Research progress and future prospect on catalysts for stepwise hydrogenation of dimethyl oxalate

Xintian Luo , Kaixuan Chen , Hansheng Wang , Huibing He , Qingjun Meng , Yonggang Zhou , Yong Jin , Chao Xu , Jing Xu

ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (1) : 2

PDF (8345KB)
ENG. Chem. Eng. ›› 2026, Vol. 20 ›› Issue (1) : 2 DOI: 10.1007/s11705-026-2623-0
REVIEW ARTICLE

Research progress and future prospect on catalysts for stepwise hydrogenation of dimethyl oxalate

Author information +
History +
PDF (8345KB)

Abstract

In recent years, energy crisis environmental problems have attracted more and more attention. Considering the shortage of oil resources and abundant coal resources in the earth’s crust, we need to find a feasible and efficient way in the coal chemical industry. Numerous studies have shown that dimethyl oxalate produced by gas-phase CO coupling reaction can be selectively hydrogenated to methyl glycolate and deeply hydrogenated to ethylene glycol and ethanol. This paper introduces the research progress of the catalyst in the stepwise conversion process of dimethyl oxalate hydrogenation. The research progress of active sites and structure-activity relationship of each catalyst was emphasized, and the active sites and reaction conditions of the three products were summarized. In addition, the direction of future catalyst design is suggested.

Graphical abstract

Keywords

dimethyl oxalate / methyl glycolate / ethylene glycol / ethanol / hydrogenation

Cite this article

Download citation ▾
Xintian Luo, Kaixuan Chen, Hansheng Wang, Huibing He, Qingjun Meng, Yonggang Zhou, Yong Jin, Chao Xu, Jing Xu. Research progress and future prospect on catalysts for stepwise hydrogenation of dimethyl oxalate. ENG. Chem. Eng., 2026, 20(1): 2 DOI:10.1007/s11705-026-2623-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao X , Zhao Y , Wang S , Yin Y , Wang B , Ma X A . Pd-Fe/α-Al2O3/cordierite monolithic catalyst for CO coupling to oxalate. Chemical Engineering Science, 2011, 66(15): 3513–3522

[2]

Dong G , Luo Z , Cao Y , Zhou J , Li W , Zhou X . Effect of liquid-phase reduction temperature on performance of silver-silica catalysts for hydrogenation of dimethyl oxalate to methyl glycolate. CIESC Journal, 2022, 73(1): 232–240

[3]

Zhou R J , Yan W Q , Cao Y Q , Zhou J H , Sui Z J , Li W , Chen D , Zhou X G , Zhu Y A . Probing the structure sensitivity of dimethyl oxalate partial hydrogenation over Ag nanoparticles: a combined experimental and microkinetic study. Chemical Engineering Science, 2022, 259: 117830

[4]

Barri S A I , Chadwick D . Carbonylation of formaldehyde with zeolite catalysts. Catalysis Letters, 2011, 141(6): 749–753

[5]

Yadav G D , Gupta V R . Synthesis of glyoxalic acid from glyoxal. Process Biochemistry, 2000, 36(1): 73–78

[6]

Wang K , Yao J , Lei Y , Wang Y , Wang G . Coupling reaction of formaldehyde and methyl formate over sodium bisulfate catalyst. Journal of Chemical Industry and Engineering, 2007, 58(4): 897–902

[7]

Xu Q . Metal carbonyl cations: generation, characterization, and catalytic application. Coordination Chemistry Reviews, 2002, 231(1): 83–108

[8]

Yue H , Zhao Y , Ma X , Gong J . Ethylene glycol: properties, synthesis, and applications. Chemical Society Reviews, 2012, 41(11): 4218–4244

[9]

Zhou Z , Li Z , Pan P , Lin L , Qin Y , Yao Y . Progress in technologies of coal-based ethylene glycol synthesis. Chemical Industry and Engineering Progress, 2010, 29(11): 2003–2009

[10]

Han B , Ling L , Fan M , Liu P , Wang B , Zhang R . A DFT study and microkinetic analysis of CO oxidation to dimethyl oxalate over Pd stripe and Pd single atom-doped Cu(111) surfaces. Applied Surface Science, 2019, 479: 1057–1067

[11]

Qiao L , Li Q , Zhou Z , Si R , Yao Y . Inert can be advantageous: advisable reconstruction and application of palladium chloride for the preferential oxidation of the hydrogen impurity in carbon monoxide streams. ChemCatChem, 2016, 8(11): 1909–1914

[12]

Zhang P , Huang L , Yang J X , Ye R , Sun M L , Li F , Wang Y H , Lin L , Yao Y G . The regulation of surface copper species coupled with ammonia-evaporation and hydrothermal aging process to enhance catalytic hydrogenation properties of Cu-SiO2 catalysts. Catalysis Letters, 2024, 154(3): 1007–1017

[13]

Zhu J , Sun W , Wang S , Zhao G , Liu Y , Lu Y . A Ni-foam-structured MoNi4-MoOx nanocomposite catalyst for hydrogenation of dimethyl oxalate to ethanol. Chemical Communications, 2020, 56(5): 806–809

[14]

Pan X , Fan Z , Chen W , Ding Y , Luo H , Bao X . Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nature Materials, 2007, 6(7): 507–511

[15]

Wang L , Wang L , Zhang J , Liu X , Wang H , Zhang W , Yang Q , Ma J , Dong X , Yoo S . et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angewandte Chemie International Edition, 2018, 57(21): 6104–6108

[16]

