Application of the perturbed-chain statistical associating fluid theory to predicting drug-polymer miscibility and stability in amorphous solid dispersions: a comprehensive overview

Hengqian Wu , Lili Wang , Heng Zhang , Chuanyu Wu , Jun Han , Zhengping Wang , Mingzhong Li

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 117

PDF (1554KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 117 DOI: 10.1007/s11705-025-2620-8
REVIEW ARTICLE

Application of the perturbed-chain statistical associating fluid theory to predicting drug-polymer miscibility and stability in amorphous solid dispersions: a comprehensive overview

Author information +
History +
PDF (1554KB)

Abstract

Perturbed-chain statistical associating fluid theory has emerged as a powerful thermodynamic framework for predicting drug-polymer miscibility and stability in amorphous solid dispersions. This review provides a comprehensive overview of the theoretical foundations of perturbed-chain statistical associating fluid theory, including its forma, the meanings of key parameters in physics, and common strategies for parameterization. Its applications to solid–liquid and liquid–liquid equilibrium calculations are highlighted, particularly in the construction of phase diagrams and the prediction of phase separation phenomena such as amorphous-amorphous and liquid–liquid phase separation. The utility of perturbed-chain statistical associating fluid theory in amorphous solid dispersions is illustrated through its roles in solubility prediction, stability assessment, drug release mechanism analysis, and rational formulation and process design. In addition, perturbed-chain statistical associating fluid theory is critically compared with alternative predictive methods, including solubility parameter theory, Flory–Huggins models, molecular simulation approaches, and machine learning. Finally, this review outlines the key challenges and future directions for integrating perturbed-chain statistical associating fluid theory with data-driven and multi-scale modeling approaches to advance model-informed amorphous solid dispersion design.

Graphical abstract

Keywords

PC-SAFT / amorphous solid dispersions / thermodynamic modeling / miscibility / stability / formulation design

Cite this article

Download citation ▾
Hengqian Wu, Lili Wang, Heng Zhang, Chuanyu Wu, Jun Han, Zhengping Wang, Mingzhong Li. Application of the perturbed-chain statistical associating fluid theory to predicting drug-polymer miscibility and stability in amorphous solid dispersions: a comprehensive overview. Front. Chem. Sci. Eng., 2025, 19(12): 117 DOI:10.1007/s11705-025-2620-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu X , Zhao L , Wu B , Chen F . Improving solubility of poorly water-soluble drugs by protein-based strategy: a review. International Journal of Pharmaceutics, 2023, 634: 122704

[2]

Chakraborty S , Mondal U , Bansal A K . Role of drug loading and microenvironmental pH in generation of nanospecies during dissolution of Eudragit-based amorphous solid dispersions. Molecular Pharmaceutics, 2025, 22(7): 3885–3899

[3]

Baghel S , Cathcart H , O’Reilly N J . Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. Journal of Pharmaceutical Sciences, 2016, 105(9): 2527–2544

[4]

Vo C L N , Park C , Lee B J . Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85(3): 799–813

[5]

Huang Y , Dai W G . Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharmaceutica Sinica B, 2014, 4(1): 18–25

[6]

Moseson D E , Tran T B , Karunakaran B , Ambardekar R , Hiew T N . Trends in amorphous solid dispersion drug products approved by the U. S. Food and Drug Administration between 2012 and 2023. International Journal of Pharmaceutics: X, 2024, 7: 100259

[7]

Badruddoza A Z M , Moseson D E , Lee H G , Esteghamatian A , Thipsay P . Role of rheology in formulation and process design of hot melt extruded amorphous solid dispersions. International Journal of Pharmaceutics, 2024, 664: 124651

[8]

Vasconcelos T , Sarmento B , Costa P . Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discovery Today, 2007, 12(23): 1068–1075

[9]

Leuner C , Dressman J . Improving drug solubility for oral delivery using solid dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50(1): 47–60

[10]

Hancock B C , Zografi G . Characteristics and significance of the amorphous state in pharmaceutical systems. Journal of Pharmaceutical Sciences, 1997, 86(1): 1–12

[11]

Yu L . Amorphous pharmaceutical solids: preparation, characterization, and stabilization. Advanced Drug Delivery Reviews, 2001, 48(1): 27–42

[12]

Moseson D E , Taylor L S . Crystallinity: a complex critical quality attribute of amorphous solid dispersions. Molecular Pharmaceutics, 2023, 20(10): 4802–4825

[13]

Qian F , Huang J , Hussain M A . Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. Journal of Pharmaceutical Sciences, 2010, 99(7): 2941–2947

[14]

Luebbert C , Stoyanov E , Sadowski G . Phase behavior of ASDs based on hydroxypropyl cellulose. International Journal of Pharmaceutics: X, 2021, 3: 100070

[15]

Shi Q , Chen H , Wang Y , Wang R , Xu J , Zhang C . Amorphous solid dispersions: role of the polymer and its importance in physical stability and in vitro performance. Pharmaceutics, 2022, 14(8): 1747

[16]

Hu Z , Xu P , Ashour E A , Repka M A . Prediction and construction of drug-polymer binary system thermodynamic phase diagram in amorphous solid dispersions (ASDs). AAPS PharmSciTech, 2022, 23(6): 169

[17]

Qu B , Wu H , Ding Z , Bu R , Zhang H , Han J , Li M , Wang Z . Amorphous solid dispersion formulation of pimobendan for bioavailability enhancement: a comprehensive study on miscibility, interactions, and in vitro dissolution behavior. Journal of Drug Delivery Science and Technology, 2025, 108: 106884

[18]

Lubtow M M , Haider M S , Kirsch M , Klisch S , Luxenhofer R . Like dissolves like? A comprehensive evaluation of partial solubility parameters to predict polymer-drug compatibility in ultrahigh drug-loaded polymer micelles. Biomacromolecules, 2019, 20(8): 3041–3056

[19]

Potter C B , Davis M T , Albadarin A B , Walker G M . Investigation of the dependence of the Flory-Huggins interaction parameter on temperature and composition in a drug-polymer system. Molecular Pharmaceutics, 2018, 15(11): 5327–5335

[20]

Gross J , Sadowski G . Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Industrial & Engineering Chemistry Research, 2001, 40(4): 1244–1260

[21]

Gross J , Sadowski G . Application of the perturbed-chain SAFT equation of state to associating systems. Industrial & Engineering Chemistry Research, 2002, 41(22): 5510–5515

[22]

Laube F S , Sadowski G . Predicting the extraction behavior of pharmaceuticals. Industrial & Engineering Chemistry Research, 2014, 53(2): 865–870

[23]

Cassens J , Prudic A , Ruether F , Sadowski G . Solubility of pharmaceuticals and their salts as a function of pH. Industrial & Engineering Chemistry Research, 2013, 52(7): 2721–2731

[24]

Cassens J , Ruether F , Leonhard K , Sadowski G . Solubility calculation of pharmaceutical compounds—a priori parameter estimation using quantum-chemistry. Fluid Phase Equilibria, 2010, 299(1): 161–170

[25]

Kiesow K , Tumakaka F , Sadowski G . Experimental investigation and prediction of oiling out during crystallization process. Journal of Crystal Growth, 2008, 310(18): 4163–4168

[26]

Klajmon M . Purely predicting the pharmaceutical solubility: What to expect from PC-SAFT and COSMO-RS. Molecular Pharmaceutics, 2022, 19(11): 4212–4232

[27]

Brinkmann J , Exner L , Verevkin S P , Luebbert C , Sadowski G . PC-SAFT modeling of phase equilibria relevant for lipid-based drug delivery systems. Journal of Chemical & Engineering Data, 2021, 66(3): 1280–1289

[28]

Azim M M , Ushiki I , Miyajima A , Takishima S . Modeling the solubility of non-steroidal anti-inflammatory drugs (ibuprofen and ketoprofen) in supercritical CO2 using PC-SAFT. Journal of Supercritical Fluids, 2022, 186: 105626

[29]

Azim M M , Ushiki I , Miyajima A , Takishima S . Estimating the solubility of salsalate in supercritical CO2 via PC-SAFT modeling using its experimental solubility data in organic solvents. Journal of Supercritical Fluids, 2022, 189: 105725

[30]

Dohrn S , Luebbert C , Lehmkemper K , Kyeremateng S O , Degenhardt M , Sadowski G . Solvent mixtures in pharmaceutical development: maximizing the API solubility and avoiding phase separation. Fluid Phase Equilibria, 2021, 548: 113200

[31]

Paus R , Hart E , Ji Y , Sadowski G . Solubility and caloric properties of cinnarizine. Journal of Chemical & Engineering Data, 2015, 60(8): 2256–2261

[32]

Laube F , Klein T , Sadowski G . Partition coefficients of pharmaceuticals as functions of temperature and pH. Industrial & Engineering Chemistry Research, 2015, 54(15): 3968–3975

[33]

Mahmoudabadi S Z , Pazuki G . Application of PC-SAFT EOS for pharmaceuticals: solubility, co-crystal, and thermodynamic modeling. Journal of Pharmaceutical Sciences, 2021, 110(6): 2442–2451

[34]

Doghieri F . pVT data analysis for the prediction of vapor sorption in glassy polymers through the nonequilibrium PC-SAFT model. Journal of Chemical & Engineering Data, 2024, 69(2): 538–559

[35]

Gronniger B , Fritschka E , Fahrig I , Danzer A , Sadowski G . Water sorption in rubbery and glassy polymers, nifedipine, and their ASDs. Molecular Pharmaceutics, 2023, 20(4): 2194–2206

[36]

Borrmann D , Danzer A , Sadowski G . Measuring and modeling water sorption in amorphous indomethacin and ritonavir. Molecular Pharmaceutics, 2022, 19(3): 998–1007

[37]

Borrmann D , Danzer A , Sadowski G . Predicting the water sorption in ASDs. Pharmaceutics, 2022, 14(6): 1181

[38]

Anderson B D . Predicting solubility/miscibility in amorphous dispersions: it is time to move beyond regular solution theories. Journal of Pharmaceutical Sciences, 2018, 107(1): 24–33

[39]

Pavliš J C , Mathers A , Fulem M , Klajmon M . Can pure predictions of activity coefficients from PC-SAFT assist drug-polymer compatibility screening. Molecular Pharmaceutics, 2023, 20(8): 3960–3974

[40]

Mahmoudabadi S Z , Pazuki G . A predictive PC-SAFT EOS based on COSMO for pharmaceutical compounds. Scientific Reports, 2021, 11(1): 6405

[41]

Van der Waals J D . On the Continuity of the Gas and Liquid State. , 1873,

[42]

Peng D Y , Robinson D B . A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59–64

[43]

Gubbins K E , Twu C . Thermodynamics of polyatomic fluid mixtures—I. theory. Chemical Engineering Science, 1978, 33(7): 863–878

[44]

Müller E A , Gubbins K E . Molecular-based equations of state for associating fluids: a review of SAFT and related approaches. Industrial & Engineering Chemistry Research, 2001, 40(10): 2193–2211

[45]

Prudic A , Ji Y , Sadowski G . Thermodynamic phase behavior of API/polymer solid dispersions. Molecular Pharmaceutics, 2014, 11(7): 2294–2304

[46]

Ji Y , Paus R , Prudic A , Lübbert C , Sadowski G . A novel approach for analyzing the dissolution mechanism of solid dispersions. Pharmaceutical Research, 2015, 32: 2559–2578

[47]

Carreón-Calderón B , Uribe-Vargas V , Aguayo J P , Carreón-Calderón B , Uribe-Vargas V . . Thermophysical Properties of Heavy Petroleum Fluids, 2021, 109–150

[48]

Prudic A , Ji Y , Luebbert C , Sadowski G . Influence of humidity on the phase behavior of API/polymer formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94: 352–362

[49]

Luebbert C , Huxoll F , Sadowski G . Amorphous-amorphous phase separation in API/polymer formulations. Molecules, 2017, 22(2): 296

[50]

Gross J , Spuhl O , Tumakaka F , Sadowski G . Modeling copolymer systems using the perturbed-chain SAFT equation of state. Industrial & Engineering Chemistry Research, 2003, 42(6): 1266–1274

[51]

Iemtsev A , Klajmon M , Hassouna F , Fulem M . Effect of copolymer properties on the phase behavior of ibuprofen-PLA/PLGA mixtures. Pharmaceutics, 2023, 15(2): 645

[52]

Medarevic D , Djuris J , Barmpalexis P , Kachrimanis K , Ibric S . Analytical and computational methods for the estimation of drug-polymer solubility and miscibility in solid dispersions development. Pharmaceutics, 2019, 11(8): 372

[53]

Lehmkemper K , Kyeremateng S O , Heinzerling O , Degenhardt M , Sadowski G . Impact of polymer type and relative humidity on the long-term physical stability of amorphous solid dispersions. Molecular Pharmaceutics, 2017, 14(12): 4374–4386

[54]

Ruether F , Sadowski G . Modeling the solubility of pharmaceuticals in pure solvents and solvent mixtures for drug process design. Journal of Pharmaceutical Sciences, 2009, 98(11): 4205–4215

[55]

Peters F T , Laube F S , Sadowski G . Development of a group contribution method for polymers within the PC-SAFT model. Fluid Phase Equilibria, 2012, 324: 70–79

[56]

Tihic A , Kontogeorgis G M , Von Solms N , Michelsen M L , Constantinou L . A predictive group-contribution simplified PC-SAFT equation of state: application to polymer systems. Industrial & Engineering Chemistry Research, 2008, 47(15): 5092–5101

[57]

Papaioannou V , Lafitte T , Avendano C , Adjiman C S , Jackson G , Muller E A , Galindo A . Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. Journal of Chemical Physics, 2014, 140(5): 054107

[58]

Tihic A , von Solms N , Michelsen M L , Kontogeorgis G M , Constantinou L . Application of sPC-SAFT and group contribution sPC-SAFT to polymer systems—capabilities and limitations. Fluid Phase Equilibria, 2009, 281(1): 70–77

[59]

Habicht J , Sadowski G , Brandenbusch C . Fitting error vs. parameter performance: how to choose reliable PC-SAFT pure-component parameters by physics-informed machine learning. Journal of Chemical & Engineering Data, 2023, 69(2): 482–494

[60]

Winter B , Rehner P , Esper T , Schilling J , Bardow A . Understanding the language of molecules: predicting pure component parameters for the PC-SAFT equation of state from SMILES. Digital Discovery, 2025, 4: 1142–1157

[61]

Ge K , Ji Y . Novel computational approach by combining machine learning with molecular thermodynamics for predicting drug solubility in solvents. Industrial & Engineering Chemistry Research, 2021, 60(25): 9259–9268

[62]

Habicht J , Brandenbusch C , Sadowski G . Predicting PC-SAFT pure-component parameters by machine learning using a molecular fingerprint as key input. Fluid Phase Equilibria, 2023, 565: 113657

[63]

Ge K , Huang Y , Ji Y . Machine learning with active pharmaceutical ingredient/polymer interaction mechanism: prediction for complex phase behaviors of pharmaceuticals and formulations. Chinese Journal of Chemical Engineering, 2024, 66: 263–272

[64]

Yousefi Seyf J , Asgari M . Parametrization of PC-SAFT EoS for solvents reviewed for use in pharmaceutical process design: VLE, LLE, VLLE, and SLE study. Industrial & Engineering Chemistry Research, 2022, 61(23): 8252–8268

[65]

Wu H , Jiang Y , Shen C , Ji Y . Measurement and thermodynamic modeling of oxaprozin solubility in polymers and mixed solutions. Journal of Chemical & Engineering Data, 2024, 69(3): 1273–1283

[66]

Veith H , Schleinitz M , Schauerte C , Sadowski G . Thermodynamic approach for co-crystal screening. Crystal Growth & Design, 2019, 19(6): 3253–3264

[67]

Lange L , Sadowski G . Thermodynamic modeling for efficient cocrystal formation. Crystal Growth & Design, 2015, 15(9): 4406–4416

[68]

Paus R , Ji Y . Modeling and predicting the influence of variable factors on dissolution of crystalline pharmaceuticals. Chemical Engineering Science, 2016, 145: 10–20

[69]

Zhang M , Ge K , Chen Y , Ji Y . Solubility prediction and dissolution mechanism analysis of etodolac in complex polymer solutions based on thermodynamic and interfacial mass transfer models. Industrial & Engineering Chemistry Research, 2024, 63(1): 731–742

[70]

Brinkmann J , Huxoll F , Luebbert C , Sadowski G . Solubility of pharmaceutical ingredients in triglycerides. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 145: 113–120

[71]

Paus R , Ji Y , Braak F , Sadowski G . Dissolution of crystalline pharmaceuticals: experimental investigation and thermodynamic modeling. Industrial & Engineering Chemistry Research, 2015, 54(2): 731–742

[72]

Paus R , Ji Y , Vahle L , Sadowski G . Predicting the solubility advantage of amorphous pharmaceuticals: a novel thermodynamic approach. Molecular Pharmaceutics, 2015, 12(8): 2823–2833

[73]

Prudic A , Kleetz T , Korf M , Ji Y , Sadowski G . Influence of copolymer composition on the phase behavior of solid dispersions. Molecular Pharmaceutics, 2014, 11(11): 4189–4198

[74]

Luebbert C , Sadowski G . In-situ determination of crystallization kinetics in ASDs via water sorption experiments. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127: 183–193

[75]

Dohrn S , Luebbert C , Lehmkemper K , Kyeremateng S O , Degenhardt M , Sadowski G . Solvent influence on the phase behavior and glass transition of amorphous solid dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158: 132–142

[76]

Dohrn S , Kyeremateng S O , Bochmann E , Sobich E , Wahl A , Liepold B , Sadowski G , Degenhardt M . Thermodynamic modeling of the amorphous solid dispersion-water interfacial layer and its impact on the release mechanism. Pharmaceutics, 2023, 15(5): 1539

[77]

Schlindwein W , de Castro M , Cordeiro A S , Lübbert C , McColl C , Khurana J , Evans M . Advancing amorphous solid dispersions: evaluating drug-polymer miscibility through theoretical and empirical approaches in a digital design framework. International Journal of Pharmaceutics: X, 2025, 10: 100373

[78]

Cocchi G , De Angelis M G , Sadowski G , Doghieri F . Modelling polylactide/water/dioxane systems for TIPS scaffold fabrication. Fluid Phase Equilibria, 2014, 374: 1–8

[79]

Stoychev I , Galy J , Fournel B , Lacroix-Desmazes P , Kleiner M , Sadowski G . Modeling the phase behavior of PEO-PPO-PEO surfactants in carbon dioxide using the PC-SAFT equation of state: application to dry decontamination of solid substrates. Journal of Chemical & Engineering Data, 2009, 54(5): 1551–1559

[80]

Byun H S , Lee B S . Liquid-liquid equilibrium of hydrogen bonding polymer solutions. Polymer, 2017, 121: 1–8

[81]

Walter S , Mileo P G M , Afzal M A F , Kyeremateng S O , Degenhardt M , Browning A R , Shelley J C . Predicting the release mechanism of amorphous solid dispersions: a combination of thermodynamic modeling and in silico molecular simulation. Pharmaceutics, 2024, 16(10): 1292

[82]

Chen Q , Ji Y , Ge K . Influence of excipients on thermodynamic phase behavior of pharmaceutical/solvent systems: molecular thermodynamic model prediction. Chemical Engineering Science, 2021, 244: 116798

[83]

Prudic A , Lesniak A K , Ji Y , Sadowski G . Thermodynamic phase behaviour of indomethacin/PLGA formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93: 88–94

[84]

Krummnow A , Danzer A , Voges K , Dohrn S , Kyeremateng S O , Degenhardt M , Sadowski G . Explaining the release mechanism of ritonavir/PVPVA amorphous solid dispersions. Pharmaceutics, 2022, 14(9): 1904

[85]

Von Solms N , Michelsen M L , Kontogeorgis G M . Applying association theories to polar fluids. Industrial & Engineering Chemistry Research, 2004, 43(7): 1803–1806

[86]

Fan Q , Zhang M , Ding Y , Victorov A I , Ji Y . Influence of excipients on solubility of oxcarbazepine: modeling and prediction based on thermodynamic models. Fluid Phase Equilibria, 2025, 589: 114251

[87]

Chen Q , Zhang M , Ji Y . Theoretical insights into influence of additives on sulfamethoxazole crystal growth kinetics and mechanisms. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1503–1515

[88]

Iemtsev A , Hassouna F , Klajmon M , Mathers A , Fulem M . Compatibility of selected active pharmaceutical ingredients with poly(D, L-lactide-co-glycolide): computational and experimental study. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 179: 232–245

[89]

Mathers A , Hassouna F , Klajmon M , Fulem M . Comparative study of DSC-based protocols for API-polymer solubility determination. Molecular Pharmaceutics, 2021, 18(4): 1742–1757

[90]

Mathers A , Pechar M , Hassouna F , Fulem M . The step-wise dissolution method: an efficient DSC-based protocol for verification of predicted API-polymer compatibility. International Journal of Pharmaceutics, 2023, 648: 123604

[91]

Higginbotham T , Meier K , Ramirez J , Garaizar A . Predicting drug-polymer compatibility in amorphous solid dispersions by MD simulation: on the trap of solvation free energies. Molecular Pharmaceutics, 2025, 22(2): 760–770

[92]

Grönniger B , Kimpe K , Singh A , Sadowski G . Simultaneous water sorption and crystallization in ASDs 1: stability studies lasting for two years. Molecular Pharmaceutics, 2024, 21(2): 957–969

[93]

Wolbert F , Fahrig I K , Gottschalk T , Luebbert C , Thommes M , Sadowski G . Factors influencing the crystallization-onset time of metastable ASDs. Pharmaceutics, 2022, 14(2): 269

[94]

Lehmkemper K , Kyeremateng S O , Bartels M , Degenhardt M , Sadowski G . Physical stability of API/polymer-blend amorphous solid dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 124: 147–157

[95]

Luebbert C , Stoyanov E . Tailored ASD destabilization-balancing shelf life stability and dissolution performance with hydroxypropyl cellulose. International Journal of Pharmaceutics: X, 2023, 5: 100187

[96]

Chen Q , Ji Y . Thermodynamic mechanism of physical stability of amorphous pharmaceutical formulations. Industrial & Engineering Chemistry Research, 2023, 62(3): 1596–1605

[97]

Wolbert F , Luebbert C , Sadowski G . The shelf life of ASDs: 2. predicting the shelf life at storage conditions. International Journal of Pharmaceutics: X, 2023, 6: 100207

[98]

Krummnow A , Danzer A , Voges K , Kyeremateng S O , Degenhardt M , Sadowski G . Kinetics of water-induced amorphous phase separation in amorphous solid dispersions via Raman mapping. Pharmaceutics, 2023, 15(5): 1395

[99]

Ji Y , Zhang Z , Ge K , Paus R , Sadowski G . Dissolution mechanism of pharmaceuticals and formulations by nonequilibrium thermodynamic modeling. Exploring Computational Pharmaceutics-AI and Modeling in Pharma, 2024, 40: 235–266

[100]

Seiler V K , Theil F , Nagel N , van Lishaut H . Adding a new dimension to the amorphous solid dispersion phase diagram: studying dissolution kinetics of crystalline drugs in a polymer matrix using temperature dependent XRPD and DSC. Journal of Pharmaceutical Sciences, 2022, 111(9): 2496–2504

[101]

Ji Y , Lemberg M , Prudic A , Paus R , Sadowski G . Modeling and analysis of dissolution of paracetamol/Eudragit® formulations. Chemical Engineering Research & Design, 2017, 121: 22–31

[102]

Borrmann D , Friedrich P , Smuda J , Sadowski G . Counteracting the loss of release for indomethacin-copovidone ASDs. Journal of Pharmaceutical Sciences, 2025, 114(1): 449–457

[103]

Deac A , Luebbert C , Qi Q , Courtney R M , Indulkar A S , Gao Y , Zhang G G Z , Sadowski G , Taylor L S . Dissolution mechanisms of amorphous solid dispersions: application of ternary phase diagrams to explain release behavior. Molecular Pharmaceutics, 2024, 21(4): 1900–1918

[104]

Trenkenschuh E , Blattner S M , Hirsh D , Hoffmann R , Luebbert C , Schaefer K . Development of ternary amorphous solid dispersions manufactured by hot-melt extrusion and spray-drying: comparison of in vitro and in vivo performance. Molecular Pharmaceutics, 2024, 21(3): 1309–1320

[105]

Matic J , Paudel A , Bauer H , Garcia R A L , Biedrzycka K , Khinast J G . Developing HME-based drug products using emerging science: a fast-track roadmap from concept to clinical batch. AAPS PharmSciTech, 2020, 21(5): 176

[106]

Gottschalk T , Gronniger B , Ludwig E , Wolbert F , Feuerbach T , Sadowski G , Thommes M . Influence of process temperature and residence time on the manufacturing of amorphous solid dispersions in hot melt extrusion. Pharmaceutical Development and Technology, 2022, 27(3): 313–318

[107]

Wolbert F , Stecker J , Luebbert C , Sadowski G . Viscosity of ASDs at humid conditions. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154: 387–396

[108]

Dohrn S , Reimer P , Luebbert C , Lehmkemper K , Kyeremateng S O , Degenhardt M , Sadowski G . Thermodynamic modeling of solvent-impact on phase separation in amorphous solid dispersions during drying. Molecular Pharmaceutics, 2020, 17(7): 2721–2733

[109]

Dohrn S , Luebbert C , Lehmkemper K , Kyeremateng S O , Degenhardt M , Sadowski G . Phase behavior of pharmaceutically relevant polymer/solvent mixtures. International Journal of Pharmaceutics, 2020, 577: 119065

[110]

