Plasma-catalytic cracking of polyethylene over Ni/Hβ zeolites to light hydrocarbon fuels and hydrogen without external heating

Jianhui Han , Tianqi Yun , Chengxin Hou , Bingbing Chen , Tianhao Shi , Yanan Diao , Chuan Shi

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (8) : 73

PDF (4441KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (8) : 73 DOI: 10.1007/s11705-025-2583-9
RESEARCH ARTICLE

Plasma-catalytic cracking of polyethylene over Ni/Hβ zeolites to light hydrocarbon fuels and hydrogen without external heating

Author information +
History +
PDF (4441KB)

Abstract

The rapid accumulation of plastic waste poses severe environmental challenges. Cold plasma-driven degradation offers a promising route to convert plastic waste into high-value chemicals. In this study, a single-stage plasma reactor coupling cold plasma (dielectric barrier discharge) with Hβ zeolites was developed for polyethylene degradation under relatively mild conditions, without external thermal input or participation of noble metals. The effects of zeolite pore structure and acidity toward product distribution were investigated, revealing that Hβ-25 exhibited the highest C1–C6 yield (76 wt %) and a space-time yield of 103.8 mmol·gcat–1·h–1 compared to other zeolite catalysts during the plasma-catalytic process. Meanwhile, it was revealed that efficient pre-cracking initiated by plasma activation and the optimal structural compatibility between Hβ-zeolite pore channels and primary cracking products were the key factors enabling the selective conversion of polyethylene into C1–C6 hydrocarbons. Additionally, metal incorporation significantly enhanced C–H bond cleavage compared to Hβ-25 support. Especially, 10Ni/Hβ-25 exhibited the highest hydrogen yield (7.87 mmol·gplastic–1) under plasma-assisted mode, markedly surpassing its yield under thermal-cracking conditions, demonstrating the significant potential of plasma-catalytic degradation for hydrogen production from polyethylene.

Graphical abstract

Keywords

plasma-catalysis / polyolefin plastic cracking / Ni/Hβ zeolites / light hydrocarbon fuels and hydrogen

Cite this article

Download citation ▾
Jianhui Han, Tianqi Yun, Chengxin Hou, Bingbing Chen, Tianhao Shi, Yanan Diao, Chuan Shi. Plasma-catalytic cracking of polyethylene over Ni/Hβ zeolites to light hydrocarbon fuels and hydrogen without external heating. Front. Chem. Sci. Eng., 2025, 19(8): 73 DOI:10.1007/s11705-025-2583-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang K , Zhang A , Ge T , Liu X , Tang X , Li Y . Research progress on modification of phenolic resin. Materials Today. Communications, 2021, 26: 101879

[2]

Ran H , Zhang S , Ni W , Jing Y . Precise activation of C–C bonds for recycling and upcycling of plastics. Chemical Science, 2024, 15(3): 795–831

[3]

Chin M T , Diao T . Industrial and laboratory technologies for the chemical recycling of plastic waste. ACS Catalysis, 2024, 14(16): 12437–12453

[4]

Martín A J , Mondelli C , Jaydev S D , Pérez-Ramírez J . Catalytic processing of plastic waste on the rise. Chem, 2021, 7(6): 1487–1533

[5]

He D , Huang G , Zhou Z , Hu Q , Ding J , Wu J , Li M , Ruan X , Jiao X , Xie Y . Recent progress for designing of catalysts for photothermal conversion of plastic wastes. Advanced Functional Materials, 2024, 2419801:

[6]

Yang S , Li Y , Nie M , Liu X , Wang Q , Chen N , Zhang C . Lifecycle management for sustainable plastics: recent progress from synthesis, processing to upcycling. Advanced Materials, 2024, 36(33): 2404115

[7]

Vollmer I , Jenks M J F , Roelands M C P , White R J , van Harmelen T , de Wild P , van der Laan G P , Meirer F , Keurentjes J T F , Weckhuysen B M . Beyond mechanical recycling: giving new life to plastic waste. Angewandte Chemie International Edition, 2020, 59(36): 15402–15423

[8]

Su J , Li T , Xie W , Wang C , Yin L , Yan T , Wang K . Emerging technologies for waste plastic treatment. ACS Sustainable Chemistry & Engineering, 2023, 11(22): 8176–8192

[9]

Shi Y , Diao X , Ji N , Ding H , Ya Z , Xu D , Wei R , Cao K , Zhang S . Advances and challenges for catalytic recycling and upgrading of real-world mixed plastic waste. ACS Catalysis, 2025, 15(2): 841–868

[10]

Unger C , Schmalz H , Lipp J , Kretschmer W P , Kempe R . A closed-loop recyclable low-density polyethylene. Advancement of Science, 2024, 11(13): e2307229