Demirbas M F , Balat M , Balat H . Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, 2009, 50(7): 1746–1760

[17]

Goldemberg J . The challenge of biofuels. Energy & Environmental Science, 2008, 1(5): 523–525

[18]

Yue H , Ma X , Gong J . An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol. Accounts of Chemical Research, 2014, 47(5): 1483–1492

[19]

Xu Z N , Sun J , Lin C S , Jiang X M , Chen Q S , Peng S Y , Wang M S , Guo G C . High-performance and long-lived Pd nanocatalyst directed by shape effect for CO oxidative coupling to dimethyl oxalate. ACS Catalysis, 2013, 3(2): 118–122

[20]

Li Z , Li Y , Wang X , Tan Y , Yang W , Zhu H , Chen X , Lu W , Ding Y . Hydrogenation of dimethyl oxalate to ethanol over Mo-doped Cu/SiO2 catalyst. Chemical Engineering Journal, 2023, 454: 140001

[21]

Kang J , He S , Zhou W , Shen Z , Li Y , Chen M , Zhang Q , Wang Y . Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nature Communications, 2020, 11(1): 827

[22]

Dong X , Lei J , Chen Y , Jiang H , Zhang M . Selective hydrogenation of acetic acid to ethanol on Cu-In catalyst supported by SBA-15. Applied Catalysis B: Environment and Energy, 2019, 244: 448–458

[23]

Zhang S , Duan X , Ye L , Lin H , Xie Z , Yuan Y . Production of ethanol by gas phase hydrogenation of acetic acid over carbon nanotube-supported Pt-Sn nanoparticles. Catalysis Today, 2013, 215: 260–266

[24]

Ma M , Zhan E , Huang X , Ta N , Xiong Z , Bai L , Shen W . Carbonylation of dimethyl ether over Co-HMOR. Catalysis Science & Technology, 2018, 8(8): 2124–2130

[25]

Li X , San X , Zhang Y , Ichii T , Meng M , Tan Y , Tsubaki N . Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts. ChemSusChem, 2010, 3(10): 1192–1199

[26]

Gong J , Yue H , Zhao Y , Zhao S , Zhao L , Lv J , Wang S , Ma X . Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. Journal of the American Chemical Society, 2012, 134(34): 13922–13925

[27]

Chen Z , Zhang J , Abbas M , Xue Y , Sun J , Liu K , Chen J . Effect of configuration addition of precursors on structure and catalysis of Cu/SiO2 catalysts prepared by ammonia evaporation-hydrothermal method. Industrial & Engineering Chemistry Research, 2017, 56(33): 9285–9292

[28]

Lu P , Chen Q , Yang G , Tan L , Feng X , Yao J , Yoneyama Y , Tsubaki N . Space-confined self-regulation mechanism from a capsule catalyst to realize an ethanol direct synthesis strategy. ACS Catalysis, 2020, 10(2): 1366–1374

[29]

Zhu J , Zhao G , Sun W , Nie Q , Wang S , Xue Q , Liu Y , Lu Y . Superior FeNi3-FeOx/Ni-foam catalyst for gas-phase hydrogenation of dimethyl oxalate to ethanol. Applied Catalysis B: Environment and Energy, 2020, 270: 118873

[30]

Sun J , Yu J , Ma Q , Meng F , Wei X , Sun Y , Tsubaki N . Freezing copper as a noble metal-like catalyst for preliminary hydrogenation. Science Advances, 2018, 4(12): eaau3275

[31]

Wang Z , Wu M , Song Y , Zhao J , Ren J . Selective hydrogenation of dimethyl oxalate over layered Cu/SiO2 catalysts. Modern Chemical Industry, 2023, 43(3): 157

[32]

Huang H , Wang B , Wang Y , Zhao Y , Wang S , Ma X . Partial hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst modified by sodium silicate. Catalysis Today, 2020, 358: 68–73

[33]

Abbas M , Chen Z , Zhang J , Chen J . Highly dispersed, ultra-small, and noble metal-free Cu nanodots supported on porous SiO2 and their excellent catalytic hydrogenation of dimethyl oxalate to methyl glycolate. New Journal of Chemistry, 2018, 42(12): 10290–10299

[34]

Liu Z , Li Z , Ma Z , Xie J , Wen X , Chen X , Tan Y , Lei N , Lu W , Ding Y . Histidine-derivate modified Cu/SiO2 catalyst for selective hydrogenation of dimethyl oxalate to methyl glycolate. Fuel, 2025, 381: 133701

[35]

Wang D , Zhang C , Zhu M , Yu F , Dai B . Highly active and stable ZrO2-SiO2-supported Cu-catalysts for the hydrogenation of dimethyl oxalate to methyl glycolate. ChemistrySelect, 2017, 2(17): 4823–4829

[36]

Fu K , Sun Y , Zada H , Yu J , Sun J . Tailoring the valence state of sputtered Cu by P promotor for methyl glycolate production from dimethyl oxalate. ChemCatChem, 2025, 17(8): e202402156

[37]

Tian H , En H , Li B , Zhao J . Cu@C/SiO2 catalyst with tunable Cu+ species by sorbitol for the selective hydrogenation of dimethyl oxalate to methyl glycolate. Surfaces and Interfaces, 2025, 56: 105494

[38]

Li B , Liu J , Liu Y , Zhao J . Copper nanoparticles confined in hollow silica spheres: understanding the confinement effect and enhanced catalytic performance for the selective hydrogenation of dimethyl oxalate. Microporous and Mesoporous Materials, 2025, 386: 113490

