Microstructural disorder in perovskite photovoltaics

Lifang Xie , Yuanyuan Zhou

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 87

PDF (5360KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 87 DOI: 10.1007/s11705-025-2600-z
REVIEW ARTICLE

Microstructural disorder in perovskite photovoltaics

Author information +
History +
PDF (5360KB)

Abstract

Perovskites have emerged as promising semiconductors for solar cells and optoelectronics. Despite rapid advancements in device performance over the past decade, a quantitative investigation into structure-property relationships remains absent. The core of these innovations in fabrication lies in controlling long-range and short-range microstructural disorders in perovskites, yet their systematic impact across multiple spatial scales remains underexplored. In this review, we elaborate on hidden microstructural disorders, including interfacial disorders and intra-crystal disorders, further delving into their formation mechanisms and effects on mechanical reliability and long-term operational stability of perovskites. Unraveling these effects requires a combined approach of theoretical modeling and experimental characterization. Furthermore, we discuss theory-driven engineering strategies to mitigate such microstructural disorders, enabling the predictable processing and fabrication of stable and high-efficiency perovskite solar cells. This review aims to establish a foundational framework for transitioning from microstructure observation to microstructure control, which represents a critical frontier in the advancement of perovskite photovoltaics.

Graphical abstract

Keywords

perovskite / microstructural disorder / photovoltaics

Cite this article

Download citation ▾
Lifang Xie, Yuanyuan Zhou. Microstructural disorder in perovskite photovoltaics. Front. Chem. Sci. Eng., 2025, 19(9): 87 DOI:10.1007/s11705-025-2600-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NRELBestResearch-Cell Efficiency Chart. 2005

[2]

Kojima A , Teshima K , Shirai Y , Miyasaka T . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051

[3]

Brandt R E , Poindexter J R , Gorai P , Kurchin R C , Hoye R L Z , Nienhaus L , Wilson M W B , Polizzotti J A , Sereika R , Žaltauskas R . . Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening. Chemistry of Materials, 2017, 29(11): 4667–4674

[4]

Brandt R E , Stevanović V , Ginley D S , Buonassisi T . Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Communications, 2015, 5(2): 265–275

[5]

Brenner T M , Egger D A , Kronik L , Hodes G , Cahen D . Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews: Materials, 2016, 1(1): 15007

[6]

Ball J M , Petrozza A . Defects in perovskite-halides and their effects in solar cells. Nature Energy, 2016, 1(11): 16149

[7]

Zhou Y , Game O S , Pang S , Padture N P . Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. Journal of Physical Chemistry Letters, 2015, 6(23): 4827–4839

[8]

Rothmann M U , Kim J S , Borchert J , Lohmann K B , O’Leary C M , Sheader A A , Clark L , Snaith H J , Johnston M B , Nellist P D . . Atomic-scale microstructure of metal halide perovskite. Science, 2020, 370(6516): eabb5940

[9]

Dunlap-Shohl W A , Zhou Y , Padture N P , Mitzi D B . Synthetic approaches for halide perovskite thin films. Chemical Reviews, 2019, 119(5): 3193–3295

[10]

Li W , Yadavalli S K , Lizarazo-Ferro D , Chen M , Zhou Y , Padture N P , Zia R . Subgrain special boundaries in halide perovskite thin films restrict carrier diffusion. ACS Energy Letters, 2018, 3(11): 2669–2670

[11]

Yun J S , Kim J , Young T , Patterson R J , Kim D , Seidel J , Lim S , Green M A , Huang S , Ho-Baillie A . Humidity-induced degradation via grain boundaries of HC(NH2)2PbI3 planar perovskite solar cells. Advanced Functional Materials, 2018, 28(11): 1705363

[12]

Zong Y , Zhou Y , Zhang Y , Li Z , Zhang L , Ju M G , Chen M , Pang S , Zeng X C , Padture N P . Continuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stability. Chem, 2018, 4(6): 1404–1415

[13]

Zong Y , Zhou Z , Chen M , Padture N P , Zhou Y . Lewis-adduct mediated grain-boundary functionalization for efficient ideal-bandgap perovskite solar cells with superior stability. Advanced Energy Materials, 2018, 8(27): 1800997

[14]

Tang X , van den Berg M , Gu E , Horneber A , Matt G J , Osvet A , Meixner A J , Zhang D , Brabec C J . Local observation of phase segregation in mixed-halide perovskite. Nano Letters, 2018, 18(3): 2172–2178

[15]

Meggiolaro D , Mosconi E , De Angelis F . Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Letters, 2019, 4(3): 779–785

[16]

Stecker C , Liu K , Hieulle J , Ohmann R , Liu Z , Ono L K , Wang G , Qi Y . Surface defect dynamics in organic-inorganic hybrid perovskites: from mechanism to interfacial properties. ACS Nano, 2019, 13(10): 12127–12136

[17]

Li F , Deng X , Qi F , Li Z , Liu D , Shen D , Qin M , Wu S , Lin F , Jang S H . . Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. Journal of the American Chemical Society, 2020, 142(47): 20134–20142

[18]

Zheng G , Zhu C , Ma J , Zhang X , Tang G , Li R , Chen Y , Li L , Hu J , Hong J . . Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nature Communications, 2018, 9(1): 2793

[19]

Leblebici S Y , Leppert L , Li Y , Reyes-Lillo S E , Wickenburg S , Wong E , Lee J , Melli M , Ziegler D , Angell D K . . Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nature Energy, 2016, 1(8): 16093

[20]

Hao M , Zhou Y . Grain-boundary grooves in perovskite solar cells. Joule, 2024, 8(4): 913–921

[21]

Hao M , Duan T , Ma Z , Ju M G , Bennett J A , Liu T , Guo P , Zhou Y . Flattening grain-boundary grooves for perovskite solar cells with high optomechanical reliability. Advanced Materials, 2023, 35: 2211155

[22]

Xiao T , Hao M , Duan T , Li Y , Zhang Y , Guo P , Zhou Y . Elimination of grain surface concavities for improved perovskite thin-film interfaces. Nature Energy, 2024, 9(8): 999

[23]

Xiao X , Li W , Fang Y , Liu Y , Shao Y , Yang S , Zhao J , Dai X , Zia R , Huang J . Benign ferroelastic twin boundaries in halide perovskites for charge carrier transport and recombination. Nature Communications, 2020, 11(1): 2215

[24]

Jiang J , Sun X , Chen X , Wang B , Chen Z , Hu Y , Guo Y , Zhang L , Ma Y , Gao L . . Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nature Communications, 2019, 10(1): 4145

[25]

Yao W , Fang S , Hu Z , Huang L , Liu X , Zhang H , Zhang J , Zhu Y . Dependence of the heterogeneity of grain boundaries on adjacent grains in perovskites and its impact on photovoltage. Small, 2022, 18(8): 2105140

[26]

Qin T X , You E M , Zhang M X , Zheng P , Huang X F , Ding S Y , Mao B W , Tian Z Q . Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy. Light, Science & Applications, 2021, 10(1): 84

[27]

Adhyaksa G W P , Brittman S , Abolins H , Lof A , Li X , Keelor J D , Luo Y , Duevski T , Heeren R M A , Ellis S R . . Understanding detrimental and beneficial grain boundary effects in halide perovskites. Advanced Materials, 2018, 30(52): 1804792

[28]

Edri E , Kirmayer S , Henning A , Mukhopadhyay S , Gartsman K , Rosenwaks Y , Hodes G , Cahen D . Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Letters, 2014, 14(2): 1000–1004

[29]

Long R , Prezhdo O V . Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. Journal of the American Chemical Society, 2014, 136(11): 4343–4354

[30]

Yun J S , Ho-Baillie A , Huang S , Woo S H , Heo Y , Seidel J , Huang F , Cheng Y B , Green M A . Benefit of grain boundaries in organic-inorganic halide planar perovskite solar cells. Journal of Physical Chemistry Letters, 2015, 6(5): 875–880

[31]

Kim G Y , Oh S H , Nguyen B P , Jo W , Kim B J , Lee D G , Jung H S . Efficient carrier separation and intriguing switching of bound charges in inorganic-organic lead halide solar cells. Journal of Physical Chemistry Letters, 2015, 6(12): 2355–2362

[32]

Yin W J , Shi T , Yan Y . Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced Materials, 2014, 26(27): 4653–4658

[33]

Zhou Y , Herz L M , Jen A K Y , Saliba M . Advances and challenges in understanding the microscopic structure-property-performance relationship in perovskite solar cells. Nature Energy, 2022, 7(9): 794–807

[34]

Eames C , Frost J M , Barnes P R F , O’Regan B C , Walsh A , Islam M S . Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 2015, 6(1): 7497

[35]

Haruyama J , Sodeyama K , Han L , Tateyama Y . First-principles study of ion diffusion in perovskite solar cell sensitizers. Journal of the American Chemical Society, 2015, 137(32): 10048–10051

[36]

Yuan Y , Huang J . Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Accounts of Chemical Research, 2016, 49(2): 286–293

[37]

Li J , Dong Q , Li N , Wang L . Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Advanced Energy Materials, 2017, 7(14): 1602922

[38]

Kato Y , Ono L K , Lee M V , Wang S , Raga S R , Qi Y . Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Advanced Materials Interfaces, 2015, 2(13): 1500195

[39]

Domanski K , Correa-Baena J P , Mine N , Nazeeruddin M K , Abate A , Saliba M , Tress W , Hagfeldt A , Grätzel M . Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano, 2016, 10(6): 6306–6314

[40]

Li Y , Xu X , Wang C , Ecker B , Yang J , Huang J , Gao Y . Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film. Journal of Physical Chemistry C, 2017, 121(7): 3904–3910

[41]

Cai S , Dai J , Shao Z , Rothmann M U , Jia Y , Gao C , Hao M , Pang S , Wang P , Lau S P . . Atomically resolved electrically active intragrain interfaces in perovskite semiconductors. Journal of the American Chemical Society, 2022, 144(4): 1910–1920

[42]

Chen P , Xiao Y , Hu J , Li S , Luo D , Su R , Caprioglio P , Kaienburg P , Jia X , Chen N . . Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature, 2024, 625(7995): 516–522

[43]

Dai Z , Yadavalli S K , Chen M , Abbaspourtamijani A , Qi Y , Padture N P . Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science, 2021, 372(6542): 618–622

[44]

Duan T , You S , Chen M , Yu W , Li Y , Guo P , Berry J J , Luther J M , Zhu K , Zhou Y . Chiral-structured heterointerfaces enable durable perovskite solar cells. Science, 2024, 384(6698): 878–884

[45]

Lee J W , Tan S , Seok S I , Yang Y , Park N G . Rethinking the A cation in halide perovskites. Science, 2022, 375(6583): eabj1186

[46]

Jung E H , Jeon N J , Park E Y , Moon C S , Shin T J , Yang T Y , Noh J H , Seo J . Efficient, stable, and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567(7749): 511–515

[47]

Jiang Q , Zhao Y , Zhang X , Yang X , Chen Y , Chu Z , Ye Q , Li X , Yin Z , You J . Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019, 13(7): 460–466

[48]

Yoo J J , Wieghold S , Sponseller M C , Chua M R , Bertram S N , Hartono N T P , Tresback J S , Hansen E C , Correa-Baena J P , Bulovic V . . An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy & Environmental Science, 2019, 12(7): 2192–2199

[49]

Yang Y , Xiong Q , Wu J , Tu Y , Sun T , Li G , Liu X , Wang X , Du Y , Deng C . . Poly(3-hexylthiophene)/perovskite heterointerface by spinodal decomposition enabling efficient and stable perovskite solar cells. Advanced Materials, 2024, 36(7): 2310800

[50]

Wang S , Sakurai T , Wen W , Qi Y . Energy level alignment at interfaces in metal halide perovskite solar cells. Advanced Materials Interfaces, 2018, 5(22): 1800260

[51]

Sakhatskyi K , John R A , Guerrero A , Tsarev S , Sabisch S , Das T , Matt G J , Yakunin S , Cherniukh I , Kotyrba M . . Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Letters, 2022, 7(10): 3401–3414

[52]

Chen J , Wang X , Wang T , Li J , Chia H Y , Liang H , Xi S , Liu S , Guo X , Guo R . . Determining the bonding-degradation trade-off at heterointerfaces for increased efficiency and stability of perovskite solar cells. Nature Energy, 2025, 10: 181–190

[53]

De Bastiani M , Armaroli G , Jalmood R , Ferlauto L , Li X , Tao R , Harrison G T , Eswaran M K , Azmi R , Babics M . . Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Energy Letters, 2022, 7(2): 827–833

[54]

Zhang H , Pfeifer L , Zakeeruddin S M , Chu J , Grätzel M . Tailoring passivators for highly efficient and stable perovskite solar cells. Nature Reviews Chemistry, 2023, 7(9): 632–652

[55]

Yusoff A . R bin M, Vasilopoulou M, Georgiadou D G, Palilis L C, Abate A, Nazeeruddin M K. Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy & Environmental Science, 2021, 14(5): 2906–2953

[56]

Cai W , Wang Y , Shang W , Liu J , Wang M , Dong Q , Han Y , Li W , Ma H , Wang P . . Lewis base governing superfacial proton behavior of hybrid perovskite: basicity dependent passivation strategy. Chemical Engineering Journal, 2022, 446: 137033

[57]

Cao Q , Wang T , Yang J , Zhang Y , Li Y , Pu X , Zhao J , Chen H , Li X , Tojiboyev I . . Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage. Advanced Functional Materials, 2022, 32(32): 2201036

[58]

Ni Z , Bao C , Liu Y , Jiang Q , Wu W Q , Chen S , Dai X , Chen B , Hartweg B , Yu Z . . Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science, 2020, 367(6484): 1352–1358

[59]

Wei K , Yang L , Deng J , Luo Z , Zhang X , Zhang J . Facile exfoliation of the perovskite thin film for visualizing the buried interfaces in perovskite solar cells. ACS Applied Energy Materials, 2022, 5(6): 7458–7465

[60]

Mohamad Noh M F , Arzaee N A , Harif M N , Mat Teridi M A , Mohd Yusoff A , Mahmood Zuhdi A W . Defect engineering at buried interface of perovskite solar cells. Small Methods, 2024, 8(12): 2400385

[61]

Nukunudompanich M , Suzuki K , Kameda K , Manzhos S , Ihara M . Nano-scale smooth surface of the compact-TiO2 layer via spray pyrolysis for controlling the grain size of the perovskite layer in perovskite solar cells. RSC Advances, 2023, 13(40): 27686–27695

[62]

Zhao L , Tang P , Luo D , Dar M I , Eickemeyer F T , Arora N , Hu Q , Luo J , Liu Y , Zakeeruddin S M . . Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Science Advances, 2022, 8(35): eabo3733

[63]

Akyildiz O , Ogurtani T O . Thermal grooving by surface diffusion: a review of classical thermo-kinetics approach. Hittite Journal of Science and Engineering, 2017, 4(1): 7–16

[64]

Mullins W W . Theory of thermal grooving. Journal of Applied Physics, 1957, 28(3): 333–339

[65]

Wang M , Fei C , Uddin M A , Huang J . Influence of voids on the thermal and light stability of perovskite solar cells. Science Advances, 2022, 8(38): eabo5977

[66]

Shao Y , Fang Y , Li T , Wang Q , Dong Q , Deng Y , Yuan Y , Wei H , Wang M , Gruverman A . . Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy & Environmental Science, 2016, 9(5): 1752–1759

[67]

Xue D J , Hou Y , Liu S C , Wei M , Chen B , Huang Z , Li Z , Sun B , Proppe A H , Dong Y . . Regulating strain in perovskite thin films through charge-transport layers. Nature Communications, 2020, 11(1): 1514

[68]

Jacobsson T J , Schwan L J , Ottosson M , Hagfeldt A , Edvinsson T . Determination of thermal expansion coefficients and locating the temperature-induced phase transition in methylammonium lead perovskites using X-ray diffraction. Inorganic Chemistry, 2015, 54(22): 10678–10685

[69]

Hackl K , Fischer F D , Svoboda J . A variational approach to the modelling of grooving in a three-dimensional setting. Acta Materialia, 2017, 129: 331–342

[70]

Zhao B , Shvindlerman L , Gottstein G . On the orientation dependence of grain boundary triple line energy in Cu. International Journal of Materials Research, 2014, 105(12): 1151–1158

[71]

Liang Z , Zhang Y , Xu H , Chen W , Liu B , Zhang J , Zhang H , Wang Z , Kang D H , Zeng J . . Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 2023, 624(7992): 557–563

[72]

Bai Y , Huang Z , Zhang X , Lu J , Niu X , He Z , Zhu C , Xiao M , Song Q , Wei X . . Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science, 2022, 378(6621): 747–754

[73]

Hao M , Yang J , Yu W , Lawrie B J , Guo P , Zhang X , Duan T , Xiao T , Chen L , Xiang Y . . Nanoscopic cross-grain cation homogenization in perovskite solar cells. Nature Nanotechnology, 2025, 20(5): 630

[74]

ZhaoBShvindlermanLGottsteinG. Line tension of grain boundary triple junctions in the copper tricrystals. In: TMS 2014 143rd Annual Meeting & Exhibition. Cham: Springer, 2014, 1063–1068

[75]

Saylor D M , Rohrer G S . Measuring the influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals. Journal of the American Ceramic Society, 1999, 82(6): 1529–1536

[76]

Mullins W W . The effect of thermal grooving on grain boundary motion. Acta Metallurgica, 1958, 6(6): 414–427

[77]

Saidaminov M I , Williams K , Wei M , Johnston A , Quintero-Bermudez R , Vafaie M , Pina J M , Proppe A H , Hou Y , Walters G . . Multi-cation perovskites prevent carrier reflection from grain surfaces. Nature Materials, 2020, 19(4): 412–418

[78]

Jiang J , Shi M , Xia Z , Cheng Y , Chu Z , Zhang W , Li J , Yin Z , You J , Zhang X . Efficient pure-red perovskite light-emitting diodes with strong passivation via ultrasmall-sized molecules. Science Advances, 2024, 10(18): eadn5683

[79]

Li T , Wang S , Yang J , Pu X , Gao B , He Z , Cao Q , Han J , Li X . Multiple functional groups synergistically improve the performance of inverted planar perovskite solar cells. Nano Energy, 2021, 82: 105742

[80]

Jeong J , Kim M , Seo J , Lu H , Ahlawat P , Mishra A , Yang Y , Hope M A , Eickemeyer F T , Kim M . . Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592(7854): 381–385

[81]

Tao S , Schmidt I , Brocks G , Jiang J , Tranca I , Meerholz K , Olthof S . Absolute energy level positions in tin- and lead-based halide perovskites. Nature Communications, 2019, 10(1): 2560

[82]

Chen Y , Yang N , Zheng G , Pei F , Zhou W , Zhang Y , Li L , Huang Z , Liu G , Yin R . . Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science, 2024, 385(6708): 554–560

[83]

Zhou Z , Liang J , Zhang Z , Zheng Y , Wu X , Tian C , Huang Y , Wang J , Yang Y , Sun A . . Direct in situ conversion of lead iodide to a highly oriented and crystallized perovskite thin film via sequential deposition for 23.48% efficient and stable photovoltaic devices. ACS Applied Materials & Interfaces, 2022, 14(44): 49886–49897

[84]

Dai J , Xiong J , Liu N , He Z , Zhang Y , Zhan S , Fan B , Liu W , Huang X , Hu X . . Synergistic dual-interface modification strategy for highly reproducible and efficient PTAA-based inverted perovskite solar cells. Chemical Engineering Journal, 2023, 453: 139988

[85]

Luo C , Zheng G , Gao F , Wang X , Zhan C , Gao X , Zhao Q . Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nature Photonics, 2023, 17(10): 856–864

[86]

Hu H , Ritzer D B , Diercks A , Li Y , Singh R , Fassl P , Jin Q , Schackmar F , Paetzold U W , Nejand B A . Void-free buried interface for scalable processing of p-i-n-based FAPbI3 perovskite solar modules. Joule, 2023, 7(7): 1574–1592

[87]

Fei C , Li N , Wang M , Wang X , Gu H , Chen B , Zhang Z , Ni Z , Jiao H , Xu W . . Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science, 2023, 380(6647): 823–829

[88]

Chen S , Xiao X , Chen B , Kelly L L , Zhao J , Lin Y , Toney M F , Huang J . Crystallization in one-step solution deposition of perovskite films: upward or downward. Science Advances, 2021, 7(4): eabb2412

[89]

Chen S , Dai X , Xu S , Jiao H , Zhao L , Huang J . Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science, 2021, 373(6557): 902–907

[90]

Nix W D , Clemens B M . Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin films. Journal of Materials Research, 1999, 14(8): 3467–3473

[91]

Zou Y , Guo R , Buyruk A , Chen W , Xiao T , Yin S , Jiang X , Kreuzer L P , Mu C , Ameri T . . Sodium dodecylbenzene sulfonate interface modification of methylammonium lead iodide for surface passivation of perovskite solar cells. ACS Applied Materials & Interfaces, 2020, 12(47): 52643–52651

[92]

Wang T , Xie M , Abbasi S , Cheng Z , Liu H , Shen W . High efficiency perovskite solar cells with tailorable surface wettability by surfactant. Journal of Power Sources, 2020, 448: 227584

[93]

Yuan S , Zheng D , Zhang T , Wang Y , Qian F , Wang L , Li X , Zheng H , Diao Z , Zhang P . . Scalable preparation of perovskite films with homogeneous structure via immobilizing strategy for high-performance solar modules. Nature Communications, 2025, 16(1): 2052

[94]

Sun J , Chen W , Ren Y , Niu Y , Yang Z , Mo L , Huang Y , Li Z , Zhang H , Hu L . Molecular exchange and passivation at interface afford high-performing perovskite solar cells with efficiency over 24%. Journal of Energy Chemistry, 2023, 82: 219–227

[95]

Zhang S , Ye F , Wang X , Chen R , Zhang H , Zhan L , Jiang X , Li Y , Ji X , Liu S . . Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science, 2023, 380(6643): 404–409

[96]

Chen H , Yang J , Cao Q , Wang T , Pu X , He X , Chen X , Li X . π-Interactions suppression of buried interface defects for efficient and stable inverted perovskite solar cells. Nano Energy, 2023, 117: 108883

[97]

Jung E D , Harit A K , Kim D H , Jang C H , Park J H , Cho S , Song M H , Woo H Y . Multiply charged conjugated polyelectrolytes as a multifunctional interlayer for efficient and scalable perovskite solar cells. Advanced Materials, 2020, 32(30): 2002333

[98]

Degani M , An Q , Albaladejo-Siguan M , Hofstetter Y J , Cho C , Paulus F , Grancini G , Vaynzof Y . 23.7% efficient inverted perovskite solar cells by dual interfacial modification. Science Advances, 2021, 7(49): eabj7930

[99]

Rothmann M U , Li W , Zhu Y , Bach U , Spiccia L , Etheridge J , Cheng Y B . Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3. Nature Communications, 2017, 8(1): 14547

[100]

Thind A S , Luo G , Hachtel J A , Morrell M V , Cho S B , Borisevich A Y , Idrobo J C , Xing Y , Mishra R . Atomic structure and electrical activity of grain boundaries and ruddlesden-popper faults in cesium lead bromide perovskite. Advanced Materials, 2019, 31(4): 1805047

[101]

Reiche M , Kittler M , Erfurth W , Pippel E , Sklarek K , Blumtritt H , Haehnel A , Uebensee H . On the electronic properties of a single dislocation. Journal of Applied Physics, 2014, 115(19): 194303

[102]

Cai S , Li Z , Zhang Y , Liu T , Wang P , Ju M G , Pang S , Lau S P , Zeng X C , Zhou Y . Intragrain impurity annihilation for highly efficient and stable perovskite solar cells. Nature Communications, 2024, 15(1): 2329

[103]

Duan T , Wang W , Cai S , Zhou Y . On-chip light-incorporated in situ transmission electron microscopy of metal halide perovskite materials. ACS Energy Letters, 2023, 8(7): 3048–3053

[104]

You P , Li G , Tang G , Cao J , Yan F . Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy & Environmental Science, 2020, 13(4): 1187–1196

[105]

Zhang Y , Zhou Y . Machine vision for interpreting perovskite grain characteristics. Accounts of Materials Research, 2023, 4(3): 209–211

[106]

Zhang Y , Zhou Y . Machine learning quantification of grain characteristics for perovskite solar cells. Matter, 2024, 7(1): 255–265

[107]

Zhou H , Wang K , Nie C , Deng J , Chen Z , Zhang K , Zhao X , Liang J , Huang D , Zhao L . . Quantitative analysis of perovskite morphologies employing deep learning framework enables accurate solar cell performance prediction. Small, 2025, 21(18): 2408528

[108]

Zhang Y , Yu R , Li M , He Z , Dong Y , Xu Z , Wang R , Ma Z , Tan Z . Amphoteric ion bridged buried interface for efficient and stable inverted perovskite solar cells. Advanced Materials, 2024, 36(1): 2310203

[109]

Orr K W P , Diao J , Dey K , Hameed M , Dubajić M , Gilbert H L , Selby T A , Zelewski S J , Han Y , Fitzsimmons M R . . Strain heterogeneity and extended defects in halide perovskite devices. ACS Energy Letters, 2024, 9(6): 3001–3011

[110]

Hou P , Hu S , Zhang Y , Pan J , Hu M , Chen J , Duan B , Wan L , Lv P , Zhu Y . . Ordered self-assembled monolayer improved the buried interface of wide bandgap perovskite for efficient and stable semi-transparent solar cells. Chemical Engineering Journal, 2025, 503: 158499

[111]

Li Y , Fan H , Xu F , Wang T , Shan C , Li W , Gu X , Lai X , Luo D , Sun Z . . High-performance inverted perovskite solar cells enhanced via partial replacement of dimethyl sulfoxide with N-methyl-2-pyrrolidinone. Solar RRL, 2022, 6(12): 2200816

RIGHTS & PERMISSIONS

The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (5360KB)

245

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/