High CO2 conversion via plasma assisted reverse water-gas shift reaction over Ag/ZnO catalyst

Chunhong Pan , Biao Wang , Jinman Mao , Mengjia Li , Huimin Wang , Wenyi Chen , Feng Gao , Guoping Hu , Xiaolei Fan , Feng Huang

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 115

PDF (3110KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 115 DOI: 10.1007/s11705-025-2588-4
RESEARCH ARTICLE

High CO2 conversion via plasma assisted reverse water-gas shift reaction over Ag/ZnO catalyst

Author information +
History +
PDF (3110KB)

Abstract

Reverse water-gas shift reaction represents a strategic pathway for CO2 utilization. Despite its potential, reverse water-gas shift reaction via conventional thermal-catalysis faces several challenges, including low equilibrium conversion rates due to thermodynamic constraints, high energy consumption, and insufficient product selectivity. Here, this study demonstrates an evident synergetic effect between plasma and Ag/ZnO, on enhancing reverse water-gas shift reaction. The plasma catalytic system achieved significantly improved performance with a remarkable CO2 conversion rate of 76.5%, a high CO selectivity of 96.8%, and a CO yield of 74.1%, along with an energy efficiency as high as 0.19 mmol·kJ–1, surpassing the plasma alone system and ZnO catalytic systems. Results from X-ray photoelectron spectroscopy and Auger electron spectroscopy confirm the presence of electronic metal-support interactions between Ag and ZnO, which facilitates the formation of electron-deficient Ag sites and partially reduced ZnOx species. These reactive sites, along with oxygen vacancies created during reduction treatment, enhance the adsorption and activation of H2 and CO2, offering a dominant plasma-assisted surface reaction pathway for the improved reverse water-gas shift reaction. These findings underscore the crucial role of electronic metal-support interactions in manipulating surface environments to facilitate efficient plasma-assisted catalytic reactions, with significant implications for the rational design of catalysts capable of converting CO2 efficiently under mild conditions.

Graphical abstract

Keywords

non-thermal plasma catalysis / CO2 conversion / reverse water-gas shift reaction / Ag/ZnO / electronic metal-support interactions

Cite this article

Download citation ▾
Chunhong Pan, Biao Wang, Jinman Mao, Mengjia Li, Huimin Wang, Wenyi Chen, Feng Gao, Guoping Hu, Xiaolei Fan, Feng Huang. High CO2 conversion via plasma assisted reverse water-gas shift reaction over Ag/ZnO catalyst. Front. Chem. Sci. Eng., 2025, 19(12): 115 DOI:10.1007/s11705-025-2588-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ashford B , Poh CK , Ostrikov K , Chen L , Tu X . Plasma-catalytic CO2 hydrogenation to ethane in a dielectric barrier discharge reactor. Journal of CO2 Utilization, 2022, 57: 101882

[2]

Chen H , Mu Y , Shao Y , Sarayute C , Huan X , Jiao Y , Hardacre C , Fan X . Nonthermal plasma (NTP) activated metal-organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation. AIChE Journal, 2020, 66(4): e16853

[3]

Zeng Y X , Wang L , Wu C F , Wang J Q , Shen B X , Tu X . Low temperature reforming of biogas over K-, Mg-, and Ce-promoted Ni/Al2O3 catalysts for the production of hydrogen rich syngas: understanding the plasma-catalytic synergy. Applied Catalysis B: Environmental, 2018, 224: 469–478

[4]

Zhao T , Hui Y , Li Z . Review of plasma-assisted reactions and potential applications for modification of metal-organic frameworks. Frontiers of Chemical Science and Engineering, 2019, 13(3): 444–457

[5]

Ashford B , Wang Y , Poh C K , Chen L , Tu X . Plasma-catalytic conversion of CO2 to CO over binary metal oxide catalysts at low temperatures. Applied Catalysis B: Environment and Energy, 2020, 276(0): 119110

[6]

Li X , Sen Y , Zhang X . A review on the low temperature water-gas-shift reaction: reaction mechanism, catalyst design, and novel process development. Frontiers of Chemical Science and Engineering, 2025, 19(6): 46

[7]

Liu M , Yi Y , Wang L , Guo H , Bogaerts A . Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis. Catalysts, 2019, 9(3): 275

[8]

Kim Y , Kim K J , Song Y , Lee Y L , Roh H S , Na K . Highly CO-selective Ni-MgO-CexZr1–xO2 catalyst for efficient low-temperature reverse water-gas shift reaction. Journal of Industrial and Engineering Chemistry, 2023, 118: 341–350

[9]

Ussiri D A N , Lal R . Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil & Tillage Research, 2009, 104(1): 39–47

[10]

Zhu X , Liu J H , Li X S , Liu J L , Qu X , Zhu A M . Enhanced effect of plasma on catalytic reduction of CO2 to CO with hydrogen over Au/CeO2 at low temperature. Journal of Energy Chemistry, 2017, 26(3): 488–493

[11]

Liu L , Zhang Z , Das S , Xi S , Kawi S . LaNiO3 as a precursor of Ni/La2O3 for reverse water-gas shift in DBD plasma: effect of calcination temperature. Energy Conversion and Management, 2020, 206: 112475

[12]

Chen H , Mu Y , Shao Y , Sarayute C S , Goodarzi F , Mielby J J , Mao B , Sooknoi T , Hardacre C , Kegnæs S . . Effect of metal dispersion and support structure of Ni/silicalite-1 catalysts on non-thermal plasma (NTP) activated CO2 hydrogenation. Applied Catalysis B: Environmental, 2020, 272: 119013

[13]

Chen Y , Chen S , Shao Y , Cui Q , Gao N , Fan X , Chen H . Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis. Frontiers of Chemical Science and Engineering, 2024, 18(7): 77

[14]

Wang L , Yi Y , Wu C , Guo H , Tu X . One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. Angewandte Chemie International Edition, 2017, 56(44): 13679–13683

[15]

Pastor-Pérez L , Shah M , Le Saché E , Ramirez Reina T . Improving Fe/Al2O3 catalysts for the reverse water-gas shift reaction: on the effect of Cs as activity/selectivity promote. Catalysts, 2018, 8(12): 608

[16]

Xu S , Sarayute C , Shao Y , Xu S , Wang Y C , Haigh S , Mu Y , Jiao Y , Stere C E , Chen H . . Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide. Applied Catalysis B: Environmental, 2020, 268: 118752

[17]

Liu L , Dai J , Yang Z , Li Y , Su X , Zhang Z . Plasma-catalytic carbon dioxide conversion by reverse water-gas shift over La0.9Ce0.1B0.5B′0.5O3–δ perovskite-derived bimetallic catalysts. Chemical Engineering Journal, 2022, 431: 134009

[18]

Sun Y , Wu J , Wang Y , Li J , Wang N , Harding J , Mo S , Chen L , Chen P , Fu M . . Plasma-catalytic CO2 hydrogenation over a Pd/ZnO catalyst: in situ probing of gas-phase and surface reactions. JACS Au, 2022, 2(8): 1800–1810

[19]

Tang C W , Chuang S S C . The effect of reduction of pretreated NiO-ZnO catalysts on the water-gas shift reaction for hydrogen production as studied by in situ DRIFTS/MS. International Journal of Hydrogen Energy, 2014, 39(2): 788–797

[20]

Ahmad S , Hussain A , Mian S A , Rahman G , Ali S , Jang J . Sensing and conversion of carbon dioxide to methanol using Ag-decorated zinc oxide nanocatalyst. Materials Advances, 2024, 5(3): 1119–1129

[21]

WenCYinADaiW L. Recent advances in silver-based heterogeneous catalysts for green chemistry processes. Applied Catalysis: Environment and Energy, 2014, 160–161: 730−741

[22]

Mori K , Sano T , Kobayashi H , Yamashita H . Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: elucidating the active Pd atoms in alloy nanoparticles. Journal of the American Chemical Society, 2018, 140(28): 8902–8909

[23]

Brugnoli L , Pedone A , Menziani M C , Adamo C , Labat F . H2 dissociation and water evolution on silver-decorated CeO2(111): a hybrid density functional theory investigation. Journal of Physical Chemistry C, 2019, 123(42): 25668–25679

[24]

Mohammad A B , Yudanov I V , Lim K H , Neyman K M , Rösch N . Hydrogen activation on silver: a computational study on surface and subsurface oxygen species. Journal of Physical Chemistry C, 2008, 112(5): 1628–1635

[25]

Sun K , Zhang Z , Shen C , Rui N , Liu C J . The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol. Green Energy & Environment, 2022, 7(4): 807–817

[26]

Yi Y , Li S , Cui Z , Hao Y , Zhang Y , Wang L , Liu P , Tu X , Xu X , Guo H . . Selective oxidation of CH4 to CH3OH through plasma catalysis: insights from catalyst characterization and chemical kinetics modelling. Applied Catalysis B: Environmental, 2021, 296: 120384

[27]

Hu J , Kim E M , Janik M J , Alexopoulos K . Hydrogen activation and spillover on anatase TiO2-supported Ag single-atom catalysts. Journal of Physical Chemistry C, 2022, 126(17): 7482–7491

[28]

Wang B , Zhang Q , He J , Huang F , Li C , Wang M . Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water. Journal of Energy Chemistry, 2022, 65: 304–311

[29]

Silva R L , Franco J A . Raman spectroscopy study of structural disorder degree of ZnO ceramics. Materials Science in Semiconductor Processing, 2020, 119: 105227

[30]

Wang D X , Summers C J , Wang Z L . Mesoporous single-crystal ZnO nanowires epitaxially sheathed with Zn2SiO4. Advanced Materials, 2004, 16(14): 1215–1218

[31]

Epling W S , Hoflund G B , Salaita G N . Surface characterization study of the thermal decomposition of Ag2CO3. Journal of Physical Chemistry B, 1998, 102(12): 2263–2268

[32]

Klacar S , Grönbeck H . H2 dissociation over Ag/Al2O3: the first step in hydrogen assisted selective catalytic reduction of NOx. Catalysis Science & Technology, 2013, 3(1): 183–190

[33]

Gómez H , Rojas R , Patel D , Tabak L A , Lluch J M , Masgrau L . A computational and experimental study of O-glycosylation, catalysis by human UDP-GalNAc polypeptide: GalNAc transferase-T2. Organic & Biomolecular Chemistry, 2014, 12(17): 2645–2655

[34]

Dai R , Sun K , Shen R , Fang J , Cheong W C , Zhuang Z , Zhuang Z , Zhang C , Chen C . Direct microenvironment modulation of CO2 electroreduction: negatively charged Ag sites going beyond catalytic surface reactions. Angewandte Chemie International Edition, 2024, 63(37): e202408580

[35]

Chen C , Zheng Y , Zhan Y , Lin X , Zheng Q , Wei K . Enhanced Raman scattering and photocatalytic activity of Ag/ZnO heterojunction nanocrystals. Dalton Transactions, 2011, 40(37): 9566–9570

[36]

Wen T , Liang L , Wang L , Shao Q , Zhang J , Long C . Adjusting Ag0 on oxygen-deficient Ag/MnO2 through electronic metal-support interaction to enhance mineralization of toluene in post-plasma catalytic system. Chemical Engineering Journal, 2024, 493: 152572

[37]

Zhang Z , Wen G , Luo D , Ren B , Zhu Y , Gao R , Dou H , Sun G , Feng M , Bai Z . . “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction. Journal of the American Chemical Society, 2021, 143(18): 6855–6864

[38]

Aziz F F A , Timmiati S N , Jalil A A , Rusdan N A , Annuar N H R , Teh L P . Recent innovation on heterogeneous ZnO-based catalysts for enhanced CO2 hydrogenation. Journal of Environmental Chemical Engineering, 2024, 12(3): 112976

[39]

Xiao M , Wang L , Wang H , Yuan J , Chen X , Zhang Z , Fu X , Dai W . Oxygen vacancies stabilized Ag+ to enhance the performance of an Ag/In2O3 photocatalyst for non-oxidative coupling of methane. Catalysis Science & Technology, 2023, 13(14): 4148–4155

[40]

Hu B , Yin Y , Liu G , Chen S , Hong X , Tsang S C E . Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts. Journal of Catalysis, 2018, 359: 17–26

[41]

Phongamwong T , Chantaprasertporn U , Witoon T , Numpilai T , Poo-arporn Y , Limphirat W , Donphai W , Dittanet P , Chareonpanich M , Limtrakul J . CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: effects of SiO2 contents. Chemical Engineering Journal, 2017, 316: 692–703

[42]

Li L , Mao D , Yu J , Guo X . Highly selective hydrogenation of CO2 to methanol over CuO-ZnO-ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method. Journal of Power Sources, 2015, 279: 394–404

[43]

Singha R K , Yadav A , Agrawal A , Shukla A , Adak S , Sasaki T , Bal R . Synthesis of highly coke resistant Ni nanoparticles supported MgO/ZnO catalyst for reforming of methane with carbon dioxide. Applied Catalysis B: Environment and Energy, 2016, 191: 165–178

[44]

Jia X , Zhang X , Rui N , Hu X , Liu C J . Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Applied Catalysis B: Environment and Energy, 2019, 244: 159–169

[45]

Chen C S , Cheng W H , Lin S S . Study of reverse water gas shift reaction by TPD, TPR, and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst. Applied Catalysis A: General, 2003, 238(1): 55–67

[46]

Kast P , Friedrich M , Girgsdies F , Kröhnert J , Teschner D , Lunkenbein T , Behrens M , Schlögl R . Strong metal-support interaction and alloying in Pd/ZnO catalysts for CO oxidation. Catalysis Today, 2016, 260: 21–31

[47]

Liu L , Das S , Chen T , Dewangan N , Ashok J , Xi S , Borgna A , Li Z , Kawi S . Low temperature catalytic reverse water-gas shift reaction over perovskite catalysts in DBD plasma. Applied Catalysis B: Environment and Energy, 2020, 265: 118573

RIGHTS & PERMISSIONS

The Author(s) 2025

AI Summary AI Mindmap
PDF (3110KB)

Supplementary files

FCE-25040-OF-PC_suppl_1

362

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/