Selective and sensitive ratiometric fluorescent probe for copper(II) cations in an aqueous solution based on resonance energy transfer and “1,8-naphthalimide–styrylpyridine” dyad bearing dipicolylamine receptor
Pavel A. Panchenko , Marina A. Pavlova , Anastasija V. Efremenko , Uliana A. Kutsevalova , Maria A. Ustimova , Alexey V. Feofanov , Yuri V. Fedorov , Olga A. Fedorova
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 82
Selective and sensitive ratiometric fluorescent probe for copper(II) cations in an aqueous solution based on resonance energy transfer and “1,8-naphthalimide–styrylpyridine” dyad bearing dipicolylamine receptor
Development of ratiometric fluorescent probes for Cu2+ in aqueous solutions and biological systems remains the challenging task, given that Cu2+ commonly acts as an efficient fluorescence quencher. In this work, a novel dyad compound NI-SP bearing energy donor naphthalimide and energy acceptor styrylpyridine chromophore has been prepared using azide-alkyne click reaction. The photophysical properties of NI-SP and its coordination with Cu2+ have been investigated by the absorption and fluorescent spectroscopy. Upon addition of Cu2+ to a solution of NI-SP, the long wavelength emission peak of styrylpyridine (600 nm) was quenched, whereas the fluorescence of naphthalimide (450 nm) was enhanced due to a decrease in resonance energy transfer efficiency between the chromophores in the (NI-SP)·Cu2+ complex. The observed spectral changes enable ratiometric detection of Cu2+ by the registration of the ratio of fluorescence intensities I450/I600. The probe exhibited high selectivity toward Cu2+ in the tested conditions. The detection limit was determined at 120 nmol·L–1, and the stability constant for (NI-SP)·Cu2+ was found to be 3.0 × 106 L·mol–1. Bioimaging experiments showed the NI-SP could penetrate human lung adenocarcinoma A549 cells, accumulate in mitochondria, and respond to the presence of Cu2+ via the changes in the fluorescence intensity of styrylpyridine fragment.
chemosensor / fluorescence imaging / human lung adenocarcinoma A549 cells / resonance energy transfer / intramolecular charge transfer
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |