Long-range electron-rich optimization of Cl doped LaCoO3 catalyst for efficient electrocatalytic water oxidation
Fei Jiang , Jiaye Li , Yingying Liu , Kun Hu , Yan Lin , Chao Feng , Yuan Pan
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 90
Long-range electron-rich optimization of Cl doped LaCoO3 catalyst for efficient electrocatalytic water oxidation
Doped perovskite oxides are efficient electrocatalysts for water oxidation; however, the mechanism of O-site doping remains unclear. This study proposes a long-range electron-rich optimization mechanism for Cl doped LaCoO3, involving the formation of ultra-long Co–Cl bonds as a result of lattice distortion induced by Cl doping at the O site. This catalyst exhibited excellent oxygen evolution reaction activity and stability. Theoretical calculations revealed that the ultra-long Co–Cl bond enables an electron-rich state at the Co sites, weakening the Co–O lattice bonding and facilitating the conversion of lattice O into bulk-phase O species, thus enhancing the performance of oxygen evolution reaction. This study introduces a novel regulatory mechanism for doped perovskite oxide catalysts to enhance water oxidation.
electrocatalysts / perovskite oxides / single site / oxygen evolution reaction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |