Advances in fundamental materials and design strategies for electromagnetic shielding composites

Lei Liu , Shuhan Ye , Congke Gu , Wei Wang , Bin Fei , Wenwen Guo

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 80

PDF (8193KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 80 DOI: 10.1007/s11705-025-2592-8
REVIEW ARTICLE

Advances in fundamental materials and design strategies for electromagnetic shielding composites

Author information +
History +
PDF (8193KB)

Abstract

With the widespread application of 5G technology and the rapid development of electronic device miniaturization, electromagnetic radiation interference has become an increasingly critical concern. To meet the requirements of new-generation portable wearable electronic devices for electromagnetic interference shielding in terms of environmental friendliness, sustainability, lightweight, and high strength characteristics, novel shielding materials represented by carbon-based materials, MXene, and biomass materials, have emerged. To optimize the electromagnetic shielding composites for higher efficiency, researchers have proposed multifaceted strategies, including material design strategies (e.g., combinations of one-dimensional and two-dimensional materials or conductive and magnetic materials), structural design strategies (e.g., porous structures, multilayer structures, and core-shell structures), and reinforced absorption design strategies. This study provides a concise review of representative electromagnetic interference shielding raw materials, with a focus on the development status of novel biomass electromagnetic shielding materials represented by wood, lignin, and cellulose. The advantages and disadvantages of various electromagnetic shielding materials are systematically analyzed. For the first time, a summary of transdisciplinary multiscale design strategies is provided to promote the development of electromagnetic shielding techniques.

Graphical abstract

Keywords

electromagnetic shielding / composite materials / design strategies / 2D materials / 1D materials

Cite this article

Download citation ▾
Lei Liu, Shuhan Ye, Congke Gu, Wei Wang, Bin Fei, Wenwen Guo. Advances in fundamental materials and design strategies for electromagnetic shielding composites. Front. Chem. Sci. Eng., 2025, 19(9): 80 DOI:10.1007/s11705-025-2592-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang J , Shen H , Wang Z , Wu T . Enhanced electromagnetic shielding with ultrathin VGNs-metal hybrid structures. Carbon, 2024, 225: 119144

[2]

Chen J , Zhu Z , Zhang H , Tian S , Fu S . Wood-derived nanostructured hybrid for efficient flame retarding and electromagnetic shielding. Materials & Design, 2021, 204: 109695

[3]

Zhang J , Li X , Zhang M , Zhu Q , Sun X . High-adhesion Ag film with enhanced electromagnetic shielding performance via post-treatment of a polydopamine adhesive layer. ACS Applied Materials & Interfaces, 2023, 15(29): 35516–35524

[4]

Jeon J , Ha Y , MacManus-Driscoll J L , Lee S . La-doped BaSnO3 for electromagnetic shielding transparent conductors. Nano Convergence, 2023, 10(1): 50

[5]

Liu Y , Liu Y , Zhao X . MXene composite electromagnetic shielding materials: the latest research status. ACS Applied Materials & Interfaces, 2024, 16(31): 41596–41615

[6]

Zong J Y , Zhou X J , Hu Y F , Yang T B , Yan D X , Lin H , Lei J , Li Z M . A wearable multifunctional fabric with excellent electromagnetic interference shielding and passive radiation heating performance. Composites Part B: Engineering, 2021, 225: 109299

[7]

Iqbal A , Hassan T , Gao Z , Shahzad F , Koo C M . MXene-incorporated 1D/2D nano-carbons for electromagnetic shielding: a review. Carbon, 2023, 203: 542–560

[8]

Wu B , Wu P , Yu Y , Wu Y , Song X , Zhou D , Li Y . Flexible intelligent electromagnetic shielding polymer composites with sensitive on/off switching and high absorption. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(42): 29211–29221

[9]

Fan C , Wu B , Song R , Zhao Y , Zhang Y , He D . Electromagnetic shielding and multi-beam radiation with high conductivity multilayer graphene film. Carbon, 2019, 155: 506–513

[10]

Kong D , Li J , Guo A , Xiao X . High temperature electromagnetic shielding shape memory polymer composite. Chemical Engineering Journal, 2021, 408: 127365

[11]

Liu L , Chen X , Pan F . A review on electromagnetic shielding magnesium alloys. Journal of Magnesium and Alloys, 2021, 9(6): 1906–1921

[12]

Jia H , Yi Z L , Huang X H , Su F Y , Kong Q Q , Yang X , Wang Z , Xie L J , Guo Q G , Chen C M . A one-step graphene induction strategy enables in-situ controllable growth of silver nanowires for electromagnetic interference shielding. Carbon, 2021, 183: 809–819

[13]

Liu H , Xu Y , Yang K , Yong H , Huang Y , Han D , Hong X , Yang Q . Skin-like copper/carbon nanotubes/graphene composites and low thermogenesis during electromagnetic interference shielding. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2023, 11(8): 3010–3019

[14]

Ji B , Fan S , Ma X , Hu K , Wang L , Luan C , Deng J , Cheng L , Zhang L . Electromagnetic shielding behavior of heat-treated Ti3C2Tx MXene accompanied by structural and phase changes. Carbon, 2020, 165: 150–162

[15]

