Advances for in situ characterization techniques applied to gas-solid heterogeneous catalysis under reaction conditions

Chunli Ai , Zeyu Jiang , Fan Dang , Chi Ma , Dong Guo , Yuying Shao , Jialei Wan , Chi He

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 89

PDF (14755KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 89 DOI: 10.1007/s11705-025-2602-x
REVIEW ARTICLE
REVIEW ARTICLE

Advances for in situ characterization techniques applied to gas-solid heterogeneous catalysis under reaction conditions

Author information +
History +
PDF (14755KB)

Abstract

Heterogeneous catalysis is fundamental to chemical processes, with gas-solid catalysis extensively employed in chemical production, energy conversion, and environmental protection. Attaining high efficiency in these processes necessitates catalysts exhibiting exceptional activity, selectivity, and stability, frequently accomplished using nanostructured metal catalysts. The continuous growth of active sites in heterogeneous metal catalysts presents a considerable obstacle for the precise identification of the genuine active sites. The emergence of in situ and operando characterization techniques has clarified the knowledge of dynamic alterations in active sites, offering substantial scientific information to underpin the rational design of catalysts. This review summarizes recent progress in the development of diverse situ/operando approaches for identifying active regions in catalytic conversion over heterogeneous catalysts. We comprehensively outline the applicability of diverse optical and X-ray spectroscopic techniques, including transmission electron microscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, in identifying active sites and elucidating reaction processes in heterogeneous catalysis. The discussion encompasses issues and future views on the identification of active sites evolution during the reaction process, as well as the advancement of in situ and operando characterization approaches.

Graphical abstract

Keywords

heterogeneous catalysis / in-situ and operando characterization / intrinsic mechanism investigation

Cite this article

Download citation ▾
Chunli Ai, Zeyu Jiang, Fan Dang, Chi Ma, Dong Guo, Yuying Shao, Jialei Wan, Chi He. Advances for in situ characterization techniques applied to gas-solid heterogeneous catalysis under reaction conditions. Front. Chem. Sci. Eng., 2025, 19(9): 89 DOI:10.1007/s11705-025-2602-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai J , Liu X , Lei T , Zhou Y , Guo W , Salahub D R , Wen X . Automated exploration of heterogeneous catalysis with a gas-solid nanoreactor. ACS Catalysis, 2024, 14(24): 18570–18578

[2]

Saptal V B , Ruta V , Bajada M A , Vilé G . Single-atom catalysis in organic synthesis. Angewandte Chemie International Edition, 2023, 62(34): e202219306

[3]

Zhang X , Yan T , Hou H , Yin J , Wan H , Sun X , Zhang Q , Sun F , Wei Y , Dong M . . Regioselective hydroformylation of propene catalysed by rhodium-zeolite. Nature, 2024, 629(8012): 597–602

[4]

Yadav N , Yadav G , Ahmaruzzaman M . Catalytic conversion and mechanism of glycerol into various value-added products: a critical review. Industrial Crops and Products, 2024, 210: 117999

[5]

Achomo M A , Kumar A , Peela N R , Muthukumar P . Hydrogen production from steam reforming of methanol: a comprehensive review on thermodynamics, catalysts, reactors, and kinetic studies. International Journal of Hydrogen Energy, 2024, 58: 1640–1672

[6]

Matheus C R V , Sousa-Aguiar E F . Main catalytic challenges in ethanol chemistry: a review. Catalysis Reviews: Science and Engineering, 2024, 66(1): 174–213

[7]

Lee J , Lin K Y A . Bio-butanol production on heterogeneous catalysts: a review. Journal of the Taiwan Institute of Chemical Engineers, 2024, 157: 105421

[8]

Wang M , Zhou H , Wang F . Photocatalytic biomass conversion for hydrogen and renewable carbon-based chemicals. Joule, 2024, 8(3): 604–621

[9]

Liu Y , Chen L , Yang L , Lan T , Wang H , Hu C , Han X , Liu Q , Chen J , Feng Z . . Porous framework materials for energy & environment relevant applications: a systematic review. Green Energy & Environment, 2024, 9(2): 217–310

[10]

Dement’ev K I , Dementeva O S , Ivantsov M I , Kulikova M V , Magomedova M V , Maximov A L , Lyadov A S , Starozhitskaya A V , Chudakova M V . Promising approaches to carbon dioxide processing using heterogeneous catalysts (a review). Petroleum Chemistry, 2022, 62(5): 445–474

[11]

Minyukova T P , Dokuchits E V . Hydrogen for CO2 processing in heterogeneous catalytic reactions. International Journal of Hydrogen Energy, 2023, 48(59): 22462–22483

[12]

Mukhtar A , Saqib S , Lin H , Hassan Shah M U , Ullah S , Younas M , Rezakazemi M , Ibrahim M , Mahmood A , Asif S . . Current status and challenges in the heterogeneous catalysis for biodiesel production. Renewable & Sustainable Energy Reviews, 2022, 157: 112012

[13]

Orege J I , Oderinde O , Kifle G A , Ibikunle A A , Raheem S A , Ejeromedoghene O , Okeke E S , Olukowi O M , Orege O B , Fagbohun E O . . Recent advances in heterogeneous catalysis for green biodiesel production by transesterification. Energy Conversion and Management, 2022, 258: 115406

[14]

He C , Cheng J , Zhang X , Douthwaite M , Pattisson S , Hao Z . Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chemical Reviews, 2019, 119(7): 4471–4568

[15]

Wang H , Li X , Zhao X , Li C , Song X , Zhang P , Huo P , Li X . A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chinese Journal of Catalysis, 2022, 43(2): 178–214

[16]

Shi Z , Peng Q E J , Xie B , Wei J , Yin R , Fu G . Mechanism, performance, and modification methods for NH3-SCR catalysts: a review. Fuel, 2023, 331: 125885

[17]

Yue X , Ma N L , Sonne C , Guan R , Lam S S , Van Le Q , Chen X , Yang Y , Gu H , Rinklebe J . . Mitigation of indoor air pollution: a review of recent advances in adsorption materials and catalytic oxidation. Journal of Hazardous Materials, 2021, 405: 124138

[18]

Zhao H , Meng P , Gao S , Wang Y , Sun P , Wu Z . Recent advances in simultaneous removal of NOx and VOCs over bifunctional catalysts via SCR and oxidation reaction. Science of the Total Environment, 2024, 906: 167553

[19]

Zhu X , Xin Y , Yu L , Liu S , Han D , Jia J , Wang J , Zhang Z . Zeolite-based materials eliminating nitrogen oxides (NOx) and volatile organic compounds (VOCs): advances and future perspectives. Catalysis Science & Technology, 2024, 14(17): 4756–4774

[20]

Zhang H , Wang Z , Lin H , Liu Y , Dai H , Deng J . Catalytic oxidation of volatile organic compounds over supported noble metal and single atom catalysts: a review. Journal of Environmental Sciences, 2025, 155: 858–888

[21]

Qu J , Sui M , Li R . Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis. iScience, 2023, 26(7): 107072

[22]

Boyes E D , Gai P L . Visualizing dynamic single atom catalysis. Advanced Materials, 2024, 36(31): 2314121

[23]

Groppo E , Rojas-Buzo S , Bordiga S . The role of in-situ/operando IR spectroscopy in unraveling adsorbate-induced structural changes in heterogeneous catalysis. Chemical Reviews, 2023, 123(21): 12135–12169

[24]

Gai P L , Boyes E D . In-situ visualisation and analysis of dynamic single atom processes in heterogeneous catalysts. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(11): 5850–5862

[25]

Van Beek L , Jain D , Gholkar P , Eldridge T J , Nguyen H P , Muramoto K , Urakawa A . Spatiotemporal operando UV-vis spectroscopy: development and mechanistic alternation of CO oxidation on Pt/Al2O3 on the reactor scale. Catalysis Today, 2024, 429: 114466

[26]

Liu J , Chen L , Liu X . Deep insight into characterizing the metal-support interface in heterogeneous catalysis. ACS Catalysis, 2024, 14(3): 1987–2002

