Metalated polymer brush coatings with excellent transparence and antibacterial properties

Ling Yin , Shengfei Li , Yuxiang Zhao , Guangen Fu , Haoyong Yang , Daheng Wu , Jianing Wang , Tao Zhang

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 116

PDF (3860KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 116 DOI: 10.1007/s11705-025-2589-3
RESEARCH ARTICLE

Metalated polymer brush coatings with excellent transparence and antibacterial properties

Author information +
History +
PDF (3860KB)

Abstract

Surface-grafted polymer brushes with controlled properties and nanoscale thickness are ideal candidates for transparent coatings to prevent biofouling. However, maintaining long-term antibacterial performance in natural environments remains a significant challenge. In this study, we present a metalated polymer brush (Mt-PB) coating that combines excellent transparency with antimicrobial properties. The coating is prepared by incorporating transition metal ions (e.g., Cu and Ag) into surface-grafted polymer brushes through cooperative in situ reduction. Due to the ultra-thinness of the metalated brush layer (Cu-PB, ~60.07 nm; Ag-PB, ~57.45 nm), the resulting coating exhibits high optical transmittance (~86%) and superior antibacterial efficiency (~99.99% inhibition rate against E. coli and S. aureus). Additionally, the Mt-PB-coated lens demonstrates excellent antibacterial and antifouling durability, as evidenced by underwater detection tests that provide high-resolution images and stable transparency (Δ < 2%) for over a month of underwater exposure. These findings offer a promising strategy for developing transparent and antifouling coatings suitable for underwater optical devices.

Graphical abstract

Keywords

transparent coating / antibacterial / polymer brushes / transition metal

Cite this article

Download citation ▾
Ling Yin, Shengfei Li, Yuxiang Zhao, Guangen Fu, Haoyong Yang, Daheng Wu, Jianing Wang, Tao Zhang. Metalated polymer brush coatings with excellent transparence and antibacterial properties. Front. Chem. Sci. Eng., 2025, 19(12): 116 DOI:10.1007/s11705-025-2589-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qian P Y , Cheng A , Wang R , Zhang R . Marine biofilms: diversity, interactions, and biofouling. Nature Reviews: Microbiology, 2022, 20(11): 671–684

[2]

Leslie D C , Waterhouse A , Berthet J B , Valentin T M , Watters A L , Jain A , Kim P , Hatton B D , Nedder A , Donovan K . . A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nature Biotechnology, 2014, 32(11): 1134–1140

[3]

Jin H , Tian L , Bing W , Zhao J , Ren L . Bioinspired marine antifouling coatings: status, prospects, and future. Progress in Materials Science, 2022, 124: 100889

[4]

Huang A , Guo Y , Zhu Y , Chen T , Yang Z , Song Y , Wasnik P , Li H , Peng S , Guo Z . . Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@ silver nanoparticles electrospun membrane strain sensors by multi-conductive network. Advanced Composites and Hybrid Materials, 2023, 6(3): 101

[5]

Gu Y , Zhou H , Liu F , Zhou S , Wu W . A fluffy all-siloxane bottlebrush architecture for liquid-like slippery surfaces. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2023, 11(41): 22167–22177

[6]

Chen R , Zhang Y , Xie Q , Chen Z , Ma C , Zhang G . Transparent polymer-ceramic hybrid antifouling coating with superior mechanical properties. Advanced Functional Materials, 2021, 31(19): 2011145

[7]

Cao S , Wang J , Chen H , Chen D R . Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin, 2011, 56(7): 598–612

[8]

Sabaté del Río J , Henry O Y F , Jolly P , Ingber D E . An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nature Nanotechnology, 2019, 14(12): 1143–1149

[9]

Xiong Y , Fang Z , Tang P , Li Y , Jiang H , Li J , Li Z , Wang G . MXene and cellulose nanofibers reinforced hydrogel with high strength and photothermal self-healing performances for marine antifouling. Carbohydrate Polymers, 2025, 348: 122879

[10]

Tan N N , Ng Q H , Enche Ab Rahim S K , Ahmad A L , Hoo P Y , Chew T L . Synthesis of novel magneto-hybrid polyoxometalate composite membrane with simultaneous photocatalytic self-cleaning and antifouling functionalities. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1450–1459

