Synergistic La2O3-La(OH)3 interface engineering enables deep and durable dehydrogenation of 12H-N-propylcarbazole over Pd/Al2O3 catalysts

Li Liu , Tian Wu , Yu Zhang , Chenggen Li , Yuan Dong , Ming Yang

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 86

PDF (6168KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 86 DOI: 10.1007/s11705-025-2599-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Synergistic La2O3-La(OH)3 interface engineering enables deep and durable dehydrogenation of 12H-N-propylcarbazole over Pd/Al2O3 catalysts

Author information +
History +
PDF (6168KB)

Abstract

Targeting the demand for efficient dehydrogenation catalysts in liquid organic hydrogen carriers, we synthesized a series of La-doped alumina supports by a co-precipitation/hydrothermal route and deposited Pd nanoparticles to promote 12H-N-propylcarbazole (NPCZ) dehydrogenation. Comprehensive characterization shows that an optimal 10 wt % La loading generates intimately interfaced La2O3 and La(OH)3 nanodomains that anchor highly dispersed Pd particles (~2.2 nm), donate electrons to Pd0, and create bifunctional acid-base sites together with a fast hydrogen-spillover network. These synergistic features accelerate C–H activation and H-migration, enabling Pd/La10AlO to deliver the theoretical H2 release (5.43 wt %) in 150 min at 180 °C with 99% NPCZ selectivity and no activity loss over ten cycles. Kinetic analysis reveals markedly lower apparent activation energies for all three successive dehydrogenation steps, with a ~65 kJ·mol–1 drop in the rate-limiting 4H-NPCZ→NPCZ stage, underscoring the thermodynamic and kinetic benefits conferred by the dual-phase La promoter. This work provides the first mechanistic evidence that coexisting La2O3/La(OH)3 can cooperatively tune the electronic and interfacial structure of Pd/Al2O3, offering clear guidelines for designing durable, high-performance dehydrogenation catalysts for N-heterocyclic liquid organic hydrogen carriers.

Graphical abstract

Keywords

LOHCs / La promoter / dual-phase synergy / Pd nanoparticle dispersion / electronic structure modulation

Cite this article

Download citation ▾
Li Liu, Tian Wu, Yu Zhang, Chenggen Li, Yuan Dong, Ming Yang. Synergistic La2O3-La(OH)3 interface engineering enables deep and durable dehydrogenation of 12H-N-propylcarbazole over Pd/Al2O3 catalysts. Front. Chem. Sci. Eng., 2025, 19(9): 86 DOI:10.1007/s11705-025-2599-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Turner J M . The matter of a clean energy future. Science, 2022, 376(6600): 1361

[2]

Guo L J , Su J Z , Wang Z Q , Shi J W , Guan X J , Cao W , Ou Z S . Hydrogen safety: an obstacle that must be overcome on the road towards future hydrogen economy. International Journal of Hydrogen Energy, 2024, 51: 1055–1078

[3]

Yang F Y , Wang T Z , Deng X T , Dang J , Huang Z Y , Hu S , Li Y Y , Ouyang M G . Review on hydrogen safety issues: incident statistics, hydrogen diffusion, and detonation process. International Journal of Hydrogen Energy, 2021, 46(61): 31467–31488

[4]

Preuster P , Papp C , Wasserscheid P . Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Accounts of Chemical Research, 2017, 50(1): 74–85

[5]

Gianotti E , Taillades-Jacquin M , Rozière J , Jones D J . High-purity hydrogen generation via dehydrogenation of organic carriers: a review on the catalytic process. ACS Catalysis, 2018, 8(5): 4660–4680

[6]

Choi I Y , Shin B S , Kwak S K , Kang K S , Yoon C W , Kang J W . Thermodynamic efficiencies of hydrogen storage processes using carbazole-based compounds. International Journal of Hydrogen Energy, 2016, 41(22): 9367–9373

[7]

Zhao Y H , Li C G , Zhu Y Z , Liu L , Zhu T , Dong Y , Cheng H S , Yang M . Controlled electron transfer at the Ni-ZnO interface for ultra-fast and stable hydrogenation of N-propylcarbazole. Applied Catalysis B: Environmental, 2023, 334: 122792

[8]

Wang B , Chen Y T , Chang T Y , Jiang Z , Huang Z Q , Wang S Y , Chang C R , Chen Y S , Wei J J , Yang S . . Facet-dependent catalytic activities of Pd/rGO: exploring dehydrogenation mechanism of dodecahydro-N-ethylcarbazole. Applied Catalysis B: Environmental, 2020, 266: 118658

[9]

Dong C Y , Gao Z R , Li Y L , Peng M , Wang M , Xu Y , Li C Y , Xu M , Deng Y C , Qin X T . . Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nature Catalysis, 2022, 5(6): 485–493

[10]

Sotoodeh F , Smith K J . Structure sensitivity of dodecahydro-N-ethylcarbazole dehydrogenation over Pd catalysts. Journal of Catalysis, 2011, 279(1): 36–47

[11]

Liu L , Zhang Q Y , Deng C W , Li C G , Zhao Y H , Gao R Y , Zhu T , Dong Y , Cheng H S , Yang M . Pyridine N-induced intra-pore and interfacial dual-confined Pd0-Pdδ+ synergistic catalysis for ultra-stable dehydrogenation of dodecahydro-N-propylcarbazole. Applied Catalysis B: Environment and Energy, 2024, 351: 123987

[12]

Shi L B , Zhou Y M , Tan X , Qi S T , Smith K J , Yi C H , Yang B L . The effects of alumina morphology and Pt electron property on reversible hydrogenation and dehydrogenation of dibenzyltoluene as a liquid organic hydrogen carrier. International Journal of Hydrogen Energy, 2022, 47(7): 4704–4715

[13]

Peters W , Seidel A , Herzog S , Bösmann A , Schwieger W , Wasserscheid P . Macrokinetic effects in perhydro-N-ethylcarbazole dehydrogenation and H2 productivity optimization by using egg-shell catalysts. Energy & Environmental Science, 2015, 8(10): 3013–3021

[14]

Meng H , Yang Y S , Shen T Y , Yin Z M , Zhang J , Yan H , Wei M . Highly efficient hydrogen production from dehydrogenation reaction of nitrogen heterocycles via Pd0-Pdδ+ synergistic catalysis. ACS Catalysis, 2023, 13(13): 9234–9244

[15]

Chen Z W , Zhang M D , Hua J W , Yang M , Dong Y , Cheng H S . Remarkable activity of Pd catalyst supported on alumina synthesized via a hydrothermal route for hydrogen release of perhydro-N-propylcarbazole. International Journal of Hydrogen Energy, 2021, 46(15): 9718–9729

[16]

Li C , Luo R , Zhu T , Zhao Y , Xu K , Wu M , Wang S , Dong Y , Yang M . Tailoring the Pd-BaO interface for superior efficiency and durability in perhydro-N-propylcarbazole dehydrogenation. Applied Catalysis B: Environment and Energy, 2025, 371: 125197

[17]

Li C G , Zhang Q Y , Xu Z G , Liu L , Zhu T , Chen Z W , Dong Y , Yang M . Ce-promoted highly active bifunctional Pd/Al2O3 catalyst for reversible catalytic hydrogenation and dehydrogenation of N-propylcarbazole. International Journal of Hydrogen Energy, 2023, 48(1): 90–100

[18]

He J H , Wang T J , Bi X Q , Tian Y B , Huang C D , Xu W B , Hu Y , Wang Z , Jiang B , Gao Y M . . Subsurface A-site vacancy activates lattice oxygen in perovskite ferrites for methane anaerobic oxidation to syngas. Nature Communications, 2024, 15(1): 5422

[19]

Lee J , Lee M W , Kim M J , Lee J H , Lee E J , Jung C , Choung J W , Kim C H , Lee K Y . Effects of La incorporation in catalytic activity of Ag/La-CeO2 catalysts for soot oxidation. Journal of Hazardous Materials, 2021, 414: 125523

[20]

Jing Y , Cai Z X , Liu C , Toyao T , Maeno Z , Asakura H , Hiwasa S , Nagaoka S , Kondoh H , Shimizu K . Promotional effect of La in the three-way catalysis of La-loaded Al2O3-supported Pd catalysts (Pd/La/Al2O3). ACS Catalysis, 2020, 10(2): 1010–1023

[21]

Zhang Y S , Xue H Y , Cheng M Q , Yang X M , Zhang Z , Zhao X R , Rezayan A , Han D D , Wu D , Xu C B . Oxygen Vacancy-induced interfacial lanthanum hydride and hydroxide bifunctional sites for selective hydrogenolysis of furanic compounds to alkyl diols. ACS Catalysis, 2024, 14(13): 10009–10021

[22]

Araujo J C S , Zanchet D , Rinaldi R , Schuchardt U , Hori C E , Fierro J L G , Bueno J M C . The effects of La2O3 on the structural properties of La2O3-Al2O3 prepared by the sol-gel method and on the catalytic performance of Pt/La2O3-Al2O3 towards steam reforming and partial oxidation of methane. Applied Catalysis B: Environmental, 2008, 84(3–4): 552–562

[23]

Han S , Zhao D , Otroshchenko T , Lund H , Bentrup U , Kondratenko V A , Rockstroh N , Bartling S , Doronkin D E , Grunwaldt J D . . Elucidating the nature of active sites and fundamentals for their creation in Zn-containing ZrO2-based catalysts for nonoxidative propane dehydrogenation. ACS Catalysis, 2020, 10(15): 8933–8949

[24]

Zhu T , Liu L , Zhao Y , Gao M , Dong Y , Xia D , Huang P , Cheng H , Yang M . La promoted Ni0-Niδ+ synergistic interaction for rapid and deep hydrogenation of liquid organic hydrogen carriers. Chemical Engineering Journal, 2024, 493: 152354

[25]

Kang J G , Kim Y I , Won Cho D , Sohn Y . Synthesis and physicochemical properties of La(OH)3 and La2O3 nanostructures. Materials Science in Semiconductor Processing, 2015, 40: 737–743

[26]

Jiang Y , Fan X , Xiao X , Huang X , Liu M , Li S , Ge H , La Chen . L2O3-modified highly dispersed AuPd alloy nanoparticles and their superior catalysis on the dehydrogenation of formic acid. International Journal of Hydrogen Energy, 2017, 42(15): 9353–9360

[27]

Chen K , Wan J , Lin J S , Zhou R X . Comparative study of three-way catalytic performance over Pd/CeO2-ZrO2-Al2O3 and Pd/La-Al2O3 catalysts: new insights into microstructure and thermal stability. Molecular Catalysis, 2022, 526: 112361

[28]

Zhang P , He M M , Li F K , Fang D Z , Li C , Mo X P , Li K X , Wang H . Unlocking bimetallic active centers via heterostructure engineering for exceptional phosphate electrosorption: internal electric field-induced electronic structure reconstruction. Environmental Science & Technology, 2024, 58(4): 2112–2122

[29]

Ullah S , Lovell E C , Tan T H , Xie B Q , Kumar P V , Amal R , Scott J . Photoenhanced CO2 methanation over La2O3 promoted Co/TiO2 catalysts. Applied Catalysis B: Environmental, 2021, 294: 120248

[30]

Yang W P , Qi F Y , An W J , Yu H C , Liu S T , Ma P P , Chen R , Liu S X , Lou L L , Yu K . Local electronic structure modulation of interfacial oxygen vacancies promotes the oxygen activation capacity of Pt/Ce1–xMxO2–δ. ACS Catalysis, 2024, 14(8): 5936–5948

[31]

Xu J W , Zhang Y , Xu X L , Fang X Z , Xi R , Liu Y M , Zheng R Y , Wang X . Constructing La2B2O7 (B = Ti, Zr, Ce) compounds with three typical crystalline phases for the oxidative coupling of methane: the effect of phase structures, superoxide anions, and alkalinity on the reactivity. ACS Catalysis, 2019, 9(5): 4030–4045

[32]

Xu J W , Peng L , Fang X Z , Fu Z Y , Liu W M , Xu X L , Peng H G , Zheng R Y , Wang X . Developing reactive catalysts for low temperature oxidative coupling of methane: on the factors deciding the reaction performance of Ln2Ce2O7 with different rare earth A sites. Applied Catalysis A: General, 2018, 552: 117–128

[33]

Zhang T , Wang W , Gu F , Xu W , Zhang J , Li Z , Zhu T , Xu G , Zhong Z , Su F . Enhancing the low-temperature CO2 methanation over Ni/La-CeO2 catalyst: the effects of surface oxygen vacancy and basic site on the catalytic performance. Applied Catalysis B: Environmental, 2022, 312: 121385

[34]

García-Melchor M , López N . Homolytic products from heterolytic paths in H2 dissociation on metal oxides: the example of CeO2. Journal of Physical Chemistry C, 2014, 118(20): 10921–10926

[35]

He F , Zhuang J , Lu B , Liu X , Zhang J , Gu F , Zhu M , Xu J , Zhong Z , Xu G . . Ni-based catalysts derived from Ni-Zr-Al ternary hydrotalcites show outstanding catalytic properties for low-temperature CO2 methanation. Applied Catalysis B: Environmental, 2021, 293: 120218

[36]

Ling L L , Yang W J , Yan P , Wang M , Jiang H L . Light-assisted CO2 hydrogenation over Pd3Cu@UiO-66 promoted by active sites in close proximity. Angewandte Chemie-International Edition, 2022, 61(12): e202116396

[37]

Zhang W , Wang H Z , Jiang J W , Sui Z J , Zhu Y A , Chen D , Zhou X G . Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles. ACS Catalysis, 2020, 10(21): 12932–12942

[38]

Vecchietti J , Baltanás M A , Gervais C , Collins S E , Blanco G , Matz O , Calatayud M , Bonivardi A . Insights on hydride formation over cerium-gallium mixed oxides: a mechanistic study for efficient H2 dissociation. Journal of Catalysis, 2017, 345: 258–269

[39]

Zhong C , Yang Y , Fang Y , Chen J , Feng B , Wang H , Luo W , Yao Y . Insights into the enhanced hydrogen adsorption on M/La2O3 (M = Ni, Co, Fe). Physical Chemistry Chemical Physics, 2023, 25(22): 15547–15554

[40]

Yang S , Zhu X Y , Chen S R , Zhu X C , Liu H , Chen J J , Chen D Z , Sun C Z , Li J H . Hexavalent metal cations doped into ceria inducing the formation of binuclear sites Ce3+-O-Ce3+ to boost the NH3-SCR reaction. ACS Catalysis, 2024, 14(9): 7277–7288

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6168KB)

Supplementary files

FCE-25053-OF-LL_suppl_1

363

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/