Plasma catalysis research for sustainability

Baihua Cui , San Hua Lim , Quang Thang Trinh , Yee-Fun Lim , Katherine Lin , Quentin Lim , Teck Leong Tan , Jia Zhang , Chee Kok Poh , Luwei Chen

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 122

PDF (4809KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 122 DOI: 10.1007/s11705-025-2639-x
REVIEW ARTICLE

Plasma catalysis research for sustainability

Author information +
History +
PDF (4809KB)

Abstract

Plasma catalysis technology is emerging as a promising approach for addressing energy and environmental challenges in sustainability. This review provides an overview of plasma technology and summarizes recent advances in plasma catalysis from both experimental and theoretical perspectives. Current laboratory-scale studies have demonstrated the versatility of plasma catalysis in various processes, including carbon conversion, hydrogen production, and the removal of volatile organic compounds. The inherently complex environment of plasma catalysis requires in situ characterization and theoretical modeling to elucidate the underlying reaction mechanisms, which in turn guide the rational design of efficient catalysts and optimized reactor configurations. These advances are vital for enhancing the economic feasibility and accelerating the commercialization of this technology. Nevertheless, the scale-up and practical deployment of plasma-catalytic systems from laboratory to industrial scales remain challenging. In this review, we critically examine the current state of plasma catalysis research and its applications across a wide range of reactions. Particular attention is given to in situ mechanistic studies, reactor design, catalyst development, process scale-up, and theoretical modeling. Finally, we provide a forward-looking perspective on the opportunities and future directions to address existing challenges and harness the potential of plasma catalysis toward sustainable development.

Graphical abstract

Keywords

plasma catalysis, in situ diagnostic techniques, theoretical modeling and simulation, sustainable chemical processes, plasma reactor

Cite this article

Download citation ▾
Baihua Cui, San Hua Lim, Quang Thang Trinh, Yee-Fun Lim, Katherine Lin, Quentin Lim, Teck Leong Tan, Jia Zhang, Chee Kok Poh, Luwei Chen. Plasma catalysis research for sustainability. Front. Chem. Sci. Eng., 2025, 19(12): 122 DOI:10.1007/s11705-025-2639-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brundtland G H . Our common future—call for action. Environmental Conservation, 1987, 14(4): 291–294

[2]

International Energy Agency . Greenhouse Gas Emissions from Energy Data Explorer. , 2023,

[3]

Leadbetter J , Swan L . Battery storage system for residential electricity peak demand shaving. Energy and Building, 2012, 55: 685–692

[4]

Yekini Suberu M , Wazir Mustafa M , Bashir N . Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renewable & Sustainable Energy Reviews, 2014, 35: 499–514

[5]

Zhou W , Lou C , Li Z , Lu L , Yang H . Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems. Applied Energy, 2010, 87(2): 380–389

[6]

Trinh Q T , Golio N , Cheng Y , Cha H , Tai K U , Ouyang L , Zhao J , Tran T S , Nguyen T K , Zhang J . . Sonochemistry and sonocatalysis: current progress, existing limitations, and future opportunities in green and sustainable chemistry. Green Chemistry, 2025, 27(18): 4926–4958

[7]

Tran H V , Dang T T , Nguyen N H , Tran H T , Nguyen D T , Do D V , Le T S , Ngo T H , Late Y K E , Amaniampong P N . . Methanol activation: strategies for utilization of methanol as C1 building block in sustainable organic synthesis. ChemSusChem, 2025, 18(7): e202401974

[8]

Bogaerts A , Neyts E C . Plasma technology: an emerging technology for energy storage. ACS Energy Letters, 2018, 3(4): 1013–1027

[9]

McNaught A D , Wilkinson A . Compendium of Chemical Terminology. Oxford: Blackwell Scientific Publications, 2014,

[10]

Kim H H , Teramoto Y , Ogata A , Takagi H , Nanba T . Plasma catalysis for environmental treatment and energy applications. Plasma Chemistry and Plasma Processing, 2016, 36(1): 45–72

[11]

WhiteheadJ C. Plasma Catalysis: Fundamentals and Applications. Cham: Springer, 2019, 1–19

[12]

Mehta P , Barboun P , Go D B , Hicks J C , Schneider W F . Catalysis enabled by plasma activation of strong chemical bonds: a review. ACS Energy Letters, 2019, 4(5): 1115–1133

[13]

Thimsen E . Beyond equilibrium thermodynamics in the low temperature plasma processor. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2018, 36: 48501

[14]

Humphreys J R , Lan R , Tao S . Development and recent progress on ammonia synthesis catalysts for haber-bosch process. Advanced Energy and Sustainability Research, 2021, 2(1): 2000043

[15]

Zhang H , Sun Z , Hu Y H . Steam reforming of methane: current states of catalyst design and process upgrading. Renewable & Sustainable Energy Reviews, 2021, 149: 111330

[16]

Gangadharan P , Kanchi K C , Lou H H . Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chemical Engineering Research & Design, 2012, 90(11): 1956–1968

[17]

Nozaki T , Muto N , Kadio S , Okazaki K . Dissociation of vibrationally excited methane on Ni catalyst. Catalysis Today, 2004, 89(1): 67–74

[18]

Ma J , Sun N , Zhang X , Zhao N , Xiao F , Wei W , Sun Y . A short review of catalysis for CO2 conversion. Catalysis Today, 2009, 148(3): 221–231

[19]

Yuan Z , Eden M R , Gani R . Toward the development and deployment of large-scale carbon dioxide capture and conversion processes. Industrial & Engineering Chemistry Research, 2016, 55(12): 3383–3419

[20]

Snoeckx R , Aerts R , Tu X , Bogaerts A . Plasma-based dry reforming: a computational study ranging from the nanoseconds to seconds time scale. Journal of Physical Chemistry C, 2013, 117(10): 4957–4970

[21]

Usman M , Wan Daud W M A , Abbas H F . Dry reforming of methane: influence of process parameters—a review. Renewable & Sustainable Energy Reviews, 2015, 45: 710–744

[22]

Aramouni N A K , Touma J G , Tarboush B A , Zeaiter J , Ahmad M N . Catalyst design for dry reforming of methane: analysis review. Renewable & Sustainable Energy Reviews, 2018, 82: 2570–2585

[23]

Vojvodic A , Medford A J , Studt F , Abild-Pedersen F , Khan T S , Bligaard T , Nørskov J K . Exploring the limits: a low-pressure, low-temperature Haber-Bosch process. Chemical Physics Letters, 2014, 598: 108–112

[24]

Erisman J W , Sutton M A , Galloway J , Klimont Z , Winiwarter W . How a century of ammonia synthesis changed the world. Nature Geoscience, 2008, 1(10): 636–639

[25]

Che F , Gray J T , Ha S , McEwen J S . Reducing reaction temperature, steam requirements, and coke formation during methane steam reforming using electric fields: a microkinetic modeling and experimental study. ACS Catalysis, 2017, 7(10): 6957–6968

[26]

Carreon M L . Plasma catalysis: a brief tutorial. Plasma Research Express, 2019, 1(4): 043001

[27]

Snoeckx R , Bogaerts A . Plasma technology—a novel solution for CO2 conversion. Chemical Society Reviews, 2017, 46(19): 5805–5863

[28]

Neyts E C , Ostrikov K K , Sunkara M K , Bogaerts A . Plasma catalysis: synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446

[29]

Neyts E C , Bogaerts A . Understanding plasma catalysis through modelling and simulation—a review. Journal of Physics D: Applied Physics, 2014, 47(22): 224010

[30]

Bogaerts A , Tu X , Whitehead J C , Centi G , Lefferts L , Guaitella O , Azzolina-Jury F , Kim H H , Murphy A B , Schneider W F . . The 2020 plasma catalysis roadmap. Journal of Physics D: Applied Physics, 2020, 53(44): 443001

[31]

Whitehead J C . Plasma-catalysis: the known knowns, the known unknowns and the unknown unknowns. Journal of Physics D: Applied Physics, 2016, 49(24): 243001

[32]

Yan C , Waitt C , Akintola I , Lee G , Easa J , Clarke R , Geng F , Poirier D , Otor H O , Rivera-Castro G . . Recent advances in plasma catalysis. Journal of Physical Chemistry C, 2022, 126(23): 9611–9614

[33]

Zhang S , Oehrlein G S . From thermal catalysis to plasma catalysis: a review of surface processes and their characterizations. Journal of Physics D: Applied Physics, 2021, 54(21): 213001

[34]

Turnhout J V , Rouwenhorst K , Lefferts L , Bogaerts A . Plasma catalysis: what is needed to create synergy. EES Catalysis, 2025, 3(4): 669–693

[35]

Mehta P , Barboun P , Herrera F A , Kim J , Rumbach P , Go D B , Hicks J C , Schneider W F . Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nature Catalysis, 2018, 1(4): 269–275

[36]

Ruiz-Martín M , Oliva-Ramírez M , González-Elipe A R , Gómez-Ramírez A . Plasma catalysis for gas conversion-impact of catalyst on the plasma behaviour. Current Opinion in Green and Sustainable Chemistry, 2025, 51: 100990

[37]

Chen S , Wang H , Dong F . Activation and characterization of environmental catalysts in plasma-catalysis: status and challenges. Journal of Hazardous Materials, 2022, 427: 128150

[38]

Zhou G , Wang Z , Wang X , Zhang Y , Zhao X , Chen Q , Chen T , Huang Z , Lin H . Nonthermal-plasma-catalytic ammonia synthesis using Fe2O3/CeO2 mechanically mixed with Al2O3: insights into the promoting effect of plasma discharge enhancement on the role of catalysts. ACS Sustainable Chemistry & Engineering, 2023, 11: 4903–4933

[39]

Chen X , Bella Y , Yue M , Kosariabd L , Liu F , Hu K , Cao Y , Xiong A , Mandala J . . Plasma induced methane conversion: a review on COx-free production of hydrogen, valuable chemicals, and functional carbon materials. EES Catalysis, 2025,

[40]

Hu H , Nguyen H M , Li W , Wang A , Li Z , Wang J , Shen F , Jing L , Chen Z , Gates I . . Non-thermal plasma-assisted dry reforming of methane: catalyst design, in situ characterization and hybrid system development. International Journal of Hydrogen Energy, 2025, 145: 891–914

[41]

Mohamed R Y A , Kumarachari R K , Bukke S P N , Neerugatti D , Mekasha Y T , Bandarapalle K . Plasma catalysis for sustainable industry: lab-scale studies and pathways to upscaling. Discover Applied Sciences, 2025, 7(4): 271

[42]

Nozaki T , Chen X , Kim D Y , Kim H H . Plasma fluidized beds and their scalability. Current Opinion in Green and Sustainable Chemistry, 2025, 51: 100984

[43]

Yan Y , Wang D , Wang L , Yuan D , Ling Z , Han X , Zeng X . Research progress of nonthermal plasma for ammonia synthesis. Processes, 2025, 13(5): 1354

[44]

Mukhtar A , Saqib S , Mohotti D , Aka R , Jr N , Hossain M , Agyekum-Oduro E , Wu S . Non-thermal plasma-catalytic processes for CO2 conversion toward circular economy: fundamentals, current status, and future challenges. Environmental Science and Pollution Research International, 2024,

[45]

Gautam R , Kumar S , Upadhyayula S . A comprehensive review on recent breakthroughs in hydrogen production from hydrogen sulfide decomposition: harnessing the power of plasma. Renewable & Sustainable Energy Reviews, 2024, 202: 114735

[46]

Nguyen D B , Saud S , Trinh Q T , An H , Nguyen N T , Trinh Q T , Do H T , Mok Y S , Lee W G . Generation of multiple jet capillaries in advanced dielectric barrier discharge for large-scale plasma jets. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1475–1488

[47]

Wang N , Otor H O , Rivera-Castro G , Hicks J C . Plasma catalysis for hydrogen production: a bright future for decarbonization. ACS Catalysis, 2024, 14(9): 6749–6798

[48]

Li H , Wang X , Yi H , Shi X , Mao M , Zhang Y , Huang H , Ye D , Tu X , Wu J . Morphology and size effect of ceria on methanol oxidation in non-thermal plasma. Catalysis Today, 2024, 426: 114398

[49]

Laer K V , Bogaerts A . Influence of gap size and dielectric constant of the packing material on the plasma behaviour in a packed bed DBD reactor: a fluid modelling study. Plasma Processes and Polymers, 2017, 14(4-5): 1600129

[50]

Aihara K , Akiyama M , Deguchi T , Tanaka M , Hagiwara R , Iwamoto M . Remarkable catalysis of a wool-like copper electrode for NH3 synthesis from N2 and H2 in non-thermal atmospheric plasma. Chemical Communications, 2016, 52(93): 13560–13563

[51]

Qi C , Bi Y , Wang Y , Yu H , Tian Y , Zong P , Zhang Q , Zhang H , Wang M , Xing T . . Unveiling the mechanism of plasma-catalyzed oxidation of methane to C2+ oxygenates over Cu/UiO-66-NH2. ACS Catalysis, 2024, 14(10): 7707–7716

[52]

Xu M , Mori Y , Liu Z , Fukuyama Y , Sumiya Y , Zhan T , Okino A . Design and characterization of an upscaled dielectric barrier discharge-based ten-layer plasma source for high-flow-rate gas treatment. Applied Sciences, 2023, 14(1): 27

[53]

Rumbach P , Go D B . Perspectives on plasmas in contact with liquids for chemical processing and materials synthesis. Topics in Catalysis, 2017, 60(12): 799–811

[54]

Hawtof R , Ghosh S , Guarr E , Xu C , Sankaran R M , Renner J N . Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. Science Advances, 2019, 5(1): eaat5778

[55]

Wang Y , Wang Q , Sun S , Xin Y , Zhu X , Sun B . Highly efficient ammonia synthesis by gas-liquid interface pulsed discharge plasma: a synthesis method without hydrogen. ACS Sustainable Chemistry & Engineering, 2023, 11(35): 13070–13080

[56]

Gorbanev Y , Nikiforov A , Fedirchyk I , Bogaerts A . Organic reactions in plasma-liquid systems for environmental applications. Plasma Processes and Polymers, 2025, 22(1): 2400149

[57]

Clarke R J , Nice I J , Hicks J C . Plasma-catalyst dynamics: nonthermal activation of strong metal-support interactions. Journal of the American Chemical Society, 2025, 147(1): 585–593

[58]

Jiang J , Wang C , Zhao S , Xue F , Li L , Cui M , Qiao X , Fei Z . Plasma-reconstructed LaMnO3 nanonetwork supported palladium catalyst for methane catalytic combustion. Journal of Environmental Chemical Engineering, 2023, 11(3): 109825

[59]

Ashford B , Wang Y , Poh C K , Chen L , Tu X . Plasma-catalytic conversion of CO2 to CO over binary metal oxide catalysts at low temperatures. Applied Catalysis B: Environmental, 2020, 276: 119110

[60]

Liu Y , Liu P , Cai Y , Zhu M , Dou N , Zhang L , Men Y L , Pan Y X . Platinum/(carbon-nanotube) electrocatalyst boosts hydrogen evolution reaction in acidic, neutral, and alkaline solutions. Small, 2025, 21(9): 2411181

[61]

Liu P , Men Y L , Meng X Y , Peng C , Zhao Y , Pan Y X . Electronic interactions on platinum/(metal-oxide)-based photocatalysts boost selective photoreduction of CO2 to CH4. Angewandte Chemie International Edition, 2023, 62(38): e202309443

[62]

Meng X Y , Li J J , Liu P , Duan M , Wang J , Zhou Y N , Xie Y , Luo Z H , Pan Y X . Long-term stable hydrogen production from water and lactic acid via visible-light-driven photocatalysis in a porous microreactor. Angewandte Chemie International Edition, 2023, 62(32): e202307490

[63]

Turnhout J V , Aceto D , Travert A , Bazin P , Thibault-Starzyk F , Bogaerts A , Azzolina-Jury F . Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell. Catalysis Science & Technology, 2022, 12(22): 6676–6686

[64]

Sun Y , Wu J , Wang Y , Li J , Wang N , Harding J , Mo S , Chen L , Chen P , Fu M . . Plasma-catalytic CO2 hydrogenation over a Pd/ZnO catalyst: in situ probing of gas-phase and surface reactions. JACS Au, 2022, 2(8): 1800–1810

[65]

Clarke R J , Hicks J C . Interrogation of the plasma-catalyst interface via in situ/operando transmission infrared spectroscopy. ACS Engineering Au, 2022, 2(6): 535–546

[66]

Gibson E , EStere C , Curran-McAteer B , Jones W , Cibin G , Gianolio D , Goguet A , Wells P P , Catlow C R A , Collier P . . Probing the role of a non-thermal plasma (NTP) in the hybrid NTP catalytic oxidation of methane. Angewandte Chemie International Edition, 2017, 56: 9351–9355

[67]

Stere C E , Adress W , Burch R , Chansai S , Goguet A , Graham W G , Hardacre C . Probing a non-thermal plasma activated heterogeneously catalyzed reaction using in situ DRIFTS-MS. ACS Catalysis, 2015, 5(2): 956–964

[68]

Stere C , Chansai S , Gholami R , Wangkawong K , Singhania A , Goguet A , Inceesungvorn B , Hardacre C . A design of a fixed bed plasma DRIFTS cell for studying the NTP-assisted heterogeneously catalysed reactions. Catalysis Science & Technology, 2020, 10(5): 1458–1466

[69]

Dell’Orco S , Leick N , Alleman J L , Habas S E , Mukarakate C . Exploring opportunities in operando DRIFTS and complementary techniques for advancing plasma catalysis. EES Catalysis, 2024, 2(5): 1059–1071

[70]

Wu K , Xiong J , Sun Y , Wu J , Fu M , Ye D . Tuning the local electronic structure of SrTiO3 catalysts to boost plasma-catalytic interfacial synergy. Journal of Hazardous Materials, 2022, 428: 128172

[71]

Zhao Y , Liu P , Meng X Y , Men Y L , Ma H , Zou J , Wang T , Pan Y X . Boosting degradation of polyethylene at room temperature. Industrial & Engineering Chemistry Research, 2025, 64(10): 5280–5289

[72]

Shen X , Craven M , Xu J , Wang Y , Li Z , Wang W , Yao S , Wu Z , Jiang N , Zhou X . . Unveiling the mechanism of plasma-catalytic low-temperature water-gas shift reaction over Cu/γ-Al2O3 catalysts. JACS Au, 2024, 4(8): 3228–3237

[73]

Xi D , Li F , Dou L , Zhou R , Man C , Gao Y , Xu Y , Zhang S , Qi C , Wang Y . . Production of alcohols through plasma-catalytic dry reforming of methane over the interface of metal oxides. Applied Catalysis B. Environment and Energy, 2025, 377: 125524

[74]

Liu L , Dai J , Das S , Wang Y , Yu H , Xi S , Zhang Z , Tu X . Plasma-catalytic CO2 reforming of toluene over hydrotalcite-derived NiFe/(Mg, Al)Ox catalysts. JACS Au, 2023, 3(3): 785–800

[75]

Wang Y , Yang J , Sun Y , Ye D , Shan B , Tsang S C E , Tu X . Engineering Ni-Co bimetallic interfaces for ambient plasma-catalytic CO2 hydrogenation to methanol. Chem, 2024, 10(8): 2590–2606

[76]

Chawdhury P , Chansai S , Conway M , Parker J , Lindley M , Stere C E , Sankar M , Haigh S J , Dennis-Smither B , Filip S V . . Enhancing the reaction of CO2 and H2O using catalysts within a nonthermal plasma. ACS Catalysis, 2025, 15(9): 7053–7065

[77]

Zhou W , Zhang W , Shan Y , Liu B , Li K , Ren J , Li Y , Zhang X , Wang Z . Carbon-free hydrogen production via plasma-catalytic ammonia decomposition over transition metal-based catalysts: in situ probing by DRIFTS and SVUV-PIMS. Chemical Engineering Journal, 2024, 492: 152101

[78]

Nguyen H M , Omidkar A , Li W , Li Z , Song H . Non-thermal plasma catalysis driven sustainable pyrolysis oil upgrading to jet fuel under near-ambient conditions. EES Catalysis, 2024, 2(2): 647–663

[79]

Cui Z , Meng S , Yi Y , Jafarzadeh A , Li S , Neyts E C , Hao Y , Li L , Zhang X , Wang X . . Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: insights into the reaction mechanism. ACS Catalysis, 2022, 12(2): 1326–1337

[80]

Meng S , Cui Z , Chen Q , Zhang H , Li S , Neyts E C , Vlasov E , Jenkinson K , Bals S , Yang D . . Water-promoted C–C coupling reaction in plasma-catalytic CO2 hydrogenation for ethanol production. ACS Catalysis, 2025, 15(4): 3236–3246

[81]

Nørskov J K , Bligaard T , Rossmeisl J , Christensen C H . Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46

[82]

Nørskov J K , Abild-Pedersen F , Studt F , Bligaard T . Density functional theory in surface chemistry and catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3): 937–943

[83]

Bruix A , Margraf J T , Andersen M , Reuter K . First-principles-based multiscale modelling of heterogeneous catalysis. Nature Catalysis, 2019, 2(8): 659–670

[84]

HammerB N J K. Advances in Catalysis. New York: Academic Press, 2000, 71–129

[85]

Trinh Q T , Yang J , Lee J Y , Saeys M . Computational and experimental study of the volcano behavior of the oxygen reduction activity of PdM@PdPt/C (M = Pt, Ni, Co, Fe, and Cr) core-shell electrocatalysts. Journal of Catalysis, 2012, 291: 26–35

[86]

Nørskov J K , Rossmeisl J , Logadottir A , Lindqvist L , Kitchin J R , Bligaard T , Jónsson H . Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892

[87]

Trinh Q T , Nguyen A V , Huynh D C , Pham T H , Mushrif S H . Mechanistic insights into the catalytic elimination of tar and the promotional effect of boron on it: first-principles study using toluene as a model compound. Catalysis Science & Technology, 2016, 6(15): 5871–5883

[88]

Trinh Q T , Banerjee A , Yang Y , Mushrif S H . Sub-surface boron-doped copper for methane activation and coupling: first-principles investigation of the structure, activity, and selectivity of the catalyst. Journal of Physical Chemistry C, 2017, 121(2): 1099–1112

[89]

Trinh Q T , Tan K F , Borgna A , Saeys M . Evaluating the structure of catalysts using core-level binding energies calculated from first principles. Journal of Physical Chemistry C, 2013, 117(4): 1684–1691

[90]

Amaniampong P T , Trinh Q T , De Oliveira Vigier K , Dao D Q , Tran N H , Wang Y , Sherburne M P , Jérôme F . Synergistic effect of high-frequency ultrasound with cupric oxide catalyst resulting in a selectivity switch in glucose oxidation under argon. Journal of the American Chemical Society, 2019, 141(37): 14772–14779

[91]

Amaniampong P N , Trinh Q T , Wang B , Borgna A , Yang Y , Mushrif S H . Biomass oxidation: formyl C–H bond activation by the surface lattice oxygen of regenerative CuO nanoleaves. Angewandte Chemie International Edition, 2015, 54(31): 8928–8933

[92]

Amaniampong P N , Trinh Q T , Bahry T , Zhang J , Jérôme F . Ultrasonic-assisted oxidation of cellulose to oxalic acid over gold nanoparticles supported on iron-oxide. Green Chemistry, 2022, 24(12): 4800–4811

[93]

Zhang J , Mao Y , Zhang J , Tian J , Sullivan M B , Cao X M , Zeng Y , Li F , Hu P . CO2 reforming of ethanol: density functional theory calculations, microkinetic modeling, and experimental studies. ACS Catalysis, 2020, 10(16): 9624–9633

[94]

Trinh Q T , Van T L , Phan T T N , Ong K P , Kosslick H , Amaniampong P N , Sullivan M B , Chu H S , An H , Nguyen T K . . How to design plasmonic Ag/SrTiO3 nanocomposites as efficient photocatalyst: theoretical insight and experimental validation. Journal of Alloys and Compounds, 2024, 1002: 175322

[95]

Maitre P A , Bieniek M S , Kechagiopoulos P N . Plasma-enhanced catalysis for the upgrading of methane: a review of modelling and simulation methods. Reaction Chemistry & Engineering, 2020, 5(5): 814–837

[96]

Mehta P , Barboun P M , Engelmann Y , Go D B , Bogaerts A , Schneider W F , Hicks J C . Plasma-catalytic ammonia synthesis beyond the equilibrium limit. ACS Catalysis, 2020, 10(12): 6726–6734

[97]

Engelmann Y , van ’t Veer K , Gorbanev Y , Neyts E C , Schneider W F , Bogaerts A . Plasma catalysis for ammonia synthesis: a microkinetic modeling study on the contributions of eley-rideal reactions. ACS Sustainable Chemistry & Engineering, 2021, 9(39): 13151–13163

[98]

Ma H , Schneider W F . Plasma-catalyst modeling for materials selection: challenges and opportunities in nitrogen oxidation. Journal of Physics D: Applied Physics, 2021, 54(45): 454004

[99]

Ma H , Sharma R K , Welzel S , van de Sanden M C M , Tsampas M N , Schneider W F . Observation and rationalization of nitrogen oxidation enabled only by coupled plasma and catalyst. Nature Communications, 2022, 13(1): 402

[100]

Loenders B , Engelmann Y , Bogaerts A . Plasma-catalytic partial oxidation of methane on Pt(111): a microkinetic study on the role of different plasma species. Journal of Physical Chemistry C, 2021, 125(5): 2966–2983

[101]

Engelmann Y , Mehta P , Neyts E C , Schneider W F , Bogaerts A . Predicted influence of plasma activation on nonoxidative coupling of methane on transition metal catalysts. ACS Sustainable Chemistry & Engineering, 2020, 8(15): 6043–6054

[102]

Maitre P A , Bieniek M S , Kechagiopoulos P N . Plasma-catalysis of nonoxidative methane coupling: a dynamic investigation of plasma and surface microkinetics over Ni(111). Journal of Physical Chemistry C, 2022, 126(47): 19987–20003

[103]

Shirazi M , Neyts E C , Bogaerts A . DFT study of Ni-catalyzed plasma dry reforming of methane. Applied Catalysis B: Environmental, 2017, 205: 605–614

[104]

Jafarzadeh A , Bal K M , Bogaerts A , Neyts E C . Activation of CO2 on copper surfaces: the synergy between electric field, surface morphology, and excess electrons. Journal of Physical Chemistry C, 2020, 124(12): 6747–6755

[105]

Bal K M , Huygh S , Bogaerts A , Neyts E C . Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation. Plasma Sources Science & Technology, 2018, 27(2): 024001

[106]

Bogaerts A , De Bie C , Snoeckx R , Kozák T . Plasma based CO2 and CH4 conversion: a modeling perspective. Plasma Processes and Polymers, 2017, 14(6): 1600070

[107]

De Bie C , Verheyde B , Martens T , van Dijk J , Paulussen S , Bogaerts A . Fluid modeling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge. Plasma Processes and Polymers, 2011, 8(11): 1033–1058

[108]

Fridman A . Plasma Chemistry. Cambridge: Cambridge University Press, 2008,

[109]

Farouk T , Farouk B , Gutsol A , Fridman A . Atmospheric pressure methane-hydrogen DC micro-glow discharge for thin film deposition. Journal of Physics D: Applied Physics, 2008, 41(17): 175202

[110]

Droege A T , Engelking P C . Supersonic expansion cooling of electronically excited OH radicals. Chemical Physics Letters, 1983, 96(3): 316–318

[111]

Nozaki T , Muto N , Kado S , Okazaki K . Dissociation of vibrationally excited methane on Ni catalyst. Catalysis Today, 2004, 89(1-2): 57–65

[112]

van de Meerakker S Y T , Vanhaecke N , van der Loo M P J , Groenenboom G C , Meijer G . Direct measurement of the radiative lifetime of vibrationally excited OH radicals. Physical Review Letters, 2005, 95(1): 013003

[113]

Morgan W L . A critical evaluation of low-energy electron impact cross sections for plasma processing modeling. Plasma Chemistry and Plasma Processing, 1992, 12(4): 477–493

[114]

Chen Q , Yang X , Sun J , Zhang X , Mao X , Ju Y , Koel B E . Pyrolysis and oxidation of methane in a RF plasma reactor. Plasma Chemistry and Plasma Processing, 2017, 37(6): 1551–1571

[115]

Herrebout D , Bogaerts A , Yan M , Gijbels R , Goedheer W , Dekempeneer E . One-dimensional fluid model for an RF methane plasma of interest in deposition of diamond-like carbon layers. Journal of Applied Physics, 2001, 90(2): 570–579

[116]

Scapinello M , Delikonstantis E , Stefanidis G D . A study on the reaction mechanism of non-oxidative methane coupling in a nanosecond pulsed discharge reactor using isotope analysis. Chemical Engineering Journal, 2019, 360: 64–74

[117]

Sun J , Chen Q . Kinetic roles of vibrational excitation in RF plasma assisted methane pyrolysis. Journal of Energy Chemistry, 2019, 39: 188–197

[118]

Neyts E C . Plasma-surface interactions in plasma catalysis. Plasma Chemistry and Plasma Processing, 2016, 36(1): 185–212

[119]

Yi Y , Li S , Cui Z , Hao Y , Zhang Y , Wang L , Liu P , Tu X , Xu X , Guo H . . Selective oxidation of CH4 to CH3OH through plasma catalysis: insights from catalyst characterization and chemical kinetics modelling. Applied Catalysis B: Environmental, 2021, 296: 120384

[120]

Shao R , Zhang L , Wang L , Wang J , Zhang X , Han S , Cheng X , Wang Z . Cerium oxide-based catalyst for low-temperature and efficient ammonia decomposition for hydrogen production research. International Journal of Hydrogen Energy, 2024, 68: 311–320

[121]

Feng J , Sun X , Li Z , Hao X , Fan M , Ning P , Li K . Plasma-assisted reforming of methane. Advancement of Science, 2022, 9: 2203221

[122]

Shi L , Zhou Y , Qi S , Smith K J , Tan X , Yan J , Yi C . Pt catalysts supported on H2 and O2 plasma-treated Al2O3 for hydrogenation and dehydrogenation of the liquid organic hydrogen carrier pair dibenzyltoluene and perhydrodibenzyltoluene. ACS Catalysis, 2020, 10(18): 10661–10671

[123]

Zhou M , Yang Z , Ren J , Zhang T , Xu W , Zhang J . Non-oxidative coupling reaction of methane to hydrogen and ethene via plasma-catalysis process. International Journal of Hydrogen Energy, 2023, 48(1): 78–89

[124]

Chao Y , Huang C T , Lee H M , Chang M B . Hydrogen production via partial oxidation of methane with plasma-assisted catalysis. International Journal of Hydrogen Energy, 2008, 33(2): 664–671

[125]

Fulcheri L , Rohani V J , Wyse E , Hardman N , Dames E . An energy-efficient plasma methane pyrolysis process for high yields of carbon black and hydrogen. International Journal of Hydrogen Energy, 2023, 48(8): 2920–2928

[126]

Akande O , Lee B . Plasma steam methane reforming (PSMR) using a microwave torch for commercial-scale distributed hydrogen production. International Journal of Hydrogen Energy, 2022, 47(5): 2874–2884

[127]

Cvetinović D , Erić A , Andelković J , Cetenović N , Jovanović M , Bakić V . Economic viability of hydrogen production via plasma thermal degradation of natural gas. Processes, 2025, 13(6): 1888

[128]

Geng F , Haribal V P , Hicks J C . Non-thermal plasma-assisted steam methane reforming for electrically-driven hydrogen production. Applied Catalysis A: General, 2022, 647: 118903

[129]

Zhao J , Zhou J , Su J , Guo H , Wang X , Gong W . Scale-up synthesis of hydrogen peroxide from H2/O2 with multiple parallel DBD tubes. Plasma Science & Technology, 2009, 11(2): 181–186

[130]

Kim S S , Jorat M , Voecks G , Kuthi A , Surampudi S , Kent R L . Hydrogen from steam methane reforming by catalytic nonthermal plasma using a dielectric barrier discharge reactor. AIChE Journal, 2020, 66(4): e16880

[131]

Spatolisano E , Pellegrini L A , Angelis A , Cattaneo S , Roccaro E . Ammonia as a carbon-free energy carrier: NH3 cracking to H2. Industrial & Engineering Chemistry Research, 2023, 62(28): 10813–10827

[132]

Richard R , Santos A R , Olivier P , Gallucci F . Techno-economic analysis of ammonia cracking for large scale power generation. International Journal of Hydrogen Energy, 2024, 71: 571–587

[133]

Yu M , Sun R , Luo G , Wang L , Li X , Yao H . Ammonia partial cracking over low-cost Ni catalysts for enhancing combustion. Fuel, 2024, 367: 131306

[134]

Zhang X , Cha M S . Optimizing ammonia cracking in microwave argon plasma: temperature control and ammonia delivery. Chemical Engineering Journal, 2024, 496: 154289

[135]

Andersen J A , Christensen J M , Østberg M , Bogaerts A , Jensen A D . Plasma-catalytic ammonia decomposition using a packed-bed dielectric barrier discharge reactor. International Journal of Hydrogen Energy, 2022, 47(75): 32081–32091

[136]

Meng S , Li S , Sun S , Bogaerts A , Liu Y , Yi Y . NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts. Chemical Engineering Science, 2024, 283: 119449

[137]

Xie P , Yao Y , Huang Z , Liu Z , Zhang J , Li T , Wang G , Shahbazian-Yassar R , Hu L , Wang C . Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nature Communications, 2019, 10(1): 4011

[138]

Hayakawa Y , Kambara S , Miura T . Hydrogen production from ammonia by the plasma membrane reactor. International Journal of Hydrogen Energy, 2020, 45(56): 32082–32088

[139]

Fedirchyk I , Tsonev I , Marnef R Q , Bogaerts A . Plasma-assisted NH3 cracking in warm plasma reactors for green H2 production. Chemical Engineering Journal, 2024, 499: 155946

[140]

Winter L R , Chen J G. N . 2 fixation by plasma-activated processes. Joule, 2021, 5(2): 300–315

[141]

Rouwenhorst K H R , Burbach H G B , Vogel D W , Paulí J N , Geerdink B , Lefferts L . Plasma-catalytic ammonia synthesis beyond thermal equilibrium on Ru-based catalysts in nonthermal plasma. Catalysis Science & Technology, 2021, 11(8): 2834–2843

[142]

Liu W , Xia M , Zhao C , Chong B , Chen J , Li H , Ou H , Yang G . Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions. Nature Communications, 2024, 15(1): 3524

[143]

Gao R , Dai T , Meng Z , Sun X , Liu D , Shi M , Li H , Kang X , Bi B , Zhang Y . . A bifunctional catalyst for green ammonia synthesis from ubiquitous air and water. Advanced Materials, 2023, 35(41): 2303455

[144]

Berthelot A , Bogaerts A . Modeling of CO2 splitting in a microwave plasma: how to improve the conversion and energy efficiency. Journal of Physical Chemistry C, 2017, 121(15): 8236–8251

[145]

de la Fuente J F , Moreno S H , Stankiewicz A I , Stefanidis G D . Reduction of CO2 with hydrogen in a non-equilibrium microwave plasma reactor. International Journal of Hydrogen Energy, 2016, 41(46): 21067–21077

[146]

Xia Y , Lu N , Wang B , Li J , Shang K , Jiang N , Wu Y . Dry reforming of CO2eCH4 assisted by high-frequency AC gliding arc discharge: electrical characteristics and the effects of different parameters. International Journal of Hydrogen Energy, 2017, 42(36): 22776–22785

[147]

Zhang X , Liu Y , Zhang M , Yu T , Chen B , Xu Y , Crocker M , Zhu X , Zhu Y , Wang R . . Synergy between β-Mo2C nanorods and non-thermal plasma for selective CO2 reduction to CO. Chem, 2020, 6(12): 3312–3328

[148]

Ahmad F , Lovell E C , Masood H , Cullen P J , Ostrikov K K , Scott J A , Amal R . Low-temperature CO2 methanation: synergistic effects in plasma-Ni hybrid catalytic system. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1888–1898

[149]

Kim D Y , Ham H , Chen X , Liu S , Xu H , Lu B , Furukawa S , Kim H H , Takakusagi S , Sasaki K . . Cooperative catalysis of vibrationally excited CO2 and alloy catalyst breaks the thermodynamic equilibrium limitation. Journal of the American Chemical Society, 2022, 144(31): 14140–14149

[150]

Ronda-Lloret M , Wang Y , Oulego P , Rothenberg G , Tu X , Shiju N R . CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17397–17407

[151]

O’Modhrain C , Trenchev G , Gorbanev Y , Bogaerts A . Upscaling plasma-based CO2 conversion: case study of a multi-reactor gliding arc plasmatron. ACS Engineering Au, 2024, 4(3): 333–344

[152]

Assche H L V , Thomassen G , Compernolle T . The early-stage design of plasma for the conversion of CO2 to chemicals: a prospective techno-economic assessment. Journal of CO2 Utilization, 2022, 64: 102156

[153]

Kogelschatz U . Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1–46

[154]

Mu Y , Williams P T . Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: a review. Chemosphere, 2022, 308: 136481

[155]

Zhang Y , Zhu Y , Tao S , Zhang Z , Chen M , Jiang Z , Shangguan W . Plasma-coupled catalysis in VOCs removal and CO2 conversion: efficiency enhancement and synergistic mechanism. Catalysis Communications, 2022, 172: 106535

[156]

Qu M , Cheng Z , Sun Z , Chen D , Yu J , Chen J . Non-thermal plasma coupled with catalysis for VOCs abatement: a review. Process Safety and Environmental Protection, 2021, 153: 139–158

[157]

Du C , Gong X , Lin Y . Decomposition of volatile organic compounds using corona discharge plasma technology. Journal of the Air & Waste Management Association, 2019, 69(8): 879–899

[158]

Asilevi P J , Boakye P , Oduro-Kwarteng S , Fei-Baffoe B , Sokama-Neuyam Y A . Indoor air quality improvement and purification by atmospheric pressure non-thermal plasma (NTP). Scientific Reports, 2021, 11(1): 22830

[159]

Huang B , Lei C , Wei C , Zeng G . Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies. Environment International, 2014, 71: 118–138

[160]

Lin F , Zhang Z , Li N , Yan B B , He C , Hao Z , Chen G . How to achieve complete elimination of Cl-VOCs: a critical review on byproducts formation and inhibition strategies during catalytic oxidation. Chemical Engineering Journal, 2021, 404: 126534

[161]

van der Vaart D R , Vatvuk W M , Wehe A H . Thermal and catalytic incinerators for the control of VOCs. Journal of the Air & Waste Management Association, 1991, 41(1): 92–98

[162]

Yang C , Miao G , Pi Y , Xia Q , Wu J , Li Z , Xiao J . Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chemical Engineering Journal, 2019, 370: 1128–1153

[163]

Sheoran K , Siwal S S , Kapoor D , Singh N , Saini A K , Alsanie W F , Thakur V K . Air pollutants removal using biofiltration technique: a challenge at the frontiers of sustainable environment. ACS Engineering Au, 2022, 2(5): 378–396

[164]

da Costa Filho B M , Silva G V , Boaventura R A R , Dias M M , Lopes J C B , Vilar V J P . Ozonation and ozone-enhanced photocatalysis for VOC removal from air streams: process optimization, synergy, and mechanism assessment. Science of the Total Environment, 2019, 687: 1357–1368

[165]

Jia Z , Ben Amar M , Yang D , Brinza O , Kanaev A , Duten X , Vega-González A . Plasma catalysis application of gold nanoparticles for acetaldehyde decomposition. Chemical Engineering Journal, 2018, 347: 913–922

[166]

Fan H Y , Li X C , Shi C , Zhao D Z , Liu J L , Liu Y X , Zhu A M . Plasma catalytic oxidation of stored benzene in a cycled storage-discharge (CSD) process: catalysts, reactors, and operation conditions. Plasma Chemistry and Plasma Processing, 2011, 31(6): 799–810

[167]

Li J , Han S , Bai S , Shi X , Han S , Song H , Pu Y , Zhu X , Chen W . Effect of Pt/γ-Al2O3 catalyst on nonthermal plasma decomposition of benzene and byproducts. Environmental Engineering Science, 2011, 28(6): 395–403

[168]

Vandenbroucke A M , Nguyen Dinh M T , Nuns N , Giraudon J M , De Geyter N , Leys C , Lamonier J F , Morent R . Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chemical Engineering Journal, 2016, 283: 668–675

[169]

Jiang N , Hu J , Li J , Shang K , Lu N , Wu Y . Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B: Environment and Energy, 2016, 184: 355–363

[170]

Wang W , Wang H , Zhu T , Fan X . Removal of gas phase low-concentration toluene over Mn, Ag, and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration. Journal of Hazardous Materials, 2015, 292: 70–78

[171]

Jiang N , Qiu C , Guo L , Shang K , Lu N , Li J , Zhang Y , Wu Y . Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor. Journal of Hazardous Materials, 2019, 369: 611–620

[172]

Song H , Hu F , Peng Y , Li K , Bai S , Li J . Non-thermal plasma catalysis for chlorobenzene removal over CoMn/TiO2 and CeMn/TiO2: synergistic effect of chemical catalysis and dielectric constant. Chemical Engineering Journal, 2018, 347: 447–454

[173]

Chang T , Zhao Z , Leus K , Shen Z , Huang Y , Wang C , De Geyter N , Morent R . The remarkable oxidation of trichloroethylene in a post-plasma-catalytic system over Ag-Mn-Ce/HZSM-5 catalysts. Fuel, 2023, 334: 126746

[174]

Veerapandian S P , De Geyter N , Giraudon J M , Morin J C , Esbah Tabaei P S , De Weireld G , Laemont A , Leus K , Van Der Voort P , Lamonier J F . . Effect of non-thermal plasma in the activation and regeneration of 13X zeolite for enhanced VOC elimination by cycled storage and discharge process. Journal of Cleaner Production, 2022, 364: 132687

[175]

Wu J , Xia Q , Wang H , Li Z . Catalytic performance of plasma catalysis system with nickel oxide catalysts on different supports for toluene removal: effect of water vapor. Applied Catalysis B: Environmental, 2014, 156–157: 265–272

[176]

Norsic C , Tatibouët J M , Batiot-Dupeyrat C , Fourré E . Non thermal plasma assisted catalysis of methanol oxidation on Mn, Ce, and Cu oxides supported on γ-Al2O3. Chemical Engineering Journal, 2016, 304: 563–572

[177]

Li S , Yu X , Dang X , Meng X , Zhang Y , Qin C . Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562

[178]

Pan K L , He C B , Chang M B . Oxidation of TCE by combining perovskite-type catalyst with DBD. IEEE Transactions on Plasma Science, 2019, 47(2): 1152–1163

[179]

Assadi A A , Bouzaza A , Wolbert D . Comparative study between laboratory and large pilot scales for VOC’s removal from gas streams in continuous flow surface discharge plasma. Chemical Engineering Research & Design, 2016, 106: 308–314

[180]

Yamasaki H , Mizuguchi Y , Nishioka R , Fukuda Y , Kuroki T , Yamamoto H , Okubo M . Pilot-scale NOx and SOx aftertreatment by semi-dry plasma-chemical hybrid process in glass-melting-furnace exhaust gas. Plasma Chemistry and Plasma Processing, 2022, 42(1): 51–71

[181]

Honkala K , Hellman A , Remediakis I N , Logadottir A , Carlsson A , Dahl S , Christensen C H , Nørskov J K . Ammonia synthesis from first-principles calculations. Science, 2005, 307(5709): 555–558

[182]

Kandemir T , Schuster M E , Senyshyn A , Behrens M , Schlögl R . The Haber-Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angewandte Chemie International Edition, 2013, 52(48): 12723–12726

[183]

Giddey S , Badwal S P S , Kulkarni A . Review of electrochemical ammonia production technologies and materials. International Journal of Hydrogen Energy, 2013, 38(34): 14576–14594

[184]

Bowker M . The 2007 nobel prize in chemistry for surface chemistry: understanding nanoscale phenomena at surfaces. ACS Nano, 2007, 1(4): 253–257

[185]

Medford A J , Vojvodic A , Hummelshøj J S , Voss J , Abild-Pedersen F , Studt F , Bligaard T , Nilsson A , Nørskov J K . From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42

[186]

Jacobsen C J H , Dahl S , Clausen B S , Bahn S , Logadottir A , Nørskov J K . Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. Journal of the American Chemical Society, 2001, 123(34): 8404–8405

[187]

Denra A , Saud S , Nguyen D B , Trinh Q T , Nguyen T K , An H , Nguyen N T , Teke S , Mok Y S . Nitrogen fixation by rotational gliding arc plasma at surrounding conditions. Journal of Cleaner Production, 2024, 436: 140618

[188]

Wang L , Zhao Y , Liu C , Gong W , Guo H . Plasma driven ammonia decomposition on a Fe-catalyst: eliminating surface nitrogen poisoning. Chemical Communications, 2013, 49(36): 3787–3789

[189]

Ben Yaala M , Saeedi A , Scherrer D F , Moser L , Steiner R , Zutter M , Oberkofler M , De Temmerman G , Marot L , Meyer E . Plasma-assisted catalytic formation of ammonia in N2-H2 plasma on a tungsten surface. Physical Chemistry Chemical Physics, 2019, 21(30): 16623–16633

[190]

Yi Y , Wang X , Jafarzadeh A , Wang L , Liu P , He B , Yan J , Zhang R , Zhang H , Liu X . . Plasma-catalytic ammonia reforming of methane over Cu-based catalysts for the production of HCN and H2 at reduced temperature. ACS Catalysis, 2021, 11(3): 1765–1773

[191]

Tamaru K . Catalytic Ammonia Synthesis. Berlin: Springer, 1991, 1–18

[192]

Varghese J J , Trinh Q T , Mushrif S H . Insights into the synergistic role of metal-lattice oxygen site pairs in four-centered C–H bond activation of methane: the case of CuO. Catalysis Science & Technology, 2016, 6(11): 3984–3996

[193]

Mohan O , Trinh Q T , Banerjee A , Mushrif S H . Predicting CO2 adsorption and reactivity on transition metal surfaces using popular density functional theory methods. Molecular Simulation, 2019, 45(14): 1163–1172

[194]

Tang P , Zhu Q , Wu Z , Ma D . Methane activation: the past and future. Energy & Environmental Science, 2014, 7(8): 2580–2591

[195]

Xu Y , Bao X , Lin L . Direct conversion of methane under nonoxidative conditions. Journal of Catalysis, 2003, 216(1): 386–395

[196]

Wei J , Iglesia E . Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. Journal of Catalysis, 2004, 224(2): 370–383

[197]

Wei J , Iglesia E . Structural and mechanistic requirements for methane activation and chemical conversion on supported iridium clusters. Angewandte Chemie International Edition, 2004, 43(28): 3685–3688

[198]

Wei J , Iglesia E . Isotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions on supported iridium catalysts. Physical Chemistry Chemical Physics, 2004, 6(13): 3754–3759

[199]

Bal K M , Neyts E C . Quantifying the impact of vibrational nonequilibrium in plasma catalysis: insights from a molecular dynamics model of dissociative chemisorption. Journal of Physics D: Applied Physics, 2021, 54(39): 394004

[200]

Pourali N , Vasilev M , Abiev R , Rebrov E V . Development of a microkinetic model for non-oxidative coupling of methane over a Cu catalyst in a non-thermal plasma reactor. Journal of Physics D: Applied Physics, 2022, 55(39): 395204

[201]

Somers W , Bogaerts A , van Duin A C T , Neyts E C . Interactions of plasma species on nickel catalysts: a reactive molecular dynamics study on the influence of temperature and surface structure. Applied Catalysis B: Environmental, 2014, 154–155: 1–8

[202]

Somers W , Bogaerts A , van Duin A C T , Huygh S , Bal K M , Neyts E C . Temperature influence on the reactivity of plasma species on a nickel catalyst surface: an atomic scale study. Catalysis Today, 2013, 211: 131–136

[203]

Somers W , Bogaerts A , van Duin A C T , Neyts E C . Plasma species interacting with nickel surfaces: toward an atomic scale understanding of plasma-catalysis. Journal of Physical Chemistry C, 2012, 116(39): 20958–20965

[204]

Michiels R , Engelmann Y , Bogaerts A . Plasma catalysis for CO2 hydrogenation: unlocking new pathways toward CH3OH. Journal of Physical Chemistry C, 2020, 124(47): 25859–25872

[205]

Liu T W , Gorky F , Carreon M L , Gomez-Gualdron D A . Plasma radicals as kinetics-controlling species during plasma-assisted catalytic NH3 formation: support from microkinetic modeling. ACS Sustainable Chemistry & Engineering, 2023, 11(47): 16749–16763

[206]

Morais E , Cameli F , Stefanidis G D , Bogaerts A . Selective catalytic hydrogenation of C2H2 from plasma-driven CH4 coupling without extra heat: mechanistic insights from micro-kinetic modelling and reactor performance. EES Catalysis, 2025, 3(3): 475–487

[207]

Tiwari S , Ibrahim S A , Robinson B , Brown S , Wang Q , Che F , Hu J . Post-plasma catalysis: charge effect on product selectivity in conversion of methane and nitrogen plasma to ethylene and ammonia. Catalysis Science & Technology, 2023, 13(10): 2966–2981

[208]

Chen S , Feng W , Geng Q , Dong F , Wang H , Wu Z . A new strategy for plasma-catalytic reduction of NO to N2 on the surface of modified Bi2MoO6. Chemical Engineering Journal, 2022, 440: 135754

[209]

Sun J , Zhang T , Hong J , Zhou R , Masood H , Zhou R , Murphy A B , Ostrikov K K , Cullen P J , Lovell E C . . Insights into plasma-catalytic nitrogen fixation from catalyst microanalysis and chemical kinetics modelling. Chemical Engineering Journal, 2023, 469: 143841

[210]

Loenders B , Michiels R , Bogaerts A . Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions. Journal of Energy Chemistry, 2023, 85: 501–533

[211]

Sun J , Chen Q , Qin W , Wu H , Liu B , Li S , Bogaerts A . Plasma-catalytic dry reforming of CH4: effects of plasma-generated species on the surface chemistry. Chemical Engineering Journal, 2024, 498: 155847

[212]

Shao K , Mesbah A . A study on the role of electric field in low-temperature plasma catalytic ammonia synthesis via integrated density functional theory and microkinetic modeling. JACS Au, 2024, 4(2): 525–544

[213]

Vodlan K , Likozar B , Hus M . Modeling of plasma-activated ammonia synthesis. Chemical Engineering Journal, 2025, 509: 161459

[214]

Vanraes P , Venugopalan S P , Bogaerts A . Multiscale modeling of plasma-surface interaction—general picture and a case study of Si and SiO2 etching by fluorocarbon-based plasmas. Applied Physics Reviews, 2021, 8(4): 041305

[215]

Li J , Xu J , Rebrov E , Bogaerts A . Machine learning-based prediction and optimization of plasma-catalytic dry reforming of methane in a dielectric barrier discharge reactor. Chemical Engineering Journal, 2025, 507: 159897

[216]

Cai Y , Mei D , Chen Y , Bogaerts A , Tu X . Machine learning-driven optimization of plasma-catalytic dry reforming of methane. Journal of Energy Chemistry, 2024, 96: 153–163

[217]

Ibrahim S A , Meng S , Milhans C , Barecka Ma H , Liu Y , Li Q , Yang J , Sha Y , Yi Y , Che F . Interpretable machine learning-guided plasma catalysis for hydrogen production. Nature Chemical Engineering, 2025,

[218]

Shao K , Lele A D , Shi Z , Miller V V , Jubc Y , Mesbah A . Interpretable attention-based transfer learning in plasma catalysis: a study on the role of surface charge. EES Catalysis, 2025, 3(3): 488–504

[219]

Zhu Y , Bo Y , Chen X , Wu Y . Tailoring electric field signals of nonequilibrium discharges by the deep learning method and physical corrections. Plasma Processes and Polymers, 2022, 19(3): e2100155

[220]

Yin B , Zhu Y , Chen X , Wu Y . The capability of a deep learning based ODE solution for low temperature plasma chemistry. Physics of Plasmas, 2024, 31(6): 063504

[221]

Pan J , Liu Y , Zhang S , Hu X , Liu Y , Shao T . Deep learning-assisted pulsed discharge plasma catalysis modeling. Energy Conversion and Management, 2023, 277: 116620

[222]

Arce-Ramos J M , Trinh Q T , Wong Z M , Wang B , Chen B W J , Zhang J , Tan T L . Breaking scaling relations in AgAuCuPdPt high-entropy alloy nanoparticles for CO2 electroreduction via machine learning. Materials Horizons, 2025,

[223]

Lele A D , Xua Y , Ju Y . Modelling the effect of surface charging on plasma synthesis of ammonia using DFT. Physical Chemistry Chemical Physics, 2024, 26(12): 9453–9461

[224]

Chen B W J , Wang B , Sullivan M B , Borgna S , Zhang J . Unraveling the synergistic effect of Re and Cs promoters on ethylene epoxidation over silver catalysts with machine learning-accelerated first-principles simulations. ACS Catalysis, 2022, 12(4): 2540–2551

[225]

Kitchin J R . Machine learning in catalysis. Nature Catalysis, 2018, 1(4): 230–232

[226]

Matera S , Schneider W F , Heyden A , Savara A . Progress in accurate chemical kinetic modeling, simulations, and parameter estimatio for heterogeneous catalysis. ACS Catalysis, 2019, 9(8): 6624–6647

[227]

He M , Bai R , Tan S , Liu D , Zhang Y . Data-driven plasma science: a new perspective on modeling, diagnostics, and applications through machine learning. Plasma Processes and Polymers, 2024, 21(9): 2400020

[228]

Wei X , Mitchell A , Sun R , Yu N , Yamamura K . Review of simulation modeling of the state evaluation and process, prediction of plasma processing under atmospheric pressure. Nanomanufacturing and Metrology, 2024, 7(1): 16

[229]

Zhao R , Li Q , Yang J , Zhu C , Che F . Integrating physical principles with machine learning for predicting field-enhanced catalysis. JACS Au, 2025, 5(3): 1121–1132

[230]

Gerrits N , Geweke J , Auerbach D J , Beck R D , Kroes G J . Highly efficient activation of HCl dissociation on Au(111) via rotational preexcitation. Journal of Physical Chemistry Letters, 2021, 12(30): 7252–7260

[231]

Yamijala S S R K C , Nava G , Ali Z A , Beretta D , Wong B M , Mangolini L . Harnessing plasma environments for ammonia catalysis: mechanistic insights from experiments and large-scale ab initio molecular dynamics. Journal of Physical Chemistry Letters, 2020, 11(24): 10469–10475

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4809KB)

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/