[27]

Bulavchenko O A , Vinokurov Z S . In-situ X-ray diffraction as a basic tool to study oxide and metal oxide catalysts. Catalysts, 2023, 13(11): 1421

[28]

Liu Y , Su X , Ding J , Zhou J , Liu Z , Wei X , Yang H B , Liu B . Progress and challenges in structural, in-situ, and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chemical Society Reviews, 2024, 53(24): 11850–11887

[29]

Pu Y , He B , Niu Y , Liu X , Zhang B . Chemical electron microscopy (CEM) for heterogeneous catalysis at nano: recent progress and challenges. Research, 2023, 6: 0043

[30]

Bols M L , Ma J , Rammal F , Plessers D , Wu X , Navarro-Jaén S , Heyer A J , Sels B F , Solomon E I , Schoonheydt R A . In-situ UV-Vis-NIR absorption spectroscopy and catalysis. Chemical Reviews, 2024, 124(5): 2352–2418

[31]

Hess C . New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chemical Society Reviews, 2021, 50(5): 3519–3564

[32]

Li X , Yang X , Zhang J , Huang Y , Liu B . In-situ/operando techniques for characterization of single-atom catalysts. ACS Catalysis, 2019, 9(3): 2521–2531

[33]

Yang H , Duan P , Zhuang Z , Luo Y , Shen J , Xiong Y , Liu X , Wang D . Understanding the dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Advanced Materials, 2025, 37(7): 2415265

[34]

Zhao T , Jiang Y , Luo S , Ying Y , Zhang Q , Tang S , Chen L , Xia J , Xue P , Zhang J J . . On-chip gas reaction nanolab for in situ TEM observation. Lab on a Chip, 2023, 23(17): 3768–3777

[35]

Singh R , Wang L , Huang J . In-situ characterization techniques for mechanism studies of CO2 hydrogenation. ChemPlusChem, 2024, 89(9): e202300511

[36]

Dai J , Sun Y , Liu Z , Zhang Y , Duan S , Wang R . Using in-situ transmission electron microscopy to study strong metal-support interactions in heterogeneous catalysis. Angewandte Chemie, 2024, 136(42): e202409673

[37]

Chao H Y , Venkatraman K , Moniri S , Jiang Y , Tang X , Dai S , Gao W , Miao J , Chi M . In-situ and emerging transmission electron microscopy for catalysis research. Chemical Reviews, 2023, 123(13): 8347–8394

[38]

Frey H , Beck A , Huang X , van Bokhoven J A , Willinger M G . Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science, 2022, 376(6596): 982–987

[39]

de Souza Caldas L , Prieto M J , Tănase L C , Tiwari A , Schmidt T , Roldan Cuenya B . Correlative in-situ spectro-microscopy of supported single CuO nanoparticles: unveiling the relationships between morphology and chemical state during thermal reduction. ACS Nano, 2024, 18(21): 13714–13725

[40]

da Silva D S , Viana G A , da Silva Filho J M C , Kretly L C , Neto A M J C , Vieira L , Barros T A S , Marques F C . In-situ transmission electron microscopy (TEM) investigation of the reduction process in graphene oxide. MRS Advances, 2024, 9(18): 1472–1477

[41]

Wang P , Liu G , Hao Z , Zhang H , Li Y , Sun W , Zheng L , Zhan S . In-situ formation of cocatalytic sites boosts single-atom catalysts for nitrogen oxide reduction. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(8): e2216584120

[42]

Hao Z , Liu G , Wang P , Zhang W , Sun W , Zheng L , Guo S , Zhan S . In-situ visualizing reveals potential drive of lattice expansion on defective support toward efficient removal of nitrogen oxides. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(24): e2311180121

[43]

Tang L , Higuchi T , Arai S , Tanaka H , Muto S . Development of an integrated high-voltage electron microscope-gas chromatograph-quadrupole mass spectrometer system for the operando analysis of catalytic gas reactions. Microscopy, 2024, 73(4): 358–366

[44]

Yue S , Li Q , Zeng C , Klyushin A , Farra R , Willinger M G , Huang X . Structural and chemical transformations of CuZn alloy nanoparticles under reactive redox atmospheres: an in-situ TEM study. Nano Research, 2024, 17(7): 6265–6273

[45]

Tang M , Li S , Zhu B , You R , Yu L , Ou Y , Yuan W , Xu Q , Yang H , Wales D J . . Oscillatory active state of a Pd nanocatalyst identified by in-situ capture of the instantaneous structure-activity change at the atomic scale. Journal of the American Chemical Society, 2024, 146(27): 18341–18349

[46]

Zhang D , Liu X , Zhao Y , Zhang H , Rudnev A V , Li J F . In situ Raman spectroscopic studies of CO2 reduction reactions: from catalyst surface structures to reaction mechanisms. Chemical Science, 2025, 16(12): 4916–4936

[47]

Cheng C , Yu J , Wang J , Ding L , Yu G . In-situ Raman spectroscopy study on coal pyrolysis and subsequent char low temperature oxidation and gasification. Chemical Engineering Science, 2024, 285: 119619

[48]

Alzahrani H A , Bravo-Suárez J J . In-situ Raman spectroscopy study of silver particle size effects on unpromoted Ag/α-Al2O3 during ethylene epoxidation with molecular oxygen. Journal of Catalysis, 2023, 418: 225–236

[49]

Ding J , Xu C , Fan G , Naren T , Wang Y , Liu Y , Gu X , Wu L , Zeng S . Engineering CeO2 configurations to regulate the CuOx dispersion and switch pathways of preferential CO oxidation. Applied Catalysis B: Environmental, 2023, 331: 122686

[50]

Wang L , Peng H , Li S C , Li H , Shi S L , Ding S M , Zhao D , Wang S H , Chen C . Fine-tuning Cu-Co-Ce oxidation activity interface by unique microwave electromagnetic loss for boosting CO preferential oxidation in H2 steam. International Journal of Hydrogen Energy, 2023, 48(64): 25119–25132

[51]

Araiza D G , Celaya C A , Solís-Casados D A , Muñiz J , Zanella R . Unveiling the structural behavior of bimetallic AuCu/TiO2 catalysts in the CO oxidation: a combined in-situ spectroscopic and theoretical study. Chemical Engineering Journal, 2024, 494: 152921

[52]

Guerrero-Pérez M O , Berenguer R , Ford M E , Wachs I E . Carbon-supported VPO catalysts with fibrous structure: a new family of catalysts for partial oxidation reactions. Catalysis Today, 2023, 423: 114291

[53]

Yang W T , Kao L C , Yu X T , Dong C L , Liou S Y H . Mechanistic insights into temperature hysteresis in CO oxidation on Cu-TiO2 mesosphere. Applied Catalysis B: Environment and Energy, 2024, 352: 124017

[54]

Zhang G , Chen G , Huang H , Qin Y , Fu M , Tu X , Ye D , Wu J . Insights into the role of nanorod-shaped MnO2 and CeO2 in a plasma catalysis system for methanol oxidation. Nanomaterials, 2023, 13(6): 1026

[55]

Negri C , Colombo R , Bracconi M , Atzori C , Donazzi A , Lucotti A , Tommasini M , Maestri M . Operando UV-vis spectroscopy for real-time monitoring of nanoparticle size in reaction conditions: a case study on rWGS over Au nanoparticles. Catalysis Science & Technology, 2024, 14(5): 1318–1327

[56]

Fujiwara A , Tsurunari Y , Iwashita S , Yoshida H , Ohyama J , Machida M . Dynamic change of Rh oxidation state during lean-rich perturbation and light-off of three-way catalysis analysed using in-situ diffuse reflectance UV-vis spectroscopy. ChemCatChem, 2023, 15(19): e202300777

[57]

Abasabadi R K , Janssens T V W , Bordiga S , Berlier G . Probing the effect of the Si/Al ratio in Cu-CHA zeolite catalysts on SO2 exposure: in-situ DR UV-vis spectroscopy and deactivation measurements. Catalysis Science & Technology, 2024, 14(11): 3076–3085