Shang Y , Ji Y , Dong J , Yang G , Zhang X , Su F , Feng Y , Liu C . Sandwiched cellulose nanofiber/boron nitride nanosheet/Ti3C2Tx MXene composite film with high electromagnetic shielding and thermal conductivity yet insulation performance. Composites Science and Technology, 2021, 214: 108974

[16]

Li S , Li J , Ma N , Liu D , Sui G . Super-compression-resistant multiwalled carbon nanotube/nickel-coated carbonized loofah fiber/polyether ether ketone composite with excellent electromagnetic shielding performance. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 13970–13980

[17]

Ye H , Wu Y , Jin X , Wu J , Gan L , Li J , Cai L , Liu C , Xia C . Creation of wood-based hierarchical superstructures via in situ growth of ZIF-8 for enhancing mechanical strength and electromagnetic shielding performance. Advanced Science, 2024, 11(17): 2400074

[18]

Li J , Zhong L , Wang J , Feng Z , Qu Y , Xu R . Synergistic improvement of mechanical and electromagnetic shielding properties of a Mg-Li-Y-Zn alloy following heat treatment. Journal of Magnesium and Alloys, 2025, 13(3): 1243–1257

[19]

Feng J , Bai Y , Wang P , Chen X , Han S , Liu H , Luo X , Zhang P , Wang X , Liu J . Zr4+ and Al3+ coordinated cross-linked conductive collagen fibers/solvent-free polyurethane foam with ultra-low reflective electromagnetic shielding properties. Chemical Engineering Journal, 2024, 499: 156695

[20]

Jia Z , Kou K , Yin S , Feng A , Zhang C , Liu X , Cao H , Wu G . Magnetic Fe nanoparticle to decorate N dotted C as an exceptionally absorption-dominate electromagnetic shielding material. Composites Part B: Engineering, 2020, 189: 107895

[21]

Panahi-Sarmad M , Samsami S , Ghaffarkhah A , Hashemi S A , Ghasemi S , Amini M , Wuttke S , Rojas O , Tam K C , Jiang F . . MOF-based electromagnetic shields multiscale design: nanoscale chemistry, microscale assembly, and macroscale manufacturing. Advanced Functional Materials, 2024, 34(43): 2304473

[22]

Wang Y , Wang J , Yao L , Yin W Y . EMI analysis of multiscale transmission line network using a hybrid FDTD method. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(4): 1202–1211

[23]

Wang Y , Cheng X D , Song W L , Ma C J , Bian X M , Chen M . Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chemical Engineering Journal, 2018, 344: 342–352

[24]

Long L , Zhang Y , Zhu H , Nie Y , Zhou W , Li Y . In situ growth of the Y3Si2C2 interphase in SiCf-reinforced mullite ceramics for enhanced electromagnetic wave absorption. Journal of the American Ceramic Society, 2025, 108(7): e20506

[25]

Oliveira F M , Gusmao R . Recent advances in the electromagnetic interference shielding of 2D materials beyond graphene. ACS Applied Electronic Materials, 2020, 2(10): 3048–3071

[26]

Zhu H , Hu Y , Men X , Zhang Q , Pang L , Xiao P , Luo H , Zhou W , Li Y . Design of Cf/SiCf/Si3N4f multifiber layered composite with enhanced electromagnetic wave absorption properties. Journal of the American Ceramic Society, 2025, 108(4): e20301

[27]

Sang M , Wang S , Liu S , Liu M , Bai L , Jiang W , Xuan S , Gong X . A hydrophobic, self-powered, and electromagnetic shielding PVDF-based wearable device for human body monitoring and protection. ACS Applied Materials & Interfaces, 2019, 11(50): 47340–47349

[28]

Peng Q , Li Y , Gao C , Liu Z , Wang X , Fatehi P , Wang S , Kong F . MXene/bacterial cellulose/Fe3O4/methyltrimethoxylsilane flexible film with hydrophobic for effective electromagnetic shielding. International Journal of Biological Macromolecules, 2023, 243: 125195

[29]

Yang Y , Liu Z , Wang Y , Zhang Z , Wang X . Research progress of two-dimensional materials in the field of electromagnetic shielding. Materials Today Physics, 2024, 50: 101617

[30]

Islam A , Wang Z , Dabrowski T , Kwan K , Khuje S , Yu J , Williams J D , Ren S . Hybrid additive manufacturing of flexible copper radiofrequency electronics. Materials Today, 2025, 83: 125–131

[31]

Liu J , Yu M Y , Yu Z Z , Nicolosi V . Design and advanced manufacturing of electromagnetic interference shielding materials. Materials Today, 2023, 66: 245–272

[32]

Li S , Li W , Nie J , Liu D , Sui G . Synergistic effect of graphene nanoplate and carbonized loofah fiber on the electromagnetic shielding effectiveness of PEEK-based composites. Carbon, 2019, 143: 154–161

[33]

Raagulan K , Kim B M , Chai K Y . Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials, 2020, 10(4): 702

[34]

Wang Z , Li S B , Yang X , Wang H , Xie L J , Tao Z C , Kong Q Q , Zhang S C , Jia H , Jiang D . . Towards wearable multifunctional cellulose nanofiber/silver nanowire/graphene oxide film: electromagnetic protection, antibacterial, and motion monitoring. Chemical Engineering Journal, 2024, 502: 157751

[35]