Dohrn S , Rawal P , Luebbert C , Lehmkemper K , Kyeremateng S O , Degenhardt M , Sadowski G . Predicting process design spaces for spray drying amorphous solid dispersions. International Journal of Pharmaceutics: X, 2021, 3: 100072

[111]

Kerkhoff J , Opitz N , Peters L , Borrmann D , Sadowski G . Water-assisted drying of PVPVA-based amorphous solid dispersions. Molecular Pharmaceutics, 2025, 22(7): 3771–3781

[112]

Kerkhoff J , Borrmann D , Sadowski G . Co-sorption of volatile components in polymer-based pharmaceutical formulations. Fluid Phase Equilibria, 2025, 589: 114247

[113]

Dedroog S , Boel E , Kindts C , Appeltans B , Van den Mooter G . The underestimated contribution of the solvent to the phase behavior of highly drug loaded amorphous solid dispersions. International Journal of Pharmaceutics, 2021, 609: 121201

[114]

Ojo A T , Lee P I . A mechanistic model for predicting the physical stability of amorphous solid dispersions. Journal of Pharmaceutical Sciences, 2021, 110(4): 1495–1512

[115]

Mohammad M A , Alhalaweh A , Velaga S P . Hansen solubility parameter as a tool to predict cocrystal formation. International Journal of Pharmaceutics, 2011, 407(1): 63–71

[116]

Greenhalgh D J , Williams A C , Timmins P , York P . Solubility parameters as predictors of miscibility in solid dispersions. Journal of Pharmaceutical Sciences, 1999, 88(11): 1182–1190

[117]

Antolovic I , Vrabec J , Klajmon M . COSMOPharm: drug-polymer compatibility of pharmaceutical amorphous solid dispersions from COSMO-SAC. Molecular Pharmaceutics, 2024, 21(9): 4395–4415

[118]

DeBoyace K . Modeling and prediction of amorphous solid dispersion formation using a molecular descriptor. Duquesne University, 2019,

[119]

Bansal K , Baghel U S , Thakral S . Construction and validation of binary phase diagram for amorphous solid dispersion using Flory-Huggins theory. AAPS PharmSciTech, 2016, 17(2): 318–327

[120]

Haddadin R , Qian F , Desikan S , Hussain M , Smith R L . Estimation of drug solubility in polymers via differential scanning calorimetry and utilization of the fox equation. Pharmaceutical Development and Technology, 2009, 14(1): 19–26

[121]

Neibert K , Gosein V , Sharma A , Khan M , Whitehead M A , Maysinger D , Kakkar A . “Click” dendrimers as anti-inflammatory agents: with insights into their binding from molecular modeling studies. Molecular Pharmaceutics, 2013, 10(6): 2502–2508

[122]

Maniruzzaman M , Pang J , Morgan D J , Douroumis D . Molecular modeling as a predictive tool for the development of solid dispersions. Molecular Pharmaceutics, 2015, 12(4): 1040–1049

[123]

Turpin E R , Taresco V , Al-Hachami W A , Booth J , Treacher K , Tomasi S , Alexander C , Burley J , Laughton C A , Garnett M C . In silico screening for solid dispersions: the trouble with solubility parameters and chiFH. Molecular Pharmaceutics, 2018, 15(10): 4654–4667

[124]

Ethier J , Antoniuk E R , Brettmann B . Predicting polymer solubility from phase diagrams to compatibility: a perspective on challenges and opportunities. Soft Matter, 2024, 20(29): 5652–5669

[125]

Thakore S D , Akhtar J , Jain R , Paudel A , Bansal A K . Analytical and computational methods for the determination of drug-polymer solubility and miscibility. Molecular Pharmaceutics, 2021, 18(8): 2835–2866

[126]

Maniruzzaman M , Morgan D J , Mendham A P , Pang J , Snowden M J , Douroumis D . Drug-polymer intermolecular interactions in hot-melt extruded solid dispersions. International Journal of Pharmaceutics, 2013, 443(1): 199–208

[127]

Bhattacharya S , Suryanarayanan R . Local mobility in amorphous pharmaceuticals-characterization and implications on stability. Journal of Pharmaceutical Sciences, 2009, 98(9): 2935–2953

[128]

Kothari K , Ragoonanan V , Suryanarayanan R . Influence of molecular mobility on the physical stability of amorphous pharmaceuticals in the supercooled and glassy states. Molecular Pharmaceutics, 2014, 11(9): 3048–3055

[129]

Gupta J , Nunes C , Vyas S , Jonnalagadda S . Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. Journal of Physical Chemistry B, 2011, 115(9): 2014–2023

[130]

Machackova M , Tokarsky J , Capkova P . A simple molecular modeling method for the characterization of polymeric drug carriers. European Journal of Pharmaceutical Sciences, 2013, 48(1): 316–322

[131]

Yani Y , Kanaujia P , Chow P S , Tan R B . Effect of API-polymer miscibility and interaction on the stabilization of amorphous solid dispersion: a molecular simulation study. Industrial & Engineering Chemistry Research, 2017, 56(44): 12698–12707

[132]

Rusdin A , Muchtaridi M , Megantara S , Wardhana Y W , Fakih T M , Budiman A . The excellent chemical interaction properties of poloxamer and pullulan with alpha mangostin on amorphous solid dispersion system: molecular dynamics simulation. Polymers, 2024, 16(21): 3065

[133]

Barmpalexis P , Karagianni A , Katopodis K , Vardaka E , Kachrimanis K . Molecular modelling and simulation of fusion-based amorphous drug dispersions in polymer/plasticizer blends. European Journal of Pharmaceutical Sciences, 2019, 130: 260–268

[134]

Brunsteiner M , Khinast J , Paudel A . Relative contributions of solubility and mobility to the stability of amorphous solid dispersions of poorly soluble drugs: a molecular dynamics simulation study. Pharmaceutics, 2018, 10(3): 101

[135]

Bhugra C , Pikal M J . Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. Journal of Pharmaceutical Sciences, 2008, 97(4): 1329–1349

[136]

Han R , Xiong H , Ye Z , Yang Y , Huang T , Jing Q , Lu J , Pan H , Ren F , Ouyang D . Predicting physical stability of solid dispersions by machine learning techniques. Journal of Controlled Release, 2019, 311–312: 16–25

[137]

Barmpalexis P , Kachrimanis K , Georgarakis E . Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77(1): 122–131

[138]

Moore M D , Wildfong P L . Informatics calibration of a molecular descriptors database to predict solid dispersion potential of small molecule organic solids. International Journal of Pharmaceutics, 2011, 418(2): 217–226

[139]

Barmpalexis P , Koutsidis I , Karavas E , Louka D , Papadimitriou S A , Bikiaris D N . Development of PVP/PEG mixtures as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique and optimization of dissolution using artificial neural networks. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85(3): 1219–1231

[140]

Medarevic D P , Kleinebudde P , Djuris J , Djuric Z , Ibric S . Combined application of mixture experimental design and artificial neural networks in the solid dispersion development. Drug Development and Industrial Pharmacy, 2016, 42(3): 389–402

[141]

Gubaev K , Podryabinkin E V , Hart G L , Shapeev A V . Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Computational Materials Science, 2019, 156: 148–156

[142]

Hase F , Roch L M , Kreisbeck C , Aspuru-Guzik A . Phoenics: a bayesian optimizer for chemistry. ACS Central Science, 2018, 4(9): 1134–1145

[143]

Tran K , Ulissi Z W . Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nature Catalysis, 2018, 1(9): 696–703

[144]

Di Mare E J , Punia A , Lamm M S , Rhodes T A , Gormley A J . Data-driven design of novel polymer excipients for pharmaceutical amorphous solid dispersions. Bioconjugate Chemistry, 2024, 35(9): 1363–1372

[145]

Alhalaweh A , Alzghoul A , Kaialy W , Mahlin D , Bergstrom C A . Computational predictions of glass-forming ability and crystallization tendency of drug molecules. Molecular Pharmaceutics, 2014, 11(9): 3123–3132

[146]

Saokham P , Muankaew C , Jansook P , Loftsson T . Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules, 2018, 23(5): 1161

[147]

Felton K C , Raßpe-Lange L , Rittig J G , Leonhard K , Mitsos A , Meyer-Kirschner J , Knösche C , Lapkin A A . ML-SAFT: a machine learning framework for PCP-SAFT parameter prediction. Chemical Engineering Journal, 2024, 492: 151999

[148]

Walden D M , Bundey Y , Jagarapu A , Antontsev V , Chakravarty K , Varshney J . Molecular simulation and statistical learning methods toward predicting drug-polymer amorphous solid dispersion miscibility, stability, and formulation design. Molecules, 2021, 26(1): 182

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1554KB)

332

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/