[58]

Luo L , Hernandez R , Zhou X D , Yan H . Heterogeneous catalysis at metal-oxide interfaces using in situ and operando spectroscopy: from nanoparticles to single-atom sites. Applied Catalysis A: General, 2021, 624: 118330

[59]

Feng K , Wang Y , Guo M , Zhang J , Li Z , Deng T , Zhang Z , Yan B . In-situ/operando techniques to identify active sites for thermochemical conversion of CO2 over heterogeneous catalysts. Journal of Energy Chemistry, 2021, 62: 153–171

[60]

Lv H , Meng S , Cui Z , Li S , Li D , Gao X , Guo H , Bogaerts A , Yi Y . Plasma-catalytic direct oxidation of methane to methanol over Cu-MOR: revealing the zeolite-confined Cu2+ active sites. Chemical Engineering Journal, 2024, 496: 154337

[61]

Zhang C , Zhao C , Kang R , Hao Q , Dou B , Bin F . Role of oxygen species and active phase of CuCeZrOx prepared with bacterial cellulose for toluene catalytic oxidation. Carbon Resources Conversion, 2023, 6(4): 255–261

[62]

Cheng J , Sun X , Cheng X , Wang Z . Study on VOCs/NH3 synergistic treatment process based on adsorption/in-situ catalytic oxidation. Separation and Purification Technology, 2024, 338: 126555

[63]

Wang Y , Fu K , Huang H , Shan C , Zheng Y , Han R , Liu Q . Hydrothermal treatment: an effective method to improve the catalytic activity of the Pt/ZSM-5 catalyst for complete benzene oxidation. Catalysis Science & Technology, 2023, 13(11): 3221–3225

[64]

Feng B , Zhao T , Du J , Hu J , Shi Y , Zhao J , Chen J . Reaction and deactivation mechanisms of a CeIn/HBEA catalyst with dual active sites for selective catalytic reduction of NOx by CH4. Applied Catalysis B: Environment and Energy, 2024, 358: 124343

[65]

Wu L , Liu Y , Yu X , Gao R , Jia Y , Sun Q , Feng Y , Jing L , Hou Z , Deng J . . Constructing bridge hydroxyl groups on the Ru/MOx/HZSM-5 (M = W, Mo) catalysts to promote the hydrolysis oxidation of multicomponent VOCs. Environmental Science & Technology, 2025, 59(1): 945–955

[66]

Wang Z , Yao M , Niu X , Zhu Y . Excellent low-temperature activity and resistance to K-poisoning in NH3-SCR de-NOx reaction over CeSnOx with phosphorylation treatment catalyst. Applied Catalysis B: Environmental, 2024, 359: 124464

[67]

Aceto D , Bacariza M C , Travert A , Henriques C , Azzolina-Jury F . Thermal and plasma-assisted CO2 methanation over Ru/zeolite: a mechanistic study using in-situ operando FTIR. Catalysts, 2023, 13(3): 481

[68]

Ma Y , Feng Z , Liu T , Feng Z . First-principle molecular dynamics and in-situ DRIFTS study the stability of the intermediates of CO2 hydrogenation to methanol on ZnZrOx solid solution catalyst. Applied Surface Science, 2024, 668: 160385

[69]

Zhao S , Peng J , Qian Y , Sun Z . Low-temperature DeNOx characteristics and mechanism of the Fe-doped modified CeMn selective catalytic reduction catalyst. Fuel Processing Technology, 2023, 244: 107704

[70]

Wang H , Li X , Wu J , Zhang D . An experimental and density functional theory simulation study of NO reduction mechanisms over Fe0 supported on graphene with and without CO. Langmuir, 2023, 39(43): 15369–15379

[71]

Liu X H , Lu T , Jiao X , Jiang Z , Chen C , Wang Y , Jian Y , He C . Formaldehyde ambient-temperature decomposition over Pd/Mn3O4-MnO driven by active sites’ self-tandem catalysis. Environmental Science & Technology, 2024, 58(3): 1752–1762

[72]