Xie Z , Yao L , Fang H , Yang Z , Zhou X , Lin L , Xie J , Zhang Y . Multi-functional and flexible nano-silver@MXene heterostructure-decorated graphite felt for wearable thermal therapy. Small, 2024, 20(31): 2310191

[36]

Wang L , Xia F , Xu W , Wang G , Hong S , Cheng F , Wu B , Zheng N . Antioxidant high-conductivity copper pastes based on core-shell copper nanoparticles for flexible printed electronics. Advanced Functional Materials, 2023, 33(26): 2215127

[37]

Jia H , Kong Q Q , Liu Z , Wei X X , Li X M , Chen J P , Li F , Yang X , Sun G H , Chen C M . 3D graphene/carbon nanotubes/polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105712

[38]

Sun H , Shi G , Kang Z , Zhong H , Han W , Luo Z , Zhang B X . Thin and flexible multilayer carbon/silicon carbide composite films with extraordinary electromagnetic shielding performance and ablative resistance. Carbon, 2024, 230: 119660

[39]

Yue J , Cheng Y , Zhang C , Zhao T , Zhao H , Ma C , Jiang S . A novel CNTs/Co9S8 microsphere composites with three-dimensional network structure for efficient electromagnetic wave absorption. Diamond and Related Materials, 2025, 155: 112351

[40]

Luo S , Peng L , Xie Y , Cao X , Wang X , Liu X , Chen T , Han Z , Fan P , Sun H . . Flexible large-area graphene films of 50–600 nm thickness with high carrier mobility. Nano-Micro Letters, 2023, 15(1): 61

[41]

Zhang J , Zhang S , Song Y , Weng Y , Liang Y , Wu Z , Hang Z H , Zhang T , Zhang X , Li Y . . Surface structure engineering and electromagnetic character regulation synergestically boosts electromagnetic shielding performances of carbon nanotube sponge. Carbon, 2025, 233: 119879

[42]

Dai M , Ren H , Deng S , Gou Y , You N , Zeng S , Yang C , Chen J , Shi S . 3D-printed sodium alginate/carbon nanotube/graphene porous scaffolds crosslinked with Ca2+ for high-performance electromagnetic shielding and Joule heating. Carbohydrate Polymers, 2025, 352: 123204

[43]

Yun T , Kim H , Iqbal A , Cho Y S , Lee G S , Kim M K , Kim S J , Kim D , Gogotsi Y , Kim S O . . Electromagnetic shielding of monolayer MXene assemblies. Advanced Materials, 2020, 32(9): 1906769

[44]

Shahzad F , Alhabeb M , Hatter C B , Anasori B , Man H S , Koo C M , Gogotsi Y . Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137–1140

[45]

Iqbal A , Sambyal P , Koo C M . 2D MXenes for electromagnetic shielding: a review. Advanced Functional Materials, 2020, 30(47): 2000883

[46]

Bai Y , Zhang B , Ma J , Cheng Y , Cui P , Kang Y , Wu F , Chen C , Huang W . Adhesion strategy for cross-linking AgNWs/MXene Janus membrane: stretchable and self-healing electromagnetic shielding and infrared stealth capabilities. Small, 2025, 21(5): 2408950

[47]

Zhou X , Ye X A , Zhang X , Wen D , Wang H , Wang G G . Large-scalable, flexible, and durable MXene/gelatin composite film for electromagnetic shielding and self-powered sensing. Chemical Engineering Journal, 2025, 503: 158401

[48]

Duan H , Wang C , Yi Y , Mu X , Ding H , Bi Z , Hu Y , Yu B . Scalable, mechanically-robust, and fire-resistance MXene/PEDOT:PSS/PBO film for efficient electromagnetic interference shielding and Joule heating performance. Chemical Engineering Journal, 2024, 483: 149302

[49]

Jalali A , Gupta T , Pakharenko V , Rejeb Z B , Kheradmandkeysomi M , Sain M , Park C B . Lightweight 3D-printed chitosan/MXene aerogels for advanced electromagnetic shielding, energy harvesting, and thermal management. Carbohydrate Polymers, 2025, 352: 123252

[50]

Zhu C , Hao Y , Wu H , Chen M , Quan B , Liu S , Hu X , Liu S , Ji Q , Lu X . . Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Letters, 2024, 16(1): 57

[51]

Fang J , Xu J , Zuo P , Zhou Y , Tang C , Qian J , Wang R , Liu X , Zhuang Q . New system for green EMI shielding: organohydrogel with multi-band green electromagnetic shielding, sensing, and infrared-stealth capacity. Journal of Materials Science and Technology, 2025, 219: 1–9

[52]

Boota M , Anasori B , Voigt C , Zhao M Q , Barsoum M W , Gogotsi Y . Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 2016, 28(7): 1517–1522

[53]

Sha Z , He H , Ma H , Hong B , Lu J , Fei X , Zhu M . All-in-one integrated flexible PE@PET/MXene films for high-performance electromagnetic shields with self-reinforced conductivity and mechanical properties. Carbon, 2024, 216: 118595

[54]

Cheng M H , Xu X , Zhang H W , Kong S Y , Feng Z S , Meng F , Wang Y . Self-assembling, flexible, and stable aramid nanofiber/polypyrrole/MXene composite film for efficient electromagnetic interference shielding, dual-driven heating, and infrared thermal camouflage. Chemical Engineering Journal, 2025, 505: 159112