[39]

Abbas M , Wang J , Stelmachowski P , Chen J , Kotarba A . Rational design of hydroxyapatite/graphite-supported bimetallic Cu-M (M = Cu, Fe, Co, Ni) catalysts for enhancing the partial hydrogenation of dimethyl oxalate to methyl glycolate. Catalysis Science & Technology, 2023, 13(11): 3270–3281

[40]

Chen Y , Han L , Zhu J , Chen P , Fan S , Zhao G , Liu Y , Lu Y . High-performance Ag-CuOx nanocomposite catalyst galvanically deposited onto a Ni-foam for gas-phase dimethyl oxalate hydrogenation to methyl glycolate. Catalysis Communications, 2017, 96: 58–62

[41]

Wang L , Xiao T , Ma H , Zeng S , Qiu Z , Li M , Wang Y , Ma X . Silicon nitride supported copper boosting the selective hydrogenation of dimethyl oxalate to methyl glycolate. Chemical Engineering Science, 2025, 316: 121988

[42]

Abbas M , Chen Z , Chen J . Shape- and size-controlled synthesis of Cu nanoparticles wrapped on RGO nanosheet catalyst and their outstanding stability and catalytic performance in the hydrogenation reaction of dimethyl oxalate. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(39): 19133–19142

[43]

Xu X , Hu X , Luo Z , Cao Y , Zhu Y A , Li W , Zhou J , Zhou X . Engineering an egg-shell structure for the Ag/SiO2 pellet catalyst for selective hydrogenation of dimethyl oxalate to methyl glycolate. New Journal of Chemistry, 2023, 47(13): 6045–6049

[44]

Wang X , Qin S , Zhang H , Gong J , Shu W , Zhang C , Wang D , Dai B . Effect of Ce addition to Ag/ZrO2 catalyst on the hydrogenation of DMO to MG. ChemistrySelect, 2023, 8(11): e202300192

[45]

Li T , Zhu L , Lin L , Huang L , Chen C , Ye R , Yao Y . Effect of preheating temperature on the formation of Ag species on the surface of Ag-NH3/SBA-15 catalyst and its catalytic performance. Acta Petrolei Sinica: Petroleum Processing Section, 2023, 39(4): 835–844

[46]

San X , Zhao Z , Jin Q , Zhang L , Qi J , Meng D . Anchoring ultra small silver particles onto mesoporous silica through MOF derivation to reconstruct catalytic interface for boosting hydrogenation of dimethyl oxalate to methyl glycolate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025, 723: 137376

[47]

Xue J , Wu M , Song Y , Zhao J , Wu J , Quan Y , Ren J . Study on performance of Ag-modified layered copper silicate catalyst for hydrogenation of dimethyl oxalate to methyl glycolate. Journal of Fuel Chemistry & Technology, 2022, 50(8): 1014–1022

[48]

Luo Z , Xu X , Dong G , Cao Y , Hu S , Ye G , Zhu Y A , Zhou J , Li W , Zhou X . Regulating mesopore structures of support toward enhanced selective hydrogenation of dimethyl oxalate to methyl glycolate on Ag catalysts. Chemical Engineering Journal, 2022, 450: 138397

[49]

Cheng S , Meng T , Mao D , Guo X , Yu J , Ma Z . Ni-modified Ag/SiO2 catalysts for selective hydrogenation of dimethyl oxalate to methyl glycolate. Nanomaterials, 2022, 12(3): 407

[50]

Cheng S , Meng T , Mao D , Guo X , Yu J . Selective hydrogenation of dimethyl oxalate to methyl glycolate over boron-modified Ag/SiO2 catalysts. ACS Omega, 2022, 7(45): 41224–41235

[51]

Dong G , Luo Z , Cao Y , Zheng S , Zhou J , Li W , Zhou X . Understanding size-dependent hydrogenation of dimethyl oxalate to methyl glycolate over Ag catalysts. Journal of Catalysis, 2021, 401: 252–261

[52]

Dong G , Cao Y , Zheng S , Zhou J , Li W , Zaera F , Zhou X . Catalyst consisting of Ag nanoparticles anchored on amine-derivatized mesoporous silica nanospheres for the selective hydrogenation of dimethyl oxalate to methyl glycolate. Journal of Catalysis, 2020, 391: 155–162

[53]

Cheng S , Mao D , Guo X , Yu J . Synthesis of methyl glycolate from the hydrogenation of dimethyl oxalate on Ag/SiO2 catalyst: the effects of Ag contents and promoters. Reaction Kinetics, Mechanisms, and Catalysis, 2019, 126(2): 1067–1079

[54]

Hu M , Yan Y , Duan X , Ye L , Zhou J , Lin H , Yuan Y . Effective anchoring of silver nanoparticles onto N-doped carbon with enhanced catalytic performance for the hydrogenation of dimethyl oxalate to methyl glycolate. Catalysis Communications, 2017, 100: 148–152

[55]

Chen H , Tan J , Cui J , Yang X , Zheng H , Zhu Y , Li Y . Promoting effect of boron oxide on Ag/SiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate. Molecular Catalysis, 2017, 433: 346–353

[56]

Zheng H , Xue Y , Niu Y , Gao X , Wang Y , Ding G , Zhu Y . Synthesis of methyl glycolate via low-temperature hydrogenation of dimethyl oxalate over an efficient and stable Ru/activated carbon catalyst. Journal of Chemical Technology and Biotechnology, 2022, 97(9): 2572–2580

[57]

Song L , He Y , Zhou C , Shu G , Ma K , Yue H . Highly selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over an amino-assisted Ru-based catalyst. Chemical Communications, 2022, 58(83): 11657–11660

[58]

Zheng F , Gong J , Zhang H , Shu W , Wang X , Qin S , Zhang C , Dai B . Cobalt-silver catalyst with low metal content for highly efficient synthesis of methyl glycolate through synergistic effect. Chemical Engineering Journal, 2024, 492: 152350

[59]

Xiao D , Xie S , Gao X , Zhang R , Chang C R . An examination of dimethyl oxalate hydrogenation to methyl glycolate on silica-supported Ni-Co alloy catalysts. Catalysis Science & Technology, 2025, 15(4): 1041–1054

[60]

Zhuang Z , Li Y , Chen F , Chen X , Li Z , Wang S , Wang X , Zhu H , Tan Y , Ding Y . Synthesis of methyl glycolate by hydrogenation of dimethyl oxalate with a P modified Co/SiO2 catalyst. Chemical Communications, 2022, 58(12): 1958–1961

[61]

Abbas M , Zhang J , Chen J . Sonochemical engineering of highly efficient and robust Au nanoparticle-wrapped on Fe/ZrO2 nanorods and their controllable product selectivity in dimethyl oxalate hydrogenation. Catalysis Science & Technology, 2020, 10(4): 1125–1134

[62]

Zhao G , Li H , Si J , Nie Q , Meng C , Liu Y , Lu Y . High-performance Ni3P/meso-SiO2 for gas-phase hydrogenation of dimethyl oxalate to methyl glycolate. ACS Sustainable Chemistry & Engineering, 2021, 9(49): 16719–16729

[63]

Zhu J , Cao L , Li C , Zhao G , Zhu T , Hu W , Sun W , Lu Y . Nanoporous Ni3P evolutionarily structured onto a Ni foam for highly selective hydrogenation of dimethyl oxalate to methyl glycolate. ACS Applied Materials & Interfaces, 2019, 11(41): 37635–37643

[64]

Chen H , Tan J , Zhu Y , Li Y . An effective and stable Ni2P/TiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate. Catalysis Communications, 2016, 73: 46–49

[65]

An J , Wang X , Zhao J , Jiang S , Quan Y , Pei Y , Wu M , Ren J . Density-functional theory study on hydrogenation of dimethyl oxalate to methyl glycolate over copper catalyst: effect of copper valence state. Molecular Catalysis, 2020, 482: 110667

[66]

Chen K , Wang H , Luo X , Li J , Xu Y , Meng Q , He H , Xu J , Huang G . Recent advances in high-performance Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol. Chemical Engineering Science, 2025, 313: 121761

[67]

Liu L , Lu J , Yang Y , Ruettinger W , Gao X , Wang M , Lou H , Wang Z , Liu Y , Tao X . et al. Dealuminated Beta zeolite reverses Ostwald ripening for durable copper nanoparticle catalysts. Science, 2024, 383(6678): 94–101

[68]

Ye R , Zhang C , Zhang P , Lin L , Huang L , Huang Y , Li T , Zhou Z , Zhang R , Feng G . et al. Facile preparation of efficient Cu-SiO2 catalysts using a polyhydroxy molecular template to regulate surface copper species for dimethyl oxalate hydrogenation. Catalysis Communications, 2023, 174: 106586

[69]

Yang J , Lin L , Zhang P , Ye R , Wang Y , Qin Y , Zhou Z , Yao Y G . Facile and optimized ion-exchange method for synthesizing low-cost and stable Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Industrial & Engineering Chemistry Research, 2023, 62(37): 14866–14878

[70]

Wang M , Hou S , Yang Y , Zhen Z , Lv J , Huang S , Wang Y , Ma X . Surface amine species promoted Cu/SiO2 catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol. Industrial & Engineering Chemistry Research, 2023, 62(27): 10399–10408

[71]

Ai P , Jin H , Li J , Wang X , Huang W . Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol. Chinese Journal of Chemical Engineering, 2023, 60: 186–193

[72]

Zheng J , Huang L , Cui C , Chen Z , Liu X , Duan X , Cao X , Yang T , Zhu H , Shi K . et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2. Science, 2022, 376(6590): 288–292

[73]

Wang Y , Wei J , Sun M , Li F , Zhang Y , Miao Z , Lin L , Yao Y . Dual-tuning SiO2 nanosphere size and hydrothermal reaction temperature toward urchin-like copper phyllosilicate hollow nanospheres catalyst in dimethyl oxalate hydrogenation. Fuel, 2025, 401: 135907

[74]

Zhang L , Ai P , Gao Z , Huang W . Enhanced catalytic stability of Cu-based catalyst for dimethyl oxalate hydrogenation. Fuel, 2022, 324: 124536

[75]

Yun H , Zhao Y , Kan X , Li G . Effect of surface hydroxyl content of support on the activity of Cu/ZSM-5 catalyst for low-temperature hydrogenation of dimethyl oxalate to ethylene glycol. Catalysis Letters, 2023, 153(2): 364–377

[76]

Yun H , Zhao Y , Li G . Effect of carrier surface hydroxyl group on performance of Cu/SiO2 catalyst for DMO hydrogenation. Chemical Industry and Engineering Progress, 2022, 41(12): 6338–6349

[77]

Yang D , Lin L , Guo R , Zhao P , Cheng W , Yuan W , Qin Y , Yao Y . Bimetallic Cu-Ag/SiO2 catalysts with tunable product selectivity and enhanced low-temperature stability in the dimethyl oxalate hydrogenation. Molecular Catalysis, 2022, 528: 112508

[78]

San X , Gong X , Lu Y , Xu J , He L , Meng D , Wang G , Qi J , Jin Q . Anchoring Cu species over SiO2 for hydrogenation of dimethyl oxalate to ethylene glycol. Catalysts, 2022, 12(11): 1326

[79]

Li T , Lin L , Chen C , Ye R , Huang L , Yang J , Zhang P , Qin Y , Cheng J , Yao Y . Insights into a new formation mechanism of robust Cu/SiO2 catalysts for low-temperature dimethyl oxalate hydrogenation induced by a chelating ligand of EDTA. Catalysts, 2022, 12(3): 320

[80]

Huang L , Lin L , Chen C C , Ye R P , Zhu L B , Yang J X , Qin Y Y , Cheng J K , Yao Y G . β-Cyclodextrin promoted the formation of copper phyllosilicate on Cu-SiO2 microspheres catalysts to enhance the low-temperature hydrogenation of dimethyl oxalate. Journal of Catalysis, 2022, 413: 943–955

[81]

Giorgianni G , Mebrahtu C , Perathoner S , Centi G , Abate S . Hydrogenation of dimethyl oxalate to ethylene glycol on Cu/SiO2 catalysts prepared by a deposition-decomposition method: optimization of the operating conditions and pre-reduction procedure. Catalysis Today, 2021, 390: 343–353

[82]

Zhao Y , Kan X , Yun H , Wang D , Li N , Li G , Shen J . Synthesis of a high surface area and highly dispersed Cu-O-Si complex oxide used for the low-temperature hydrogenation of dimethyl oxalate to ethylene glycol. Catalysis Communications, 2021, 154: 106310

[83]

Yang D , Ye R , Lin L , Guo R , Zhao P , Yin Y , Cheng W , Yuan W , Yao Y . Boron modified bifunctional Cu/SiO2 catalysts with enhanced metal dispersion and surface acid sites for selective hydrogenation of dimethyl oxalate to ethylene glycol and ethanol. Nanomaterials, 2021, 11(12): 3236

[84]

Xu Y , Kong L , Huang H , Wang H , Wang X , Wang S , Zhao Y , Ma X . Promotional effect of indium on Cu/SiO2 catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol. Catalysis Science & Technology, 2021, 11(20): 6854–6865

[85]

Zhu J , Zhao G , Meng C , Chen P , Shi X R , Lu Y . Superb Ni-foam-structured nano-intermetallic InNi3C0.5 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Chemical Engineering Journal, 2021, 426: 130857

[86]

Liu H , Wang M , Yu G , Ding J . Effects of different ammonia(ammonium) on the structure and performance of CuO-La2O3/SiO2 catalysts. Coal Conversion, 2020, 44(1): 81–88

[87]

Chen C C , Lin L , Ye R P , Huang L , Zhu L B , Huang Y Y , Qin Y Y , Yao Y G . Construction of Cu-Ce composite oxides by simultaneous ammonia evaporation method to enhance catalytic performance of Ce-Cu/SiO2 catalysts for dimethyl oxalate hydrogenation. Fuel, 2021, 290: 120083

[88]

Zhao Y , Zhang H , Xu Y , Wang S , Xu Y , Wang S , Ma X . Interface tuning of Cu+/Cu0 by zirconia for dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst. Journal of Energy Chemistry, 2020, 49: 248–256

[89]

Wang Y , Yang W , Yao D , Wang S , Xu Y , Zhao Y , Ma X . Effect of surface hydroxyl group of ultra-small silica on the chemical states of copper catalyst for dimethyl oxalate hydrogenation. Catalysis Today, 2020, 350: 127–135

[90]

Wang M , Yao D , Li A , Yang Y , Lv J , Huang S , Wang Y , Ma X . Enhanced selectivity and stability of Cu/SiO2 catalysts for dimethyl oxalate hydrogenation to ethylene glycol by using silane coupling agents for surface modification. Industrial & Engineering Chemistry Research, 2020, 59(20): 9414–9422

[91]

Qiao G , Xu Q , Wang A , Zhou D , Yin J . Desorption-dominated synthesis of CuO/SBA-15 with tunable particle size and loading in supercritical CO2. Nanotechnology, 2020, 31(9): 095602

[92]

Chen C C , Lin L , Ye R P , Sun M L , Yang J X , Li F , Yao Y G . Mannitol as a novel dopant for Cu/SiO2: a low-cost, environmental, and highly stable catalyst for dimethyl oxalate hydrogenation without hydrogen prereduction. Journal of Catalysis, 2020, 389: 421–431

[93]

Yu X , Vest T A , Gleason-Boure N , Karakalos S G , Tate G L , Burkholder M , Monnier J R , Williams C T . Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO2. Journal of Catalysis, 2019, 380: 289–296

[94]

Yin S , Zhu L , Wang X , Liu Y , Wang S . The influence mechanism of solvent on the hydrogenation of dimethyl oxalate. Chinese Journal of Chemical Engineering, 2019, 27(2): 386–390

[95]

Ye R P , Lin L , Chen C C , Yang J X , Li F , Zhang X , Li D J , Qin Y Y , Zhou Z , Yao Y G . Synthesis of robust MOF-derived Cu/SiO2 catalyst with low copper loading via sol-gel method for the dimethyl oxalate hydrogenation reaction. ACS Catalysis, 2018, 8(4): 3382–3394

[96]

Yao D , Wang Y , Li Y , Zhao Y , Lv J , Ma X . A high-performance nanoreactor for carbonoxygen bond hydrogenation reactions achieved by the morphology of nanotube-assembled hollow spheres. ACS Catalysis, 2018, 8(2): 1218–1226

[97]

Wang Q , Qiu L , Ding D , Chen Y , Shi C , Cui P , Wang Y , Zhang Q , Liu R , Shen H . Performance enhancement of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol through zinc incorporation. Catalysis Communications, 2018, 108: 68–72

[98]

Sun Y , Meng F , Ge Q , Sun J . Importance of the initial oxidation state of copper for the catalytic hydrogenation of dimethyl oxalate to ethylene glycol. ChemistryOpen, 2018, 7(12): 969–976

[99]

Li G , Zeng X , Yun H , Li Q , Li H , Bian J . Preparation of Cu-HMS catalysts by hydrothermal method and study on catalytic hydrogenation performance of dimethyl oxalate. Journal of Molecular Catalysis, 2018, 32(1): 1–7

[100]

Zhao Y , Zhang Y , Wang Y , Zhang J , Xu Y , Wang S , Ma X . Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation. Applied Catalysis A: General, 2017, 539: 59–69

[101]

Zhao Y , Li S , Wang Y , Shan B , Zhang J , Wang S , Ma X . Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Chemical Engineering Journal, 2017, 313: 759–768

[102]

Zhang C , Wang D , Zhu M , Yu F , Dai B . Effect of different nano-sized silica sols as supports on the structure and properties of Cu/SiO2 for hydrogenation of dimethyl oxalate. Catalysts, 2017, 7(3): 75

[103]

Zhang C , Wang D , Dai B . Promotive effect of Sn2+ on Cu0/Cu+ ratio and stability evolution of Cu/SiO2 catalyst in the hydrogenation of dimethyl oxalate. Catalysts, 2017, 7(4): 122

[104]

Ye R P , Lin L , Yang J X , Sun M L , Li F , Li B , Yao Y G . A new low-cost and effective method for enhancing the catalytic performance of Cu-SiO2 catalysts for the synthesis of ethylene glycol via the vapor-phase hydrogenation of dimethyl oxalate by coating the catalysts with dextrin. Journal of Catalysis, 2017, 350: 122–132

[105]

Ye R P , Lin L , Liu C Q , Chen C C , Yao Y G . One-pot synthesis of cyclodextrin-doped Cu-SiO2 catalysts for efficient hydrogenation of dimethyl oxalate to ethylene glycol. ChemCatChem, 2017, 9(24): 4587–4597

[106]

Liu Y , Ding J , Yang J , Bi J , Liu K , Chen J . Stabilization of copper catalysts for hydrogenation of dimethyl oxalate by deposition of Ag clusters on Cu nanoparticles. Catalysis Communications, 2017, 98: 43–46

[107]

Kong X , Wu R , Yuan P , Wu Y , Wang R , Chang X , Wang M , Wang X , Chen J . Role of the Cu dopant in the textural and catalytic features of the Co/ZnO catalyst for dimethyl oxalate selective hydrogenation. Journal of Chemical Technology and Biotechnology, 2023, 98(10): 2437–2445

[108]

Kong X , You X , Yuan P , Wu Y , Wang R , Chen J . Influence of dopants on the structure and catalytic features of the Cu/ZnO catalyst for dimethyl oxalate hydrogenation to ethylene glycol. Journal of Fuel Chemistry & Technology, 2023, 51(6): 794–803

[109]

Guo Q , Zhang Y , Ai P , Zhao J , Zhao J , Huang W . Enhanced catalytic hydrogenation of dimethyl oxalate over defect-rich boron nitride sheets-anchored Cu catalyst. Chemical Engineering Science, 2025, 302: 120821

[110]

Ai P , Zhang L , Niu J , Jin H , Huang W . Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation. Chinese Journal of Chemical Engineering, 2023, 55: 222–229

[111]

Xu Y , Huang H , Kong L , Ma X . Effect of calcination temperature on the Cu-ZrO2 interfacial structure and its catalytic behavior in the hydrogenation of dimethyl oxalate. Catalysis Science & Technology, 2022, 12(22): 6782–6794

[112]

Kong X , You X , Yuan P , Wang M , Wu Y , Wang R , Chen J . Mesoporous Cu catalysts for dimethyl oxalate selective hydrogenation: impact of the Cu/Al interface on the textural properties and catalytic behavior. ChemistrySelect, 2022, 7(8): e202102609

[113]

Yu X , Burkholder M , Karakalos S G , Tate G L , Monnier J R , Gupton B F , Williams C T . Hydrogenation of dimethyl oxalate to ethylene glycol over Cu/KIT-6 catalysts. Catalysis Science & Technology, 2021, 11(7): 2403–2413

[114]

Liu H , Wang M , Yu G , Wang Y , Ding J . Effect of calcination temperature on performance of CuO/ZrO2 catalyst for oxalates hydrogenation. Modern Chemical Industry, 2021, 41(8): 106–110

[115]

Kong X , Wu Y , Yuan P , Wang M , Wu P , Ding L , Wang R , Chen J . Effect of calcination temperature on the textural properties and catalytic behavior of the Al2O3 doped mesoporous monometallic Cu catalysts in dimethyl oxalate hydrogenation. Catalysis Letters, 2021, 151(7): 2107–2115