Xie T , Huo L , Yao Z , Zhang X , Liu Z , Jia J , Zhao Y , Zhao L . Co-pyrolysis of biomass and polyethylene: mechanistic insights into functional group transformations on solid matrix. Chemical Engineering Journal, 2024, 482: 149166

[73]

Wang K , Cao M , Lu J , Lu Y , Lau C H , Zheng Y , Fan X . Operando DRIFTS-MS investigation on plasmon-thermal coupling mechanism of CO2 hydrogenation on Au/TiO2: the enhanced generation of oxygen vacancies. Applied Catalysis B: Environmental, 2021, 296: 120341

[74]

Tan T H , Xie B , Ng Y H , Abdullah S F B , Tang H Y M , Bedford N , Taylor R A , Aguey-Zinsou K F , Amal R , Scott J . Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nature Catalysis, 2020, 3(12): 1034–1043

[75]

Zhang H , Itoi T , Konishi T , Izumi Y . Efficient and selective interplay revealed: CO2 reduction to CO over ZrO2 by light with further reduction to methane over Ni0 by heat converted from light. Angewandte Chemie International Edition, 2021, 60(16): 9045–9054

[76]

Dankar J , Rouchon V , Rivallan M , Pagis C , El-Roz M . Evidence on C–C coupling to acetate as key reaction intermediate in photocatalytic reduction of CO2 over Pt/TiO2. ACS Applied Materials & Interfaces, 2024, 16(32): 42210–42220

[77]

Hull A W . A new method of X-ray crystal analysis. Physical Review, 1917, 10(6): 661–696

[78]

Gates-Rector S , Blanton T . The powder diffraction file: a quality materials characterization database. Powder Diffraction, 2019, 34(4): 352–360

[79]

Song J , Qian Z X , Yang J , Lin X M , Xu Q , Li J F . In-situ/operando investigation for heterogeneous electro-catalysts: from model catalysts to state-of-the-art catalysts. ACS Energy Letters, 2024, 9(9): 4414–4440

[80]

Song H , Song Z , Zhou W , Yao S . XAFS method for the structural characterization of single atom catalysts. Science China: Chemistry, 2025, 68(6): 2250–2274

[81]

Wollak B , Espinoza D , Dippel A C , Sturm M , Vrljic F , Gutowski O , Nielsen I G , Sheppard T L , Korup O , Horn R . Catalytic reactor for operando spatially resolved structure-activity profiling using high-energy X-ray diffraction. Journal of Synchrotron Radiation, 2023, 30(3): 571–581

[82]

Sokovikov N A , Svintsitskiy D A , Cherepanova S V , Boronin A I . Surface and bulk transformations of Ag2CuMnO4 delafossite during the interaction with CO + O2 mixture. Surfaces and Interfaces, 2024, 45: 103887

[83]

Zhang M , Duan X , Gao Y , Zhang S , Lu X , Luo K , Ye J , Wang X , Niu Q , Zhang P . . Tuning oxygen vacancies in oxides by configurational entropy. ACS Applied Materials & Interfaces, 2023, 15(39): 45774–45789

[84]

Das S K , Longo A , Bianchi E , Bordenca C V , Sahle C J , Pia Casaletto M , Mirone A , Giannici F . Deciphering the Ce3+ to Ce4+ evolution: insight from X-ray Raman scattering spectroscopy at Ce N4,5 edges. ChemPhysChem, 2025, 26(3): e202400742

[85]

Lara T P N , Petrolini D D , de Oliveira Rocha K , dos Santos J B O , Bueno J M C . In-situ study of structural modifications in Ni-Fe/MgAl2O4 catalysts employed for ethanol steam reforming. Fuel, 2024, 373: 132336

[86]

Barawi M , Mesa C A , Collado L , Villar-García I J , Oropeza F , de la Peña O’Shea V A , García-Tecedor M . Latest advances in in situ and operando X-ray-based techniques for the characterisation of photoelectrocatalytic systems. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(35): 23125–23146

[87]

Zhang N , Xiong Y . Dynamic characterization for artificial photosynthesis through in situ X-ray photoelectron spectroscopy. Current Opinion in Green and Sustainable Chemistry, 2023, 41: 100796