[11]

Zhang L , Sha J , Chen R , Liu Q , Liu J , Yu J , Zhang H , Lin C , Zhou W , Wang J . Surface plasma Ag-decorated Bi5O7I microspheres uniformly distributed on a zwitterionic fluorinated polymer with superfunctional antifouling property. Applied Catalysis B: Environmental, 2020, 271: 118920

[12]

Ye M , Wang S , Ji X , Tian Z , Dai L , Si C . Nanofibrillated cellulose-based superhydrophobic coating with antimicrobial performance. Advanced Composites and Hybrid Materials, 2023, 6(1): 30

[13]

Cloutier M , Mantovani D , Rosei F . Antibacterial coatings: challenges, perspectives, and opportunities. Trends in Biotechnology, 2015, 33(11): 637–652

[14]

Yang W J , Neoh K G , Kang E T , Teo S L M , Rittschof D . Polymer brush coatings for combating marine biofouling. Progress in Polymer Science, 2014, 39(5): 1017–1042

[15]

Li S , Zhao Y , Tan R , Zhang W , Jin D , Wu D , Zhang T . Iron-gold galvanic-assisted rapid grafting of polymer brushes on n-silicon for a triboelectric nanogenerator. ACS Applied Polymer Materials, 2024, 6(1): 927–934

[16]

Murad Bhayo A , Yang Y , He X . Polymer brushes: synthesis, characterization, properties, and applications. Progress in Materials Science, 2022, 130: 101000

[17]

Olivier A , Meyer F , Raquez J M , Damman P , Dubois P . Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: from self-assembled monolayers to patterned surfaces. Progress in Polymer Science, 2012, 37(1): 157–181

[18]

Zoppe J O , Ataman N C , Mocny P , Wang J , Moraes J , Klok H A . Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chemical Reviews, 2017, 117(3): 1105–1318

[19]

Zhang T , Benetti E M , Jordan R . Surface-initiated Cu(0)-mediated CRP for the rapid and controlled synthesis of quasi-3D structured polymer brushes. ACS Macro Letters, 2019, 8(2): 145–153

[20]

Truong T N P , Randriamahazaka H , Ghilane J . Redox monomer ionic liquid based on quaternary ammonium: from electrochemistry to polymer brushes. Electrochemistry Communications, 2017, 82: 25–29

[21]

Wei W , Faubel J L , Selvakumar H , Kovari D T , Tsao J , Rivas F , Mohabir A T , Krecker M , Rahbar E , Hall A R . . Self-regenerating giant hyaluronan polymer brushes. Nature Communications, 2019, 10(1): 5527

[22]

Alfei S , Schito A M . From nanobiotechnology, positively charged biomimetic dendrimers as novel antibacterial agents: a review. Nanomaterials, 2020, 10(10): 2022

[23]

Zhu Y , Xu C , Zhang N , Ding X , Yu B , Xu F J . Polycationic synergistic antibacterial agents with multiple functional components for efficient anti-infective therapy. Advanced Functional Materials, 2018, 28(14): 1706709

[24]

Tan R , Hao P , Wu D , Yang H , Xia Y , Li S , Wang J , Liang L , Zhou J , Zhang T . Ice-inspired polymeric slippery surface with excellent smoothness, stability, and antifouling properties. ACS Applied Materials & Interfaces, 2023, 15(34): 41193–41200

[25]

Soto A P . Surface nanopatterning with polymer brushes. Science, 2019, 366(6469): 1078–1079

[26]

Ma S , Zhang X , Yu B , Zhou F . Brushing up functional materials. NPG Asia Materials, 2019, 11(1): 24

[27]

Shao X , Wang J , Liu Z , Hu N , Zhang R , Quan C , Yao X , Dong C . Nano-copper ions assembled cellulose-based composite with antibacterial activity for biodegradable personal protective mask. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1544–1554

[28]

Pervaiz M , Sadiq S , Sadiq A , Younas U , Ashraf A , Saeed Z , Zuber M , Adnan A . Azo-Schiff base derivatives of transition metal complexes as antimicrobial agents. Coordination Chemistry Reviews, 2021, 447: 214128

[29]

Das B , Gupta P . Multimetallic transition metal complexes: Luminescent probes for biomolecule sensing, ion detection, imaging, and therapeutic application. Coordination Chemistry Reviews, 2024, 504: 215656

[30]

Yan J , Li B , Yu B , Huck W T S , Liu W , Zhou F . Controlled polymer-brush growth from microliter volumes using sacrificial-anode atom-transfer radical polymerization. Angewandte Chemie International Edition, 2013, 52(35): 9125–9129

[31]

Zhang T , Du Y , Müller F , Amin I , Jordan R . Surface-initiated Cu0 mediated controlled radical polymerization (SI-CuCRP) using a copper plate. Polymer Chemistry, 2015, 6(14): 2726–2733

[32]

Zhang S , Deng Y , Libanori A , Zhou Y , Yang J , Tat T , Yang L , Sun W , Zheng P , Zhu Y L . . In situ grown silver-polymer framework with coordination complexes for functional artificial tissues. Advanced Materials, 2023, 35(24): 2207916

[33]

Yang C , Ding X , Ono R J , Lee H , Hsu L Y , Tong Y W , Hedrick J , Yang Y Y . Brush-like polycarbonates containing dopamine, cations, and peg providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating. Advanced Materials, 2014, 26(43): 7346–7351

[34]

Cheng H , Wang J , Yang Y , Shi H , Shi J , Jiao X , Han P , Yao X , Chen W , Wei X . . Ti3C2Tx MXene modified with ZnTCPP with bacteria capturing capability and enhanced visible light photocatalytic antibacterial activity. Small, 2022, 18(26): 2200857

[35]

Che Y , Zhang T , Du Y , Amin I , Marschelke C , Jordan R . “On water” surface-initiated polymerization of hydrophobic monomers. Angewandte Chemie International Edition, 2018, 57(50): 16380–16384

[36]

Ali Z , Ma J , Jin D , Cui R , Sun R . Clean production of lactic acid by selective carbon-carbon bond cleavage of biomass feedstock over a novel carbon-bismuth oxychloride photocatalyst. Frontiers of Chemical Science and Engineering, 2024, 18(2): 17

[37]

Ren J , Zheng L , Su Y , Meng P , Zhou Q , Zeng H , Zhang T , Yu H . Competitive adsorption of Cd(II), Pb(II), and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. Chemical Engineering Journal, 2022, 445: 136778

[38]

Li Y , Liang Y Q , Mao X M , Li H . Efficient removal of Cu(II) from an aqueous solution using a novel chitosan assisted EDTA-intercalated hydrotalcite-like compound composite: preparation, characterization, and adsorption mechanism. Chemical Engineering Journal, 2022, 438: 135531

[39]

Park Y S , Kang S W . Role of ionic liquids in enhancing the performance of the polymer/AgCF3SO3/Al(NO3)3 complex for separation of propylene/propane mixture. Chemical Engineering Journal, 2016, 306: 973–977

[40]

Pinto V C , Sousa P J , Vieira E M F , Gonçalves L M , Minas G . Antibiofouling strategy for optical sensors by chlorine generation using low-cost, transparent, and highly efficient electrodes based on platinum nanoparticles coated oxide. Chemical Engineering Journal, 2021, 404: 126479

[41]

Hirosawa S , Takahashi Y , Hashizume H , Miyake T , Akamatsu Y . Synthesis and antibacterial activity of tripropeptin C derivatives modified at the carboxyl groups. Journal of Antibiotics, 2014, 67(3): 265–268

[42]

Wu D , Yin X , Zhao Y , Wang Y , Li D , Yang F , Wang L , Chen Y , Wang J , Yang H . . Tinware-inspired aerobic surface-initiated controlled radical polymerization (SI-Sn0CRP) for biocompatible surface engineering. ACS Macro Letters, 2023, 12(1): 71–76

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3860KB)

Supplementary files

FCE-25037-OF-YL_suppl_1

756

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/