[55]

Wen C , Zhao B , Liu Y , Xu C , Wu Y , Cheng Y , Liu J , Liu Y , Yang Y , Pan H . . Flexible MXene-based composite films for multi-spectra defense in radar, infrared, and visible light bands. Advanced Functional Materials, 2023, 33(20): 2214223

[56]

Liu Z , Zhang G , Chen W , Wang J , Zhang B , Zhang Q . Robust biomimetic Ti3C2Tx nanocomposite films enhanced by mussel-inspired polymer for highly efficient electromagnetic shielding and thermal camouflage. Carbon, 2022, 196: 410–421

[57]

Wang H , Chen K , Shi Y , Zhu Y , Jiang S , Liu Y , Wu S , Nie C , Fu L , Feng Y . . Flame retardant and multifunctional BC/MXene/MSiCnw/FRTPU aerogel composites with superior electromagnetic interference shielding via “consolidating” method. Chemical Engineering Journal, 2023, 474: 145904

[58]

Wang Y , Zhao C , Tian Y , Sun Y , Zhang M , Wang K , Xia B , Wang Y , Li T , Zhang X . . Lightweight MXene composite films with hollow egg-box structures: enhanced electromagnetic shielding performance beyond pure MXene. Advanced Science, 2025, 12(10): 2411932

[59]

Hong G , Cheng H , Zhang S , Rojas O J . Polydopamine-treated hierarchical cellulosic fibers as versatile reinforcement of polybutylene succinate biocomposites for electromagnetic shielding. Carbohydrate Polymers, 2022, 277: 118818

[60]

Li X , Sun X , Zhang J , Xue S , Zhi L . A stretchable fabric as strain sensor integrating electromagnetic shielding and electrochemical energy storage. Nano Research, 2023, 16(11): 12753–12761

[61]

Wang Y , Ding Y , Guo X , Yu G . Conductive polymers for stretchable supercapacitors. Nano Research, 2019, 12(9): 1978–1987

[62]

Li Y , Chen X , Wei Q , Liu W , Zhang Y , Qin G , Shi Z , Zhang X . Oxygen-sulfur Co-substitutional Fe@C nanocapsules for improving microwave absorption properties. Science Bulletin, 2020, 65(8): 623–630

[63]

Zhang C , Zong P , Ge Z , Ge Y , Zhang J , Rao Y , Liu Z , Huang W . MXene-based wearable thermoelectric respiration sensor. Nano Energy, 2023, 118: 109037

[64]

Lu B , Yuk H , Lin S , Jian N , Qu K , Xu J , Zhao X . Pure PEDOT:PSS hydrogels. Nature Communications, 2019, 10(1): 1043

[65]

Wang H , Zhuang T , Wang J , Sun X , Wang Y , Li K , Dai X , Guo Q , Li X , Chong D . . Multifunctional filler-free PEDOT:PSS hydrogels with ultrahigh electrical conductivity induced by Lewis-Acid-promoted ion exchange. Advanced Materials, 2023, 35(33): 2302919

[66]

Zhang Y C , Ding R , Su P G , Zeng F R , Jia X X , Hu Z Y , Wang Y Z , Zhao H B . Biomimetic ambient-pressure-dried aerogels with oriented microstructures for enhanced electromagnetic shielding. Advanced Functional Materials, 2025, 35(5): 2414683

[67]

Cao W , Zhang W , Dong L , Ma Z , Xu J , Gu X , Chen Z . Progress on quantum dot photocatalysts for biomass valorization. Exploration, 2023, 3(6): 20220169

[68]

Xiong C , Xiong Q , Zhao M , Wang B , Dai L , Ni Y . Recent advances in non-biomass and biomass-based electromagnetic shielding materials. Advanced Composites and Hybrid Materials, 2023, 6(6): 205

[69]

Shi Y , Wu M , Ge S , Li J , Alshammari A S , Luo J , Amin M A , Qiu H , Jiang J , Asiri Y M . . Advanced functional electromagnetic shielding materials: a review based on micro-nano structure interface control of biomass cell walls. Nano-Micro Letters, 2025, 17(1): 3

[70]

Dai Z , Hu C , Wei Y , Zhang W , Xu J , Lin X . Highly anisotropic carbonized wood as electronic materials for electromagnetic interference shielding and thermal management. Advanced Electronic Materials, 2023, 9(7): 2300162

[71]

Merk V , Chanana M , Gierlinger N , Hirt A M , Burgert I . Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure. ACS Applied Materials & Interfaces, 2014, 6(12): 9760–9767

[72]

Liu S , Wu H , Du Y , Lu X , Qu J . Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage. Solar Energy Materials and Solar Cells, 2021, 230: 111187

[73]

Chen Y , Meng Y , Zhang J , Xie Y , Guo H , He M , Shi X , Mei Y , Sheng X , Xie D . Leakage proof, flame-retardant, and electromagnetic shield wood morphology genetic composite phase change materials for solar thermal energy harvesting. Nano-Micro Letters, 2024, 16(1): 196

[74]

Gao T , Ma Y , Ji L , Zheng Y , Yan S , Li Y , Zhang X . Nickel-coated wood-derived porous carbon (Ni/WPC) for efficient electromagnetic interference shielding. Advanced Composites and Hybrid Materials, 2022, 5(3): 2328–2338

[75]

Liu X , Liu H , Xu H , Xie W , Li M , Liu J , Liu G , Weidenkaff A , Riedel R . Natural wood templated hierarchically cellular NbC/Pyrolytic carbon foams as stiff, lightweight, and high-performance electromagnetic shielding materials. Journal of Colloid and Interface Science, 2022, 606: 1543–1553

[76]

Pan Y , Dai M , Guo Q , Yin D , Hu S , Hu N , Zheng X , Huang J . Construction of sandwich-structured Cu-Ni wood-based composites for electromagnetic interference shielding. Chemical Engineering Journal, 2023, 471: 144301

[77]

Bi X , Li M , Zhou G , Liu C , Huang R , Shi Y , Xu B B , Guo Z , Fan W , Algadi H . . High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Research, 2023, 16(5): 7696–7709

[78]

Wang C , Yokota T , Someya T . Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chemical Reviews, 2021, 121(4): 2109–2146

[79]

Wu J , Wu X , Yang F , Liu X , Meng F , Ma Q , Che Y . Multiply cross-linked poly(vinyl alcohol)/cellulose nanofiber composite ionic conductive hydrogels for strain sensors. International Journal of Biological Macromolecules, 2023, 225: 1119–1128

[80]

Zhang M , Wang Y , Liu K , Liu Y , Xu T , Du H , Si C . Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT: PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Carbohydrate Polymers, 2023, 305: 120567

[81]

Chen Y , Zhang L , Yang Y , Pang B , Xu W , Duan G , Jiang S , Zhang K . Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, and applications. Advanced Materials, 2021, 33(11): 2005569

[82]

Ma Y , Hu Y , Chen L , Kou Z , Hu L , Jia P , Zhou Y . Recent advances of application and structural design of cellulose-based composites for EMI shielding. Polymer Reviews, 2024, 64(3): 872–897

[83]

He Y , Chen J , Qian Y , Wei Y , Wang C , Ye Z , Liu Y , Chen G . Organohydrogel based on cellulose-stabilized emulsion for electromagnetic shielding, flame retardant, and strain sensing. Carbohydrate Polymers, 2022, 298: 120132

[84]

Liu Q , Wang P L , Zhang W , Mai T , Qi M Y , Chen L , Li J , Ma M G . Multifunctional wood-derived cellulose/Ti3C2Tx composite films enhanced by densification strategy for electromagnetic shielding, Joule/solar heating, and thermal camouflage. Chemical Engineering Journal, 2024, 493: 152696

[85]

Chen N , Xie S , Deng J , Wang B , Yang S , Wang Z . Multifunctional highly conductive cellulose nanopaper with ordered PEDOT:PSS alignment enabled by external surface area-promoted phase separation. Composites Part B: Engineering, 2025, 288: 111919

[86]

Ye Y , Jiang F . Highly stretchable, durable, and transient conductive hydrogel for multi-functional sensor and signal transmission applications. Nano Energy, 2022, 99: 107374

[87]

Zou Y , Liao Z , Zhang R , Song S , Yang Y , Xie D , Liu X , Wei L , Liu Y , Song Y . Cellulose nanofibers/liquid metal hydrogels with high tensile strength, environmental adaptability, and electromagnetic shielding for temperature monitoring and strain sensors. Carbohydrate Polymers, 2025, 348: 122788

[88]

Fei Y , Liang M , Zhou T , Chen Y , Zou H . Unique carbon nanofiber@Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding. Carbon, 2020, 167: 575–584

[89]

Ying W , Liang Y , Miao Y , Li W , Lu W , Zhang W . Lignin-based porous carbonization materials with regular topology arrangement for efficient electromagnetic interference shielding and electrothermal conversion. Industrial Crops and Products, 2025, 231: 121124

[90]

Hu W , Zhang J , Liu B , Zhang C , Zhao Q , Sun Z , Cao H , Zhu G . Synergism between lignin, functionalized carbon nanotubes, and Fe3O4 nanoparticles for electromagnetic shielding effectiveness of tough lignin-based polyurethane. Composites Communications, 2021, 24: 100616

[91]

Li W , Zhu L , Xu Y , Wang G , Xu T , Si C . Lignocellulose-mediated functionalization of liquid metals toward the frontiers of multifunctional materials. Advanced Materials, 2025, 37(12): 2415761

[92]

Yang A , Li B , Yan Z , Yang M . A bi-directional carrier sense collision avoidance neighbor discovery algorithm in directional wireless ad hoc sensor networks. Sensors, 2019, 19(9): 2120

[93]

Yan R , Huang Z , Chen Y , Zhang L , Sheng X . Phase change composite based on lignin carbon aerogel/nickel foam dual-network for multisource energy harvesting and superb EMI shielding. International Journal of Biological Macromolecules, 2024, 277: 134233

[94]

Vaisman L , Wagner H D , Marom G . The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science, 2006, 128: 37–46

[95]

Wang C , Chen X , Zhang Y , Chen J , Zhu Y . Enhanced electromagnetic interference shielding, thermal management, and Joule heating performance in polymer composite film by incorporating hybrid graphene-silver nanowire networks. Materials Today Nano, 2025, 29(15): 100583

[96]

Zhang F , Wang Y , Li X , Zhang M , Mi H Y , Liu C , Shen C . Asymmetric hybrid carbonaceous membranes with exceptional electromagnetic interference shielding and superior electro-photo-thermal performance. Advanced Composites and Hybrid Materials, 2025, 8(1): 25

[97]

Shi Y , Xiang Z , Cai L , Pan F , Dong Y , Zhu X , Cheng J , Jiang H , Lu W . Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano, 2022, 16(5): 7816–7833

[98]

Liu J , Zhang Y , Cheng W , Lei S , Song L , Wang B , Hu Y . Anti-fogging, frost-resistant transparent, and flexible silver nanowire-Ti3C2Tx MXene based composite films for excellent electromagnetic interference shielding ability. Journal of Colloid and Interface Science, 2022, 608: 2493–2504

[99]

Bian X , Yang Z , Zhang T , Yu J , Xu G , Chen A , He Q , Pan J . Multifunctional flexible AgNW/MXene/PDMS composite films for efficient electromagnetic interference shielding and strain sensing. ACS Applied Materials & Interfaces, 2023, 15(35): 41906–41915

[100]

Cheng H , Pan Y , Chen Q , Che R , Zheng G , Liu C , Shen C , Liu X . Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Advanced Composites and Hybrid Materials, 2021, 4(3): 505–513

[101]

Yan J , Chen M , Tan R , Lin C , Jiang S , Wang W , Pan S , Xiao H , Ren E , Guo R . Flexible multifunctional MXene@Ag nanowires/cotton fabric inspired by transport of nutrients by roots for electromagnetic shielding, infrared stealth, Joule/solar heating, and flame retardancy. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(47): 33162–33176

[102]

Liu L X , Chen W , Zhang H B , Wang Q W , Guan F , Yu Z Z . Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Advanced Functional Materials, 2019, 29(44): 1905197

[103]

Hu F , Li M , Li P , Zeng J , Wang T , Li J , Wang B , Wu C , Chen K . High-performance multifunctional nanopapers with superior mechanical strength, electromagnetic interference shielding, and thermal management for next-generation electronics. Advanced Functional Materials, 2025, 35(17): 2418899

[104]

Cheng M , Ying M , Zhao R , Ji L , Li H , Liu X , Zhang J , Li Y , Dong X , Zhang X . Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano, 2022, 16(10): 16996–17007

[105]

Ma Z , Kang S , Ma J , Shao L , Zhang Y , Liu C , Wei A , Xiang X , Wei L , Gu J . Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx mxene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano, 2020, 14(7): 8368–8382

[106]

Zhao Y , Miao B , Nawaz M A , Zhu Q , Chen Q , Reina T R , Bai J , He D , Al-Tahan M A , Arsalan M . Construction of cellulose nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers with gradient structure for efficient electromagnetic interference shielding. Advanced Composites and Hybrid Materials, 2024, 7(2): 34

[107]

Xing Y , Wan Y , Wu Z , Wang J , Jiao S , Liu L . Multilayer ultrathin MXene@AgNW@MoS2 composite film for high-efficiency electromagnetic shielding. ACS Applied Materials & Interfaces, 2023, 15(4): 5787–5797

[108]

Sharma S , Lee J , Dang T T , Hur S H , Choi W M , Chung J S . Ultrathin freestanding PDA-doped rGO/MWCNT composite paper for electromagnetic interference shielding applications. Chemical Engineering Journal, 2022, 430: 132808

[109]

Huang J , Zhao M , Hao Y , Li D , Feng J , Huang F , Wei Q . Flexible, stretchable, and multifunctional electrospun polyurethane mats with 0D-1D-2D ternary nanocomposite-based conductive networks. Advanced Electronic Materials, 2021, 7(1): 2000840

[110]

Wang T , Kong W W , Yu W C , Gao J F , Dai K , Yan D X , Li Z M . A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Letters, 2021, 13(1): 162

[111]

Zhang S , Wu J , Liu J , Yang Z , Wang G . Ti3C2Tx MXene nanosheets sandwiched between Ag nanowire-polyimide fiber mats for electromagnetic interference shielding. ACS Applied Nano Materials, 2021, 4(12): 13976–13985

[112]

Wang K , Chen C , Zheng Q , Xiong J , Liu H , Yang L , Chen Y , Li H . Multifunctional recycled carbon fiber-Ti3C2Tx MXene paper with superior electromagnetic interference shielding and photo/electro-thermal conversion performances. Carbon, 2022, 197: 87–97

[113]

Zhu L , Mo R , Yin C G , Guo W , Yu J , Fan J . Synergistically constructed electromagnetic network of magnetic particle-decorated carbon nanotubes and MXene for efficient electromagnetic shielding. ACS Applied Materials & Interfaces, 2022, 14(50): 56120–56131

[114]

Guo Z , Ren P , Yang F , Wu T , Zhang L , Chen Z , Ren F . Robust multifunctional composite films with alternating multilayered architecture for highly efficient electromagnetic interference shielding, Joule heating, and infrared stealth. Composites Part B: Engineering, 2023, 263: 110863

[115]

Gao Y , Chen X , Jin X , Zhang C , Zhang X , Liu X , Li Y , Li Y , Lin J , Gao H . . Multifunction integration within magnetic CNT-bridged MXene/CoNi based phase change materials. eScience, 2024, 4(6): 100292