[88]

Ali S A , Sadiq I , Ahmad T . Operando characterization technique innovations in single-atom catalyst-derived electrochemical CO2 conversion. Chemical Communications, 2025, 61(45): 8157–8169

[89]

Onrubia-Calvo J A , López-Rodríguez S , Villar-García I J , Pérez-Dieste V , Bueno-López A , González-Velasco J R . Molecular elucidation of CO2 methanation over a highly active, selective, and stable LaNiO3/CeO2-derived catalyst by in situ FTIR and NAP-XPS. Applied Catalysis B: Environmental, 2024, 342: 123367

[90]

Vovk E I , Wang D , Qiu Z , Liu Y , He M , Zhou X , Guan C , Yu N , Lu Y , Lang J . . In-situ structure study of a TiO2 doped MnOx-Na2WO4/SiO2 catalyst under Na2WO4 melting conditions. Topics in Catalysis, 2024,

[91]

Jin C , Si W , Chen Y , Zhao X , Zhou B , Shen Y , Zhu Q , Chu Y , Liu F , Li M . . Enhancing CO catalytic oxidation performance over Cu-doping manganese oxide octahedral molecular sieves catalyst. Journal of Colloid and Interface Science, 2024, 663: 541–553

[92]

Liu H , Yang S , Mi J , Sun C , Chen J , Li J . 4d-2p-4f gradient orbital coupling enables tandem catalysis for simultaneous abatement of N2O and CO on atomically dispersed Rh/CeO2 catalyst. Environmental Science & Technology, 2024, 58(38): 17125–17136

[93]

Akil J , Ciotonea C , Siffert S , Royer S , Pirault-Roy L , Cousin R , Poupin C . CoCuAlOx mixed oxides for the CO2 purification from oxycombustion process exhaust feed. Applied Catalysis A: General, 2023, 653: 119066

[94]

Cai J , Dong Q , Han Y , Mao B H , Zhang H , Karlsson P G , Åhlund J , Tai R Z , Yu Y , Liu Z . An APXPS endstation for gas-solid and liquid-solid interface studies at SSRF. Nuclear Science and Techniques, 2019, 30(5): 81

[95]

Dean M D , Eric K L , Daniel A F . Organic semiconductor structure and chemistry from near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Proceedings of the SPIE-The International Society for Optical Engineering, 2005, 59400A

[96]

Pin M , Choi J , Chang J H , Schenk A S , Han J , Wacławek S , Kim Y , Cheong J Y . In situ X-ray based analysis of anode materials for lithium-ion batteries: current status and future implications. Energy Storage Materials, 2024, 73: 103798

[97]

Phadke S , Coroa J , Abbas I , Yin J , Grandjean D , Janssens E , Safonova O V . High-pressure cell for in-situ grazing incidence XAS characterization of model catalysts on planar supports. Chemistry Methods, 2024, 4(11): e202400014

[98]

Sonawat D , Granowski P G , DuBridge T T , Krishna S H . Effects of Pd site structural changes on Wacker oxidation of ethylene over PdCu/zeolites. Journal of Catalysis, 2025, 442: 115901

[99]

Robert F , Lecante P , Girardon J S , Wojcieszak R , Marceau É , Briois V , Amiens C , Philippot K . In-situ study of the evolution of NiFe nanocatalysts in reductive and oxidative environments upon thermal treatments. Faraday Discussions, 2023, 242: 353–374

[100]

Tsoukalou A , Serykh A I , Willinger E , Kierzkowska A , Abdala P M , Fedorov A , Müller C R . Hydrogen dissociation sites on indium-based ZrO2-supported catalysts for hydrogenation of CO2 to methanol. Catalysis Today, 2022, 387: 38–46

[101]

Kikkawa S , Teramura K , Asakura H , Hosokawa S , Tanaka T . In-situ time-resolved XAS study on metal-support-interaction-induced morphology change of PtO2 nanoparticles supported on γ-Al2O3 under H2 reduction. Catalysis Today, 2023, 410: 157–163

[102]

Wang X , Zhang Q , Li X , Meng F , Chen S , Chen Z , Cong Y , Boyko T , Regier T , Guo E J . . Unraveling the oxygen vacancy-performance relationship in perovskite oxides at atomic precision via precise synthesis. Journal of the American Chemical Society, 2024, 146(50): 34364–34373

[103]

Thang N Q , Sabbah A , Huang C Y , Phuong N H , Lin T Y , Hussien M K , Wu H L , Wu C I , Pham N N T , Van Viet P . . Tailoring atomically dispersed Fe-induced oxygen vacancies for highly efficient gas-phase photocatalytic CO2 reduction and NO removal with diminished noxious byproducts. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(46): 31847–31860

[104]

Kurlov A , Stoian D , Baghizadeh A , Kountoupi E , Deeva E B , Willinger M , Abdala P M , Fedorov A , Müller C R . The structural evolution of Mo2C and Mo2C/SiO2 under dry reforming of methane conditions: morphology and support effects. Catalysis Science & Technology, 2022, 12(18): 5620–5628

[105]

Hall J N , Kropf A J , Delferro M , Bollini P . Kinetic and X-ray absorption spectroscopic analysis of catalytic redox cycles over highly uniform polymetal oxo clusters. ACS Catalysis, 2023, 13(8): 5406–5427

[106]

Dean D P , Deshmukh G S , Russell C K , Zhu K , Li C W , Greeley J P , Leshchev D , Stavitski E , Miller J T . Valence-to-core X-ray emission spectroscopy to resolve the size-dependent valence electronic structure of Pt nanoparticles. Catalysis Science & Technology, 2024, 14(9): 2580–2592

[107]

Gopakumar J , Benum P M , Svenum I H , Enger B C , Waller D , Rønning M . Redox transformations of Ru catalyst during NO oxidation at industrial nitric acid production conditions. Chemical Engineering Journal, 2023, 475: 146406

[108]

Pereñíguez R , Ferri D . In-situ XRD and operando XRD-XANES study of the regeneration of LaCo0.8Cu0.2O3 perovskite for preferential oxidation of CO. Materials Today Sustainability, 2024, 27: 100867

[109]

Chiarello G L , Bernareggi M , Selli E . Redox dynamics of Pt and Cu nanoparticles on TiO2 during the photocatalytic oxidation of methanol under aerobic and anaerobic conditions studied by in-situ modulated excitation X-ray absorption spectroscopy. ACS Catalysis, 2022, 12(20): 12879–12889

[110]

Fan B , Jiang M , Wang G , Zhao Y , Mei B , Han J , Ma L , Li C , Hou G , Wu T . . Elucidation of hemilabile-coordination-induced tunable regioselectivity in single-site Rh-catalyzed heterogeneous hydroformylation. Nature Communications, 2024, 15(1): 6967

[111]

Li Y , Guo L , Du M , Tian C , Zhao G , Liu Z , Liang Z , Hou K , Chen J , Liu X . . Unraveling distinct effects between CuOx and PtCu alloy sites in Pt-Cu bimetallic catalysts for CO oxidation at different temperatures. Nature Communications, 2024, 15(1): 5598

[112]

Fischer J W A , Brenig A , Klose D , van Bokhoven J A , Sushkevich V L , Jeschke G . Methane oxidation over Cu2+/[CuOH]+ pairs and site-specific kinetics in copper mordenite revealed by operando electron paramagnetic resonance and UV/visible spectroscopy. Angewandte Chemie International Edition, 2023, 62(34): e202303574

[113]

Zhang M , Gao Y , Xie C , Duan X , Lu X , Luo K , Ye J , Wang X , Gao X , Niu Q . . Designing water resistant high entropy oxide materials. Nature Communications, 2024, 15(1): 8306

[114]

Wang L , Ke J , Chai Y , Wu G , Wang C , Li L . Additive-free ethylene dimerization over well-defined nickel-zeolite catalysts. Angewandte Chemie International Edition, 2025, 64(19): e202502563

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (14755KB)

466

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/