

[40]

Wang S , Wang K , Pang Y , Li Y , Wu F , Wang S , Zheng W . Open-cell polypropylene/polyolefin elastomer blend foams fabricated for reusable oil-sorption materials. Journal of Applied Polymer Science, 2016, 133(33): 52–69

[41]

Karatum O , Stephen A , Steiner I , Griffin J S , Shi W , Plata D L . Flexible, mechanically durable aerogel composites for oil capture and recovery. ACS Applied Materials & Interfaces, 2016, 8(1): 215–224

[42]

Pang Y , Wang S , Wu M , Liu W , Wu F , Lee P C , Zheng W . Kinetics study of oil sorption with open-cell polypropylene/polyolefin elastomer blend foams prepared via continuous extrusion foaming. Polymers for Advanced Technologies, 2018, 29(4): 1313–1321

[43]

Li X , Zhang S , Li J , Hu X , Zhang J , Wei Q , Zhang C , Zhang D , Liu Y . Bio-degradable fibrous membranes for oil/water separation by melt electrospinning. Journal of Applied Polymer Science, 2024, 141(39): e56018

[44]

Cui S , Wu M , Xu M , Li X , Ren Q , Wang L , Zheng W . Supercritical CO2 extrusion foaming of highly open-cell poly(lactic acid) foam with superior oil adsorption performance. International Journal of Biological Macromolecules, 2024, 269: 132138

[45]

Yuan J , Gao X , Chen Y , Zhao L , Hu D . Green fabrication of biobased and degradable poly(lactic acid)/poly(butylene succinate) open-cell foams for highly efficient oil-water separation with ultrafast degradation. ACS Sustainable Chemistry & Engineering, 2024, 12(50): 18101–18113

[46]

Jeeshma R , Lakshmi V V A , James A , Stephen R . Polyhedral oligomeric silsesquioxane coated electrospun nanofibrous PLA membranes: properties and application. Journal of Polymers and the Environment, 2024, 32(11): 5982–5993

[47]

Xu J , Seeger S . Silicone nanofilament embedded, superhydrophobic polylactic acid composite aerogel. Chemical Engineering Journal, 2025, 507: 160208

[48]

Ramachandran J , Thomas S P , Thomas S , Stephen R . Effect of annealing on the morphology and properties of poly(lactic acid)/polyhedral oligomeric silsesquioxane asymmetric porous membranes prepared through non-solvent induced phase separation and its application. Polymers for Advanced Technologies, 2024, 35(3): e6328

[49]

Sun X , Wang K , Meng Y , Hu K , Huang C , He Q , Sun J , Bai L , Zhang C , Ma Z . Fabrication of poly(lactic acid)/glycerol-poly(ε-caprolactone)-poly(d-lactic acid) foam by star copolymer-induce stereocomplexed microcrystalline network for oil-water separation. ACS Applied Polymer Materials, 2025, 7(1): 331–342

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4605KB)

Supplementary files

Supplementary materials-Video_S1

Supplementary materials-Video_S2

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/