Co-doping facilitated plasma-catalytic ammonia synthesis over Mo2N-Co catalysts

Yutong Feng , Bianbian Gao , Guoqiang Cao , Donghai Hu , Yuting Jiao , Chunyu Li , Jiantao Zhao , Yitian Fang

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 83

PDF (4423KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 83 DOI: 10.1007/s11705-025-2595-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Co-doping facilitated plasma-catalytic ammonia synthesis over Mo2N-Co catalysts

Author information +
History +
PDF (4423KB)

Abstract

Ammonia is a promising hydrogen storage carrier due to its high hydrogen density (17.8 wt %) and mild liquefaction conditions. Plasma-catalytic ammonia synthesis is an alternative synthesis route regarding green ammonia generation at ambient conditions. In this study, Co-doped Mo2N-Co catalysts were developed to enhance plasma-catalytic ammonia synthesis, with a focus on the effects of Co/Mo molar ratios and operating parameters. Among the catalysts tested, Mo2N-Co1 possessed the highest ammonia synthesis rate and energy efficiency. Optimal operating conditions including a feed ratio of N2:H2 = 1:1 and a higher discharge power is favored. An ammonia synthesis rate of 11925 μmol·g–1·h–1 and an energy efficiency of 3.6 g-NH3·kWh–1 were achieved over Mo2N-Co1 at a feed ratio of N2:H2 = 1:1 and a discharge power of 57 W. Comprehensive characterizations, including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, hydrogen temperature-programmed reduction, and ammonia temperature-programmed desorption, demonstrated that Co doping introduced abundant nitrogen vacancies and weak acidic surface, both of which facilitated ammonia desorption and electron transfer. Key reactive intermediates were identified using optical emission spectroscopy, providing insight into the proposed reaction mechanism for this synergistic plasma-catalytic ammonia synthesis over Mo2N-Co catalysts.

Graphical abstract

Keywords

ammonia synthesis / plasma catalysis / Co-based catalysts / nitrogen vacancy / synergistic effect

Cite this article

Download citation ▾
Yutong Feng, Bianbian Gao, Guoqiang Cao, Donghai Hu, Yuting Jiao, Chunyu Li, Jiantao Zhao, Yitian Fang. Co-doping facilitated plasma-catalytic ammonia synthesis over Mo2N-Co catalysts. Front. Chem. Sci. Eng., 2025, 19(9): 83 DOI:10.1007/s11705-025-2595-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wei T Y , Lim K L , Tseng Y S , Chan S L I . A review on the characterization of hydrogen in hydrogen storage materials. Renewable & Sustainable Energy Reviews, 2017, 79: 1122–1133

[2]

Gao B , Cao G , Hu D , Guo L , Ba Z , Li C , Zhao J , Fang Y . Insight into the effect of support properties on DBD plasma-catalytic NH3 synthesis over Ru-Co bimetallic catalysts. Fuel, 2025, 382: 133802

[3]

Tian F , Zhou N , Chen W , Zhan J , Tang L , Wu M . Progress in green ammonia synthesis technology: catalytic behavior of ammonia synthesis catalysts. Advanced Sustainable Systems, 2024, 8(8): 2300618

[4]

Lamb K E , Dolan M D , Kennedy D F . Ammonia for hydrogen storage: a review of catalytic ammonia decomposition and hydrogen separation and purification. International Journal of Hydrogen Energy, 2019, 44(7): 3580–3593

[5]

Li S , Shao Y , Chen H , Fan X . Nonthermal plasma catalytic ammonia synthesis over a Ni catalyst supported on MgO/SBA-15. Industrial & Engineering Chemistry Research, 2022, 61(9): 3292–3302

[6]

Lee B , Lim D , Lee H , Lim H . Which water electrolysis technology is appropriate?—critical insights of potential water electrolysis for green ammonia production. Renewable & Sustainable Energy Reviews, 2021, 143: 110963

[7]

Bajpai A , Kumar S . Tailoring the surface acidity of catalyst to enhance nonthermal plasma-assisted ammonia synthesis rates. Molecular Catalysis, 2024, 557: 113961

[8]

Tsunematsu K , Shinzato K , Gi H , Tagawa K , Yamaguchi M , Saima H , Miyaoka H , Ichikawa T . Catalysis of sodium alloys for ammonia synthesis around atmospheric pressure. ACS Applied Energy Materials, 2022, 5(12): 15282–15289

[9]

Meng Z , Yao J , Sun C , Kang X , Gao R , Li H , Bi B , Zhu Y , Yan J , Jiang Q . Efficient ammonia production beginning from enhanced air activation. Advanced Energy Materials, 2022, 12(38): 2202105

[10]

Riotto T , Cao G , Luyben W L , Baltrusaitis J . Atmospheric pressure DBD plasma ammonia synthesis and separation process design and environmental impact assessment. ACS Sustainable Chemistry & Engineering, 2021, 9(39): 13233–13244

[11]

