Long-range electron-rich optimization of Cl doped LaCoO3 catalyst for efficient electrocatalytic water oxidation

Fei Jiang , Jiaye Li , Yingying Liu , Kun Hu , Yan Lin , Chao Feng , Yuan Pan

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 90

PDF (3854KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 90 DOI: 10.1007/s11705-025-2603-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Long-range electron-rich optimization of Cl doped LaCoO3 catalyst for efficient electrocatalytic water oxidation

Author information +
History +
PDF (3854KB)

Abstract

Doped perovskite oxides are efficient electrocatalysts for water oxidation; however, the mechanism of O-site doping remains unclear. This study proposes a long-range electron-rich optimization mechanism for Cl doped LaCoO3, involving the formation of ultra-long Co–Cl bonds as a result of lattice distortion induced by Cl doping at the O site. This catalyst exhibited excellent oxygen evolution reaction activity and stability. Theoretical calculations revealed that the ultra-long Co–Cl bond enables an electron-rich state at the Co sites, weakening the Co–O lattice bonding and facilitating the conversion of lattice O into bulk-phase O species, thus enhancing the performance of oxygen evolution reaction. This study introduces a novel regulatory mechanism for doped perovskite oxide catalysts to enhance water oxidation.

Graphical abstract

Keywords

electrocatalysts / perovskite oxides / single site / oxygen evolution reaction

Cite this article

Download citation ▾
Fei Jiang, Jiaye Li, Yingying Liu, Kun Hu, Yan Lin, Chao Feng, Yuan Pan. Long-range electron-rich optimization of Cl doped LaCoO3 catalyst for efficient electrocatalytic water oxidation. Front. Chem. Sci. Eng., 2025, 19(9): 90 DOI:10.1007/s11705-025-2603-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen M , Rao P , Miao Z , Luo J , Li J , Deng P , Huang W , Tian X . Strong metal-support interaction of Pt-based electrocatalysts with transition metal oxides/nitrides/carbides for oxygen reduction reaction. Microstructures, 2023, 3: 2023025

[2]

Tahir M , Pan L , Idrees F , Zhang X , Wang L , Zou J , Wang Z . Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy, 2017, 37: 136–157

[3]

Wang X , Gao W , Zhao Z , Zhao L , Claverie J , Zhang X , Wang J , Liu H , Sang Y . Efficient photo-electrochemical water splitting based on hematite nanorods doped with phosphorus. Applied Catalysis B: Environmental, 2019, 248: 388–393

[4]

Chu S , Majumdar A . Opportunities and challenges for a sustainable energy future. Nature, 2012, 488(7411): 294–303

[5]

Li J , Jiang F , Wang L , Guo H , Lv Q , Liu Y , Huang S , Chen H , Feng C , Pan Y . Ion-induced effect of Ce, Ni dual site doped LaCoO3 catalyst for efficient electrocatalytic water oxidation. Small Methods, 2025, 2500144

[6]

Bhanja P , Mohanty B , Patra A , Ghosh S , Jena B , Bhaumik A . IrO2 and Pt doped mesoporous SnO2 nanospheres as efficient electrocatalysts for the facile OER and HER. ChemCatChem, 2019, 11(1): 583–592

[7]

Fan B , Wang W , Liu Z , Guo J , Yuan H , Tan Y . Recent progress in single atomic catalysts for electrochemical N2 fixation. Microstructures, 2024, 4(2): 2024025

[8]

Jin C , Zhang Q , Agyapomaa A , Zhang H , Zeng X . Review: construction and catalytic applications of advanced ceramic-supported single atoms. Microstructures, 2024, 4(4): 2024054

[9]

Wang T , Wang P , Zang W , Li X , Chen D , Kou Z , Mu S , Wang J . Nanoframes of Co3O4-Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER. Advanced Functional Materials, 2022, 32(7): 2107382

[10]

Jia R , Tan Y , Li A , Wang Y , Cheng C . 3D ordered RuO2/WO3 heterostructure inverse opal arrays for highly-active and stable acidic oxygen evolution reaction. Nano Research Energy, 2025, 4(1): e9120141

[11]

Mou T Y , Bushiri D , Esposito D , Chen J , Liu P . Rationalizing acidic oxygen evolution reaction over IrO2: essential role of hydronium cation. Angewandte Chemie International Edition, 2024, 63(48): e202409526

[12]

Park C , Lee H , Choi J , Yun T , Lim Y , Bae H , Chung S . Atomic-level observation of potential-dependent variations at the surface of an oxide catalyst during oxygen evolution reaction. Advanced Materials, 2024, 36(38): 2403392

[13]

Wu L , Huang W , Li D , Jia H , Zhao B , Zhu J , Zhou H , Luo W . Unveiling the structure and dissociation of interfacial water on RuO2 for efficient acidic oxygen evolution reaction. Angewandte Chemie International Edition, 2025, 64(1): e202413334

[14]

Zhao J , Guo Y , Zhang Z , Zhang X , Ji Q , Zhang H , Song Z , Liu D , Zeng J , Chuang C . . Out-of-plane coordination of iridium single atoms with organic molecules and cobalt-iron hydroxides to boost oxygen evolution reaction. Nature Nanotechnology, 2025, 20(1): 57–66

[15]

Qian Z , Liang G , Shen L , Zhang G , Zheng S , Tian J , Li J , Zhang H . Phase engineering facilitates O–O coupling via lattice oxygen mechanism for enhanced oxygen evolution on nickel-iron phosphide. Journal of the American Chemical Society, 2025, 147(1): 1334–1343

[16]

Flores-Lasluisa J , Huerta F , Cazorla-Amorós D , Morallón E . Structural and morphological alterations induced by cobalt substitution in LaMnO3 perovskites. Journal of Colloid and Interface Science, 2019, 556: 658–666

[17]

García-Rodríguez M , Flores-Lasluisa J , Cazorla-Amorós D , Morallón E . Metal oxide perovskite-carbon composites as electrocatalysts for zinc-air batteries: optimization of ball-milling mixing parameters. Journal of Colloid and Interface Science, 2023, 630: 269–280

[18]

Shin S , Kwon T , Kim K , Kim M , Kim M , Lee Y . Single-phase perovskite SrIrO3 nanofibers as a highly efficient electrocatalyst for a pH-universal oxygen evolution reaction. ACS Applied Energy Materials, 2022, 5(5): 6146–6154

[19]

Balamurugan C , Song S , Jo H , Seo J . GdFeO3 perovskite oxide decorated by group X heterometal oxides and bifunctional oxygen electrocatalysis. ACS Applied Materials & Interfaces, 2021, 13(2): 2788–2798

[20]

Cao X , Yan X , Ke L , Zhao K , Yan N . Proton-assisted reconstruction of perovskite oxides: toward improved electrocatalytic activity. ACS Applied Materials & Interfaces, 2021, 13(18): 22009–22016

[21]

Du Z , Yang P , Wang L , Lu Y , Goodenough J , Zhang J , Zhang D . Electrocatalytic performances of LaNi1−xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries. Journal of Power Sources, 2014, 265: 91–96

[22]

Fujiwara N , Nagai T , Ioroi T , Arai H , Ogumi Z . Bifunctional electrocatalysts of lanthanum-based perovskite oxide with Sb-doped SnO2 for oxygen reduction and evolution reactions. Journal of Power Sources, 2020, 451: 227736

[23]

Gao H , Han F , Yi S , Chen L , Chen D . OER catalyst fabricated with ZIF-67 derived carbon and selectively exsolvated perovskite oxide. Journal of Alloys and Compounds, 2023, 963: 170908

[24]

Ingavale S , Gopalakrishnan M , Enoch C , Pornrungroj C , Rittiruam M , Praserthdam S , Somwangthanaroj A , Nootong K , Pornprasertsuk R , Kheawhom S . Strategic design and insights into lanthanum and strontium perovskite oxides for oxygen reduction and oxygen evolution reactions. Small, 2024, 20(19): 2308443

[25]

Kim B , Abbott D , Cheng X , Fabbri E , Nachtegaal M , Bozza F , Castelli I , Lebedev D , Schäublin R , Copéret C . . Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide. ACS Catalysis, 2017, 7(5): 3245–3256

[26]

Li Q , Wu J , Wu T , Jin H , Zhang N , Li J , Liang W , Liu M , Huang L , Zhou J . Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution. Advanced Functional Materials, 2021, 31(38): 2102002

[27]

Liu D , Zhou P , Bai H , Ai H , Du X , Chen M , Liu D , Ip W , Lo K , Kwok C . . Development of perovskite oxide-based electrocatalysts for oxygen evolution reaction. Small, 2021, 17(43): 2101605

[28]

Liu Y , Ye C , Zhao S , Wu Y , Liu C , Huang J , Xue L , Sun J , Zhang W , Wang X . . A dual-site doping strategy for developing efficient perovskite oxide electrocatalysts towards oxygen evolution reaction. Nano Energy, 2022, 99: 107344

[29]

Lu Y , Zhang H , Wang Y , Zhu X , Xiao W , Xu H , Li G , Li Y , Fan D , Zeng H . . Solar-driven interfacial evaporation accelerated electrocatalytic water splitting on 2D perovskite oxide/MXene heterostructure. Advanced Functional Materials, 2023, 33(21): 2215061

[30]

Nguyen T , Liao Y , Lin C , Su Y , Ting J . Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Advanced Functional Materials, 2021, 31(27): 2101632

[31]

Seo M , Park H , Lee D , Park M , Chen Z . Design of highly active perovskite oxides for oxygen evolution reaction by combining experimental and ab initio studies. ACS Catalysis, 2015, 5(7): 4337–4344

[32]

Sun Y , Li R , Chen X , Wu J , Xie Y , Wang X , Ma K , Wang L , Zhang Z , Liao Q . . A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts. Advanced Energy Materials, 2021, 11(12): 2003755

[33]

Wang K , Zhou J , Fu L , Kang Y , Zhou Z , Cheng Y , Wu K , Yamauchi Y . Plasma-induced oxygen defect engineering in perovskite oxide for boosting oxygen evolution reaction. Small, 2024, 20(48): 2404239

[34]

Weng Z , Huang H , Li X , Zhang Y , Shao R , Yi Y , Lu Y , Zeng X , Zou J , Chen L . . Coordination tailoring of epitaxial perovskite-derived iron oxide films for efficient water oxidation electrocatalysis. ACS Catalysis, 2023, 13(4): 2751–2760

[35]

Zhang J , Ye Y , Wei B , Hu F , Sui L , Xiao H , Gui L , Sun J , He B , Zhao L . Unveiling anion induced surface reconstruction of perovskite oxide for efficient water oxidation. Applied Catalysis B: Environmental, 2023, 330: 122661

[36]

Bama Sundararaj S , Tamilarasan S , Kadirvelu K , Thangavelu S . Electrocatalyst for oxygen evolution reaction and methanol oxidation using surface-oriented stable NiSnO3 nanospheres anchored g-C3N4 nanosheets. Applied Surface Science, 2023, 612: 155785

[37]

Ding D , Shen K , Chen X , Chen H , Chen J , Fan T , Wu R , Li Y . Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catalysis, 2018, 8(9): 7879–7888

[38]

Mao S , Wen Z , Huang T , Hou Y , Chen J . High-performance bi-functional electrocatalysts of 3D crumpled graphene-cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy & Environmental Science, 2014, 7(2): 609–616

[39]

Song Y , Liu H , Dong W , Li M . Designed synthesis of hierarchical Mn3O4@SnO2/Co3O4 core-shell nanocomposite for efficient electrocatalytic water splitting. International Journal of Hydrogen Energy, 2020, 45(7): 4501–4510

[40]

Sun M , Huang H , Niu X , Gong S , Li Z , Fang J , Liu X , Chen Y , Duan H , Zhuang Z . . Grain boundary-derived local amorphization enhances acidic OER. ACS Catalysis, 2024, 14(20): 15764–15776

[41]

Vazhayil A , Thomas J , Thomas N . Cobalt doping in LaMnO3 perovskite catalysts-B site optimization by solution combustion for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 918(1): 116426

[42]

Zhu H , Zhang J , Yanzhang R , Du M , Wang Q , Gao G , Wu J , Wu G , Zhang M , Liu B . . When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting. Advanced Materials, 2015, 27(32): 4752–4759

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3854KB)

Supplementary files

FCE-25056-of-JF_suppl_1

375

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/