[116]

Li Y M , Li Y R , Fang H P , Wang D Y . Fabrication of multi-dimensional heterostructure towards highly efficient microwave absorbing performance and flame retardancy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 695: 134222

[117]

Yang R , Tan Y , Zhou T , Xu Y , Qin S , Zhang D , Liu S A . PVDF/MWCNTs/GO@ MWCNTs/AgNWs bilayer structured composite film with ultra-high EMI shielding and conductivity performance. Polymer Composites, 2024, 45(12): 11044–11061

[118]

Hassan T , Iqbal A , Yoo B , Jo J Y , Cakmakci N , Naqvi S M , Kim H , Jung S , Hussain N , Zafar U . . Multifunctional MXene/carbon nanotube Janus film for electromagnetic shielding and infrared shielding/detection in harsh environments. Nano-Micro Letters, 2024, 16(1): 216

[119]

Yang Y , Shao L , Wang J , Wang W , Su C , Li C , Di H , Ma J , Ji Z . Flexible and multifunctional carboxylic styrene butadiene rubber/CNT@PDA/MXene composites film for effective electromagnetic interference shielding, thermal management, and energy harvesting. Composites Communications, 2025, 54: 102267

[120]

Ma Z , He J , Liu S , Qie X , Gan M , Cheng R , Wu Q , Xing M . Gradient layered MXene/Fe3O4@CNTs/TOCNF ultrathin nanocomposite paper exhibiting effective electromagnetic shielding and multifunctionality. Nano Research, 2024, 17(9): 8233–8242

[121]

Miao M , Liu R , Thaiboonrod S , Shi L , Cao S , Zhang J , Fang J , Feng X . Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2020, 8(9): 3120–3126

[122]

Zhou B , Li Q , Xu P , Feng Y , Ma J , Liu C , Shen C . An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale, 2021, 13(4): 2378–2388

[123]

Wen B , Wang X , Zhang Y . Ultrathin and anisotropic polyvinyl butyral/Ni-graphite/short-cut carbon fibre film with high electromagnetic shielding performance. Composites Science and Technology, 2019, 169: 127–134

[124]

Xie F , Gao K , Zhuo L , Jia F , Ma Q , Lu Z . Robust Ti3C2Tx/RGO/ANFs hybrid aerogel with outstanding electromagnetic shielding performance and compression resilience. Composites Part A: Applied Science and Manufacturing, 2022, 160: 107049

[125]

Zhan Y , Long Z , Wan X , Zhang J , He S , He Y . 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance. Applied Surface Science, 2018, 444: 710–720

[126]

Zhang Y S , Wang T , Bao Z L , Qian P F , Liu X C , Geng W H , Zhang D , Wang S W , Zhu Q , Geng H Z . MXene and AgNW based flexible transparent conductive films with sandwich structure for high-performance EMI shielding and electrical heaters. Journal of Colloid and Interface Science, 2024, 665: 376–388

[127]

Wang Y , Zhao W , Tan L , Li Y , Qin L , Li S . Review of polymer-based composites for electromagnetic shielding application. Molecules, 2023, 28(15): 5628

[128]

Gao Q , Pan Y , Zheng G , Liu C , Shen C , Liu X . Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Advanced Composites and Hybrid Materials, 2021, 4(2): 274–285

[129]

Zhou B , Zhang Z , Li Y , Han G , Feng Y , Wang B , Zhang D , Ma J , Liu C . Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Applied Materials & Interfaces, 2020, 12(4): 4895–4905

[130]

Ma M , Liao Y , Lin H , Shao W , Tao W , Chen S , Shi Y , He H , Zhu Y , Wang X . Double-layer of CNF/rGO film and CNF/rGO/FeCo-LDO aerogel structured composites for efficient electromagnetic interference shielding. Carbon, 2024, 220: 118863

[131]

Liu J , Li G , Zhao T , Gong Z , Li F , Xie W , Zhao S , Jiang S . The effects of in situ growth of SiC nanowires on the electromagnetic wave absorption properties of SiC porous ceramics. Materials, 2025, 18(9): 1910

[132]

Liu Z , Xiong X , Nie Y , Cheng Y , Jiang S , Chen H , Zhou W . Facile synthesis of porous Fe3O4/C composites derived from waste residues of soybean and electrolytic manganese for superior electromagnetic wave absorption. International Journal of Minerals Metallurgy and Materials, 2025,

[133]

Xin W , Xi G Q , Cao W T , Ma C , Liu T , Ma M G , Bian J . Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Advances, 2019, 9(51): 29636–29644

[134]

Wu T , Liang L , Bai Y , Mei X , Jiao J , Ma Y , Wang G , Zhang S . Fabrication of corrosion-resistant and heat-resistant multi-walled carbon nanotubes/poly ether ether ketone/thermoplastic polyimide electromagnetic shielding foams based on double percolation structure. Carbon, 2023, 215: 118423

[135]

Xu Y , Lin Z , Yang Y , Duan H , Zhao G , Liu Y , Hu Y , Sun R , Wong C P . Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Materials Horizons, 2022, 9(2): 708–719

[136]

Wang Z , Cheng Y , Yang M , Huang J , Cao D , Chen S , Xie Q , Lou W , Wu H . Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/polydopamine. Composites Part B: Engineering, 2018, 140: 83–90

[137]

Zhang Y , Qiu M , Yu Y , Wen B , Cheng L . A novel polyaniline-coated bagasse fiber composite with core-shell heterostructure provides effective electromagnetic shielding performance. ACS Applied Materials & Interfaces, 2017, 9(1): 809–818

[138]

Wang X , Wen B , Yang X . Construction of core-shell structural nickel@graphite nanoplate functional particles with high electromagnetic shielding effectiveness. Composites Part B: Engineering, 2019, 173: 106904

[139]

Cheng C , Jiang Y , Sun X , Shen J , Wang T , Fan G , Fan R . Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites. Composites Part A: Applied Science and Manufacturing, 2020, 130: 105753

[140]

Angappan M , Bora P J , Vinoy K , Ramamurthy P C , Vijayaraju K . Tailorable electromagnetic interference shielding using nickel coated glass fabric-epoxy composite with excellent mechanical property. Composites Communications, 2018, 10: 110–115

[141]

Wu X , Wen B . A cauliflower-shaped nickel@porous calcium silicate core-shell composite: preparation and enhanced electromagnetic shielding performance. Composites Science and Technology, 2020, 199: 108343

[142]

Bhattacharjee Y , Bose S . Core-shell nanomaterials for microwave absorption and electromagnetic interference shielding: a review. ACS Applied Nano Materials, 2021, 4(2): 949–972

[143]

Li C , Ni X , Lei Y , Li S , Jin L , You B . Plasmolysis-inspired yolk-shell hydrogel-core@void@MXene-shell microspheres with strong electromagnetic interference shielding performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(47): 26839–26851

[144]

Song W L , Guan X T , Fan L Z , Cao W Q , Wang C Y , Zhao Q L , Cao M S . Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(5): 2097–2107

[145]

Men Q , Wang S , Yan Z , Zhao B , Guan L , Chen G , Guo X , Zhang R , Che R . Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. Advanced Composites and Hybrid Materials, 2022, 5(3): 2429–2439

[146]

Wang X X , Shu J C , Cao W Q , Zhang M , Yuan J , Cao M S . Eco-mimetic nanoarchitecture for green EMI shielding. Chemical Engineering Journal, 2019, 369: 1068–1077

[147]

Lai D , Chen X , Wang G , Xu X , Wang Y . Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon, 2022, 188: 513–522

[148]

Wang C , Xu L , Zheng J , Zhu Z , Huang Z , Hu C , Liu B . Polyvinyl alcohol/chitosan biomimetic hydrogel enhanced by MXene for excellent electromagnetic shielding and pressure sensing. International Journal of Biological Macromolecules, 2024, 278: 134354

[149]

He M , Lv X , Li Z , Li H , Qian W , Zhu S , Zhou Y , Wang Y , Bu X . Research on efficient electromagnetic shielding performance and modulation mechanism of aero/organo/hydrogels with gravity-induced asymmetric gradient structure. Small, 2024, 20(51): 2403210

[150]

Yin R , Zhang C , Chen Y , Wang Y , Feng Q , Liu Y , Yu M , Yuan Y , Xu C Y , Liu F . . Transient, printable, and recyclable gelatin hydrogels with enhanced mechanical sensing and electromagnetic shielding performance by incorporation of reduced graphene oxide. Chemical Engineering Journal, 2023, 475: 145794

[151]

Zhao B , Bai Z , Lv H , Yan Z , Du Y , Guo X , Zhang J , Wu L , Deng J , Zhang D W . . Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Letters, 2023, 15(1): 79

[152]

Xie X , Lu M , Li G , Gao G , Kang J , Zhang Q , Liu X . Anti-impact electromagnetic shielding hydrogel with solvent-driven tunability. Chemical Engineering Journal, 2025, 505: 159114

[153]

Kim H H , Kim B J . Effects of pore structure on the electromagnetic shielding characteristics of porous carbon fibers derived from various precursors. Carbon, 2025, 238: 120227

[154]

Wang S , Sun Z , Wang Y , Liang T , Wang B , Fan C , Chen Y , Liu C , Huang Q . Design of CuS composite carbon-based Ni Al-LDH multifunctional phase change composite with electromagnetic shielding performance and heat storage capacity. Chemical Engineering Journal, 2024, 491: 151960

[155]

Fang H , Zeng J , Shao X , Hu D . Advanced electromagnetic shielding and excellent thermal management of flexible phase change composite films. Carbon, 2023, 215: 118442

[156]

Li S , Xu S , Pan K , Du J , Qiu J . Ultra-thin broadband terahertz absorption and electromagnetic shielding properties of MXene/rGO composite film. Carbon, 2022, 194: 127–139

[157]

Ren F , Ma L , Li C , Wu T , Zhang J , Pei L , Jin Y , Sun Z , Guo Z , Song P . . Bimetallic MOF-derived co/Ni@C and MXene co-decorated cellulose-derived carbon foams for absorption-dominated electromagnetic interference shielding. Carbohydrate Polymers, 2025, 356: 123369

[158]

Zhao B , Bai P , Yuan M , Yan Z , Fan B , Zhang R , Che R . Recyclable magnetic carbon foams possessing voltage-controllable electromagnetic shielding and oil/water separation. Carbon, 2022, 197: 570–578

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (8193KB)

1320

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/