[11]

Wang W , Yao C , Ge X , Pu X , Yuan J , Sun W , Chen W , Feng X , Qian G , Duan X . . Catalytic conversion of polyethylene into aromatics with Pt/ZSM-5: insights into reaction pathways and rate-controlling step regulation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2023, 11(27): 14933–14940

[12]

Qian K , Tian W , Yin L , Yang Z , Tian F , Chen D . Aromatic production from high-density polyethylene over zinc promoted HZSM-5. Applied Catalysis B: Environmental, 2023, 339: 123159

[13]

Du J , Zeng L , Yan T , Wang C , Wang M , Luo L , Wu W , Peng Z , Li H , Zeng J . Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons. Nature Nanotechnology, 2023, 18(7): 772–779

[14]

Li L , Luo H , Shao Z , Zhou H , Lu J , Chen J , Huang C , Zhang S , Liu X , Xia L . . Converting plastic wastes to naphtha for closing the plastic loop. Journal of the American Chemical Society, 2023, 145(3): 1847–1854

[15]

Wu X , Wang X , Zhang L , Wang X , Song S , Zhang H . Polyethylene upgrading to liquid fuels boosted by atomic Ce promoters. Angewandte Chemie International Edition, 2024, 63(8): e202317594

[16]

Nguyen H M , Carreon M L . Non-thermal plasma-assisted deconstruction of high-density polyethylene to hydrogen and light hydrocarbons over hollow ZSM-5 microspheres. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9480–9491

[17]

Duan J , Chen W , Wang C , Wang L , Liu Z , Yi X , Fang W , Wang H , Wei H , Xu S . . Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion. Journal of the American Chemical Society, 2022, 144(31): 14269–14277

[18]

Feng J , Duan J , Hung C T , Zhang Z , Li K , Ai Y , Yang C , Zhao Y , Yu Z , Zhang Y . . Micelles cascade assembly to tandem porous catalyst for waste plastics upcycling. Angewandte Chemie International Edition, 2024, 63(26): e202405252

[19]

Peng Y , Wang Y , Ke L , Dai L , Wu Q , Cobb K , Zeng Y , Zou R , Liu Y , Ruan R . A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management, 2022, 254: 115243

[20]

Chu M , Liu Y , Lou X , Zhang Q , Chen J . Rational design of chemical catalysis for plastic recycling. ACS Catalysis, 2022, 12(8): 4659–4679

[21]

Xiao H , Harding J , Lei S , Chen W , Xia S , Cai N , Chen X , Hu J , Chen Y , Wang X . . Hydrogen and aromatics recovery through plasma-catalytic pyrolysis of waste polypropylene. Journal of Cleaner Production, 2022, 350: 131467

[22]

Yu X , Rao Z , Chen G , Yang Y , Yoon S , Liu L , Huang Z , Widenmeyer M , Guo H , Homm G . . Plasma-enabled process with single-atom catalysts for sustainable plastic waste transformation. Angewandte Chemie International Edition, 2024, 63(50): e202404196

[23]

Diaz-Silvarrey L S , Zhang K , Phan A N . Monomer recovery through advanced pyrolysis of waste high density polyethylene (HDPE). Green Chemistry, 2018, 20(8): 1813–1823

[24]

Jahanmiri A , Rahimpour M R , Mohamadzadeh Shirazi M , Hooshmand N , Taghvaei H . Naphtha cracking through a pulsed DBD plasma reactor: effect of applied voltage, pulse repetition frequency, and electrode material. Chemical Engineering Journal, 2012, 191: 416–425

[25]

Wang W , Ma Y , Chen G , Quan C , Yanik J , Gao N , Tu X . Enhanced hydrogen production using a tandem biomass pyrolysis and plasma reforming process. Fuel Processing Technology, 2022, 234: 107333

[26]

Yao L , King J , Wu D , Ma J , Li J , Xie R , Chuang S S C , Miyoshi T , Peng Z . Non-thermal plasma-assisted rapid hydrogenolysis of polystyrene to high yield ethylene. Nature Communications, 2022, 13(1): 885

[27]

Xu Z , Gao N , Ma Y , Wang W , Quan C , Tu X , Miskolczi N . Biomass volatiles reforming by integrated pyrolysis and plasma-catalysis system for H2 production: understanding roles of temperature and catalyst. Energy Conversion and Management, 2023, 288: 117159

[28]

Song J , Sima J , Pan Y , Lou F , Du X , Zhu C , Huang Q . Dielectric barrier discharge plasma synergistic catalytic pyrolysis of waste polyethylene into aromatics-enriched oil. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11448–11457

[29]

Xiao H , Li S , Shi Z , Cui C , Xia S , Chen Y , Zhou Z , Tu X , Chen X , Yang H . . Plasma-catalytic pyrolysis of polypropylene for hydrogen and carbon nanotubes: understanding the influence of plasma on volatiles. Applied Energy, 2023, 351: 121848

[30]

Li D , Wang L , Lu Y , Deng H , Zhang Z , Wang Y , Ma Y , Pan T , Zhao Q , Shan Y . . New insights into the catalytic mechanism of VOCs abatement over Pt/β with active sites regulated by zeolite acidity. Applied Catalysis B: Environmental, 2023, 334: 122811

[31]

Khatrin I , Kusuma R H , Kadja G T M , Krisnandi Y K . Significance of ZSM-5 hierarchical structure on catalytic cracking: intra- vs. inter-crystalline mesoporosity. Inorganic Chemistry Communications, 2023, 149: 110447

[32]

Dong Z , Chen W , Xu K , Liu Y , Wu J , Zhang F . Understanding the structure-activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: a critical review. ACS Catalysis, 2022, 12(24): 14882–14901

[33]

Tian X , Zeng Z , Liu Z , Dai L , Xu J , Yang X , Yue L , Liu Y , Ruan R , Wang Y . Conversion of low-density polyethylene into monocyclic aromatic hydrocarbons by catalytic pyrolysis: comparison of HZSM-5, Hβ, HY, and MCM-41. Journal of Cleaner Production, 2022, 358: 131989

[34]

Ding K , Liu S , Huang Y , Liu S , Zhou N , Peng P , Wang Y , Chen P , Ruan R . Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Conversion and Management, 2019, 196: 1316–1325

[35]

Wang J , Jiang J , Sun Y , Zhong Z , Wang X , Xia H , Liu G , Pang S , Wang K , Li M . . Recycling benzene and ethylbenzene from in-situ catalytic fast pyrolysis of plastic wastes. Energy Conversion and Management, 2019, 200: 112088

[36]

Socci J , Osatiashtiani A , Kyriakou G , Bridgwater T . The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts. Applied Catalysis A: General, 2019, 570: 218–227

[37]

Chen Z , Monzavi M , Latifi M , Samih S , Chaouki J . Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics. Environmental Pollution, 2022, 307: 119573

[38]

Zhu M , Song Y , Chen S , Li M , Zhang L , Xiang W . Chemical looping dry reforming of methane with hydrogen generation on Fe2O3/Al2O3 oxygen carrier. Chemical Engineering Journal, 2019, 368: 812–823

[39]

Diao Y , Zhang X , Liu Y , Chen B , Wu G , Shi C . Plasma-assisted dry reforming of methane over Mo2C-Ni/Al2O3 catalysts: effects of β-Mo2C promoter. Applied Catalysis B: Environmental, 2022, 301: 120779

[40]

Kitamura H , Sumi T , Kubota S , Kokuryo S , Tamura K , Miyake K , Uchida Y , Miyamoto M , Nishiyama N . Stable and selective conversion of ethylene to propylene and butylene using Ni-loaded dealuminated Beta zeolite catalyst. Applied Catalysis A: General, 2023, 668: 119429

[41]

Yan P , Li M M J , Kennedy E , Adesina A , Zhao G , Setiawan A , Stockenhuber M . The role of acid and metal sites in hydrodeoxygenation of guaiacol over Ni/β catalysts. Catalysis Science & Technology, 2020, 10(3): 810–825

[42]

Śrębowata A , Baran R , Łomot D , Lisovytskiy D , Onfroy T , Dzwigaj S . Remarkable effect of postsynthesis preparation procedures on catalytic properties of Ni-loaded BEA zeolites in hydrodechlorination of 1,2-dichloroethane. Applied Catalysis B: Environmental, 2014, 147: 208–220

[43]

Quindimil A , De-La-Torre U , Pereda-Ayo B , González-Marcos J A , González-Velasco J R . Ni catalysts with La as promoter supported over Y- and β-zeolites for CO2 methanation. Applied Catalysis B: Environmental, 2018, 238: 393–403

[44]

Zhou X , Wu S , Luo Y , Zhu L , He D . Unraveling active Ni sites over dealuminated β zeolite for propane dehydrogenation. Energy & Fuels, 2023, 37(1): 450–458

[45]

Ling Y , Chen X , Meng J , Wang C , Li C , Clark A H , Du B , Liang C . Mechanochemical regulation of the nickel species coordination environment on Ni/β catalysts to enhance propylene dimerization. Applied Catalysis A: General, 2023, 663: 119289

[46]

Yun T , Diao Y , Han J , Yi Y , Chen Q , Hou C , Chen B , Wang M , Ma D , Shi C . Cold plasma-assisted co-conversion of polyolefin wastes and CO2 into aