Non-thermal plasma driven dry reforming of methane: electron energy-input power coupling mechanism and catalyst design criteria
Minghai Shen , Wei Guo , Lige Tong , Li Wang , Paul K. Chu , Sibudjing Kawi , Yulong Ding
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 84
Non-thermal plasma driven dry reforming of methane: electron energy-input power coupling mechanism and catalyst design criteria
Dielectric barrier discharge plasma-driven dry reforming of methane is a promising technology for syngas production. However, plasma involves complex chemical reaction pathways, non-thermal equilibrium kinetic characteristics, and interactions with catalysts, which together affect the catalytic efficiency of the dielectric-barrier plasma driven dry reforming of methane reaction and constitute its main technical challenges. This study systematically investigates the effect of critical parameters-including reactor dimensions, input power, gas flow rate, gas composition, and catalyst type-on CH4 and CO2 conversion as well as syngas selectivity. Through thermodynamic and kinetic analysis, we elucidate the stepwise evolution mechanism of CH4/CO2 reactions under low-temperature plasma conditions. Notably, we incorporated the power law relationship between electron energy and input power into the thermodynamic model, thereby quantitatively revealing for the first time the regulatory effect of input power on the reaction path. This study provides valuable design principles to enhance the efficiency and industrial applicability of dielectric-barrier plasma driven dry reforming of methane processes.
dry reforming of methane / plasma / non-thermal kinetics / nickel catalyst / thermodynamic
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn
Supplementary files
/
| 〈 |
|
〉 |