[116]

Ding J , Wang M , Liu H , Wang Z , Guo X , Yu G , Wang Y . Influence of La-doping on the CuO/ZrO2 catalysts with different Cu contents for hydrogenation of dimethyl oxalate to ethylene glycol. New Journal of Chemistry, 2021, 45(38): 18102–18113

[117]

Cui G , Zhang X , Wang H , Li Z , Wang W , Yu Q , Zheng L , Wang Y , Zhu J , Wei M . ZrO2–x modified Cu nanocatalysts with synergistic catalysis towards carbon-oxygen bond hydrogenation. Applied Catalysis B: Environment and Energy, 2021, 280: 119406

[118]

Chang T , Zhang L , Ma R , Liu X . Thin-sheet monolithic-structured Pd-Au-CuOx/M-fiber (M = Ni, Al, SS, Cu) catalysts for gas-phase hydrogenation of dimethyl oxalate to ethylene glycol. AIP Advances, 2021, 11(7): 075301

[119]

Wang X , Chen M , Chen X , Lin R , Zhu H , Huang C , Yang W , Tan Y , Wang S , Du Z . et al. Constructing copper-zinc interface for selective hydrogenation of dimethyl oxalate. Journal of Catalysis, 2020, 383: 254–263

[120]

Lu X , Wang G , Yang Y , Kong X , Chen J . A boron-doped carbon aerogel-supported Cu catalyst for the selective hydrogenation of dimethyl oxalate. New Journal of Chemistry, 2020, 44(8): 3232–3240

[121]

Kong X , Wu Y , Ding L , Wang R , Chen J . Effect of Cu loading on the structural evolution and catalytic activity of Cu-Mg/ZnO catalysts for dimethyl oxalate hydrogenation. New Journal of Chemistry, 2020, 44(11): 4486–4493

[122]

Ding J , Liu H , Wang M , Tian H , Wu J , Yu G , Wang Y . Enhanced ethylene glycol selectivity of CuO-La2O3/ZrO2 catalyst: the role of calcination temperatures. ACS Omega, 2020, 5(43): 28212–28223

[123]

Ding J , Liu H , Fan H , Chen S , Wang Y , He W , Yu G , Ma L , Chen J . Effective “exfoliation” of Cu/ZrO2 by varying Cu content as high performance catalysts for dimethyl oxalate hydrogenation to ethylene glycol. Catalysis Communications, 2019, 121: 62–67

[124]

Cui G , Meng X , Zhang X , Wang W , Xu S , Ye Y , Tang K , Wang W , Zhu J , Wei M . et al. Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid-base sites. Applied Catalysis B: Environment and Energy, 2019, 248: 394–404

[125]

Zhang C , Wang D , Zhu M , Yu F , Dai B . Plasma-enhanced copper dispersion and activity performance of Cu-Ni/ZrO2 catalyst for dimethyl oxalate hydrogenation. Catalysis Communications, 2017, 102: 31–34

[126]

Kong X , Chen Z , Wu Y , Wang R , Chen J , Ding L . Synthesis of Cu-Mg/ZnO catalysts and catalysis in dimethyl oxalate hydrogenation to ethylene glycol: enhanced catalytic behavior in the presence of a Mg2+ dopant. RSC Advances, 2017, 7(78): 49548–49561

[127]

Wang B , Cui Y , Wen C , Chen X , Dong Y , Dai W . Role of copper content and calcination temperature in the structural evolution and catalytic performance of Cu/P25 catalysts in the selective hydrogenation of dimethyl oxalate. Applied Catalysis A: General, 2016, 509: 66–74

[128]

Han L , Zhang L , Zhao G , Chen Y , Zhang Q , Chai R , Liu Y , Lu Y . Copper-fiber-structured Pd-Au-CuOx: preparation and catalytic performance in the vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol. ChemCatChem, 2016, 8(6): 1065–1073

[129]

Ai P , Guo Q , Shi X , Jin L , Niu J , Tan M , Huang W . Superior silicon-free Cu catalyst for dimethyl oxalate hydrogenation: exploring interaction between Cu and pyridinic-N-rich ultrathin carbon. Chemical Engineering Science, 2023, 281: 119187

[130]

Kong X , Ma C , Zhang J , Sun J , Chen J , Liu K . Effect of leaching temperature on structure and performance of Raney Cu catalysts for hydrogenation of dimethyl oxalate. Applied Catalysis A: General, 2016, 509: 153–160

[131]

Shen L , Xu J , Zhu M , Han Y F . Essential role of the support for nickel-based CO2 methanation catalysts. ACS Catalysis, 2020, 10(24): 14581–14591

[132]

Xu J , White T , Li P , He C , Yu J , Yuan W , Han Y F . Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. Journal of the American Chemical Society, 2010, 132(30): 10398–10406

[133]

Shu G , Ma K , Tang S , Liu C , Yue H , Liang B . Highly selective hydrogenation of diesters to ethylene glycol and ethanol on aluminum-promoted CuAl/SiO2 catalysts. Catalysis Today, 2021, 368: 173–180

[134]

Ai P , Tan M , Reubroycharoen P , Wang Y , Feng X , Liu G , Yang G , Tsubaki N . Probing the promotional roles of cerium in the structure and performance of Cu/SiO2 catalysts for ethanol production. Catalysis Science & Technology, 2018, 8(24): 6441–6451

[135]

Zhao Y , Zhao S , Geng Y , Shen Y , Yue H , Lv J , Wang S , Ma X . Ni-containing Cu/SiO2 catalyst for the chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate. Catalysis Today, 2016, 276: 28–35

[136]

Du Z , Li Z , Wang S , Chen X , Wang X , Lin R , Zhu H , Ding Y . Stable ethanol synthesis via dimethyl oxalate hydrogenation over the bifunctional rhenium-copper nanostructures: influence of support. Journal of Catalysis, 2022, 407: 241–252

[137]

Shi J , He Y , Ma K , Tang S , Liu C , Yue H , Liang B . Cu active sites confined in MgAl layered double hydroxide for hydrogenation of dimethyl oxalate to ethanol. Catalysis Today, 2021, 365: 318–326

[138]

Ding J , Wang M , Liu H , Guo X , Yu G , Wang Y . Effect of Cu content on Ce-doping CuO/ZrO2 catalysts for low-temperature hydrogenation of dimethyl oxalate to ethanol. Asia-Pacific Journal of Chemical Engineering, 2021, 16(5): e2692

[139]

Du Z , Chen M , Wang X , Chen X , Mou X , Tan Y , Yang W , Huang C , Zhu H , Lin R . et al. Bifunctional rhenium-copper nanostructures for intensified and stable ethanol synthesis via hydrogenation of dimethyl oxalate. Catalysis Science & Technology, 2020, 10(10): 3175–3180

[140]

Shang X , Huang H , Han Q , Xu Y , Zhao Y , Wang S , Ma X . Preferential synthesis of ethanol from syngas via dimethyl oxalate hydrogenation over an integrated catalyst. Chemical Communications, 2019, 55(39): 5555–5558

[141]

Abbas M , Zhang J , Chen Z , Chen J . Sonochemical synthesis of Zn-promoted porous MgO-supported lamellar Cu catalysts for selective hydrogenation of dimethyl oxalate to ethanol and their long-term stability. New Journal of Chemistry, 2018, 42(21): 17553–17562

[142]

Liu Y , Ding J , Bi J , Sun Y , Zhang J , Liu K , Kong F , Xiao H , Chen J . Effect of Cu-doping on the structure and performance of molybdenum carbide catalyst for low-temperature hydrogenation of dimethyl oxalate to ethanol. Applied Catalysis A: General, 2017, 529: 143–155

[143]

Ai P , Tan M , Yamane N , Liu G , Fan R , Yang G , Yoneyama Y , Yang R , Tsubaki N . Synergistic effect of a boron-doped carbon-nanotube-supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol. Chemistry, 2017, 23(34): 8252–8261

[144]

Ai P , Tan M , Ishikuro Y , Hosoi Y , Yang G , Yoneyama Y , Tsubaki N . Design of an autoreduced copper in carbon nanotube catalyst to realize the precisely selective hydrogenation of dimethyl oxalate. ChemCatChem, 2017, 9(6): 1067–1075

[145]

Song Y , Zhang J , Lv J , Zhao Y , Ma X . Hydrogenation of dimethyl oxalate over copper-based catalysts: acid-base properties and reaction paths. Industrial & Engineering Chemistry Research, 2015, 54(40): 9699–9707

[146]

Gong J , Zhang H , Shu W , Zheng F , Qin S , Wang X , Zhang C , Xue H , Dai B . Significant effect of In doping on Ni/C catalyst for hydrogenation of dimethyl oxalate to ethanol: synergistic effect of InNi3 alloy, surface oxygen, and defect sites. Molecular Catalysis, 2023, 550: 113592

[147]

Xue H , Qin S , Wang X , Zhang C , Wang D , Dai B . Influence of Pd-doping on the efficiency of In2O3/ZrO2 catalysts used for hydrogenating dimethyl oxalate to ethanol. ChemistrySelect, 2022, 7(4): e202103297

[148]

Cao M , Huang H , Zheng Y , Zhang Q , Wang S , Ge R , Wang J , Zhao Y , Ma X . Enhanced effect of the mesoporous carbon on iron carbide catalyst for hydrogenation of dimethyl oxalate to ethanol. ChemCatChem, 2022, 14(20): e202200500

[149]

Sun Y , Ma Q , Ge Q , Sun J . Tunable synthesis of ethanol or methyl acetate via dimethyl oxalate hydrogenation on confined iron catalysts. ACS Catalysis, 2021, 11(8): 4908–4919

[150]

He J , Zhao Y , Wang Y , Wang J , Zheng J , Zhang H , Zhou G , Wang C , Wang S , Ma X A . Fe5C2 nanocatalyst for the preferential synthesis of ethanol via dimethyl oxalate hydrogenation. Chemical Communications, 2017, 53(39): 5376–5379

[151]

Wang H , Luo X , Chen K , Xiao B , Zhang X , Meng Q , He H , Xu J , Jin Y . Research progress on the copper-based catalyst design for dimethyl oxalate hydrogenation to ethylene glycol. Chinese Journal of Chemical Engineering, 2025, 85: 189–205

[152]

Dong Z , Nian Y , Liu H , Chen J , Wang Y , Wang S , Xu J , Han Y , Luo L . Revealing synergetic structural activation of a CuAu surface during water-gas shift reaction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(23): e2120088119

[153]

Yue H , Zhao Y , Zhao L , Lv J , Wang S , Gong J , Ma X . Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst: enhanced internal mass transfer and stability. AIChE Journal, 2012, 58(9): 2798–2809

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (8345KB)

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/