Zhang J , Li X , Zheng J , Du M , Wu X , Song J , Cheng C , Li T , Yang W . Non-thermal plasma-assisted ammonia production: a review. Energy Conversion and Management, 2023, 293: 117482

[12]

Mehta P , Barboun P M , Engelmann Y , Go D B , Bogaerts A , Schneider W F , Hicks J C . Plasma-catalytic ammonia synthesis beyond the equilibrium limit. ACS Catalysis, 2020, 10(12): 6726–6734

[13]

Liu Y , Xu X , Song Q , Guo Z , Wu X , Chen C , Chen Q , Zhang H . Co-Ni/MOF-74 catalyst packed-bed DBD plasma for ammonia synthesis. Plasma Processes and Polymers, 2024, 21(2): 2300086

[14]

Liu Y , Wang C W , Xu X F , Liu B W , Zhang G M , Liu Z W , Chen Q , Zhang H . Synergistic effect of Co–Ni bimetal on plasma catalytic ammonia synthesis. Plasma Chemistry and Plasma Processing, 2022, 42(2): 267–282

[15]

Mehta P , Barboun P , Herrera F A , Kim J , Rumbach P , Go D B , Hicks J C , Schneider W F . Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nature Catalysis, 2018, 1(4): 269–275

[16]

Jiang Y , Miyazaki M , Miyashita K , Sasase M , Kishida K , Hosono H , Kitano M . CN22– vacancies enhance ammonia synthesis over air-durable alkaline earth metal cyanamide-supported cobalt catalysts. ACS Catalysis, 2024, 14(8): 6349–6357

[17]

Ye T , Park S W , Lu Y , Li J , Wu J , Sasase M , Kitano M , Hosono H . Dissociative and associative concerted mechanism for ammonia synthesis over Co-based catalyst. Journal of the American Chemical Society, 2021, 143(32): 12857–12866

[18]

Miyahara S , Sato K , Tsujimaru K , Wada Y , Ogura Y , Toriyama T , Yamamoto T , Matsumura S , Inazu K , Nagaoka K . Co nanoparticle catalysts encapsulated by BaO-La2O3 nanofractions for efficient ammonia synthesis under mild reaction conditions. ACS Omega, 2022, 7(28): 24452–24460

[19]

Kitano M , Kujirai J , Ogasawara K , Matsuishi S , Tada T , Abe H , Niwa Y , Hosono H . Low-temperature synthesis of perovskite oxynitride-hydrides as ammonia synthesis catalysts. Journal of the American Chemical Society, 2019, 141(51): 20344–20353

[20]

Zeinalipour-Yazdi C D , Hargreaves J S J , Catlow C R A . Nitrogen activation in a Mars-van Krevelen mechanism for ammonia synthesis on Co3Mo3N. Journal of Physical Chemistry C, 2015, 119(51): 28368–28376

[21]

Kojima R , Aika K . Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis. Applied Catalysis A: General, 2001, 215(1–2): 149–160

[22]

Patil B S , Cherkasov N , Srinath N V , Lang J , Ibhadon A O , Wang Q , Hessel V . The role of heterogeneous catalysts in the plasma-catalytic ammonia synthesis. Catalysis Today, 2021, 362: 2–10

[23]

Gorky F , Lucero J M , Crawford J M , Blake B A , Guthrie S R , Carreon M A , Carreon M L . Insights on cold plasma ammonia synthesis and decomposition using alkaline earth metal-based perovskites. Catalysis Science & Technology, 2021, 11(15): 5109–5118

[24]

Hong J , Pancheshnyi S , Tam E , Lowke J J , Prawer S , Murphy A B . Corrigendum: kinetic modelling of NH3 production in N2-H2 non-equilibrium atmospheric-pressure plasma catalysis. Journal of Physics D: Applied Physics, 2018, 51(10): 109501

[25]

Zhou R , Zhou D , Liu B , Nie L , Xian Y , Zhang T , Zhou R , Lu X , Ostrikov K K , Cullen P J . Controlling energy transfer in plasma-driven ammonia synthesis by adding helium gas. ACS Sustainable Chemistry & Engineering, 2023, 11(5): 1828–1836

[26]

AlShibane I , Daisley A , Hargreaves J S J , Hector A L , Laassiri S , Rico J L , Smith R I . The role of composition for cobalt molybdenum carbide in ammonia synthesis. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 9214–9222

[27]

Podila S , Zaman S F , Driss H , Alhamed Y A , Al-Zahrani A A , Petrov L A . Hydrogen production by ammonia decomposition using high surface area Mo2N and Co3Mo3N catalysts. Catalysis Science & Technology, 2016, 6(5): 1496–1506

[28]

Fang B , Li J , Liu F , Zhang C , Li C , Ni J , Lin J , Lin B , Jiang L . Enhanced ammonia synthesis performance of a ceria-supported bimetallic catalyst by changing Co and Mo segregation. Catalysis Science & Technology, 2022, 12(24): 7510–7519

[29]

Wang J , Zhang X . Pt nanoparticles-decorated molybdenum nitrides for efficient hydrogen evolution reaction. RSC Advances, 2023, 13(48): 34057–34063

[30]

McGee R C V , Thompson L T . Nature of acid-base sites on molybdenum nitride catalysts: effect of nitrogen and oxygen content. Applied Catalysis A: General, 2020, 605: 117777

[31]

Wang T , Miao L , Zheng S , Qin H , Cao X , Yang L , Jiao L . Interfacial engineering of Ni3N/Mo2N heterojunctions for urea-assisted hydrogen evolution reaction. ACS Catalysis, 2023, 13(7): 4091–4100

[32]

Sun T , Wu Q , Che R , Bu Y , Jiang Y , Li Y , Yang L , Wang X , Hu Z . Alloyed Co-Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium. ACS Catalysis, 2015, 5(3): 1857–1862

[33]

Ronduda H , Zybert M , Dziewulska A , Patkowski W , Sobczak K , Ostrowski A , Raróg-Pilecka W . Ammonia synthesis using Co catalysts supported on MgO-Nd2O3 mixed oxide systems: effect of support composition. Surfaces and Interfaces, 2023, 36: 102530

[34]

Wang K , Wu J , Zheng S , Yin S . NiCo alloy nanoparticles anchored on mesoporous Mo2N nanosheets as efficient catalysts for 5-hydroxymethylfurfural electrooxidation and hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104

[35]

Cao B , Veith G M , Neuefeind J C , Adzic R R , Khalifah P G . Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. Journal of the American Chemical Society, 2013, 135(51): 19186–19192

[36]

Cao G , Deskins N A , Yi N . Carbon monoxide oxidation over copper and nitrogen modified titanium dioxide. Applied Catalysis B: Environmental, 2021, 285: 119748

[37]

Chen C , Zhao D , Xu D , Wang X . γ-Mo2N/Co3Mo3N composite material for electrochemical supercapacitor electrode. Materials Chemistry and Physics, 2006, 95(1): 84–88

[38]

Gan C , Zhou Q , Sheng M , Hu Z , Li Y , Zhou J , Bian F , Sun B , Jiang H . Microwave-mediated ultrafast solid-state construction of O vacancies enriched cobalt oxide/nitrogen carbon aerogel toward efficient tetracycline degradation with peroxymonosulfate. Journal of Cleaner Production, 2024, 434: 140417

[39]

Chen L , Zhang J , Wang J , Chen P , Fu M , Wu J , Ye D . Insight into the improvement effect of nitrogen dopant in Ag/Co3O4 nanocubes for soot oxidation: experimental and theoretical studies. Journal of Hazardous Materials, 2021, 420: 126604

[40]

Tsuji Y , Ogasawara K , Kitano M , Kishida K , Abe H , Niwa Y , Yokoyama T , Hara M , Hosono H . Control of nitrogen activation ability by Co-Mo bimetallic nanoparticle catalysts prepared via sodium naphthalenide-reduction. Journal of Catalysis, 2018, 364: 31–39

[41]

Hu Z , Yu Y , Zhao H , Wu Z , Guo R , Zhou J , Zhou X , Zhang B , Wu Y , Zhao L . . The promotional effect of MoO3 on the CeO2/TiO2 catalyst for simultaneous removal of NO and toluene: from the insights of experimental and DFT studies. Journal of Environmental Chemical Engineering, 2025, 13(2): 115411

[42]

Gorky F , Guthrie S R , Smoljan C S , Crawford J M , Carreon M A , Carreon M L . Plasma ammonia synthesis over mesoporous silica SBA-15. Journal of Physics D: Applied Physics, 2021, 54(26): 264003

[43]

Xu Y , Yuan H , Wang H , Lu K , Yang D . Effectiveness of noble gas addition for plasma synthesis of ammonia in a dielectric barrier discharge reactor. Applied Sciences, 2024, 14(7): 3001

[44]

Rouwenhorst K H R , Engelmann Y , van ’t Veer K , Postma R S , Bogaerts A , Lefferts L . Plasma-driven catalysis: green ammonia synthesis with intermittent electricity. Green Chemistry, 2020, 22(19): 6258–6287

[45]

Mehta P , Barboun P , Go D B , Hicks J C , Schneider W F . Catalysis enabled by plasma activation of strong chemical bonds: a review. ACS Energy Letters, 2019, 4(5): 1115–1133

[46]

Gómez-Ramírez A , Montoro-Damas A M , Cotrino J , Lambert R M , González-Elipe A R . About the enhancement of chemical yield during the atmospheric plasma synthesis of ammonia in a ferroelectric packed bed reactor. Plasma Processes and Polymers, 2017, 14(6): 1600081

[47]

Sun J , Chen Q , Zhao X , Lin H , Qin W . Kinetic investigation of plasma catalytic synthesis of ammonia: insights into the role of excited states and plasma-enhanced surface chemistry. Plasma Sources Science & Technology, 2022, 31(9): 094009

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4423KB)

Supplementary files

FCE-25048-OF-FY_suppl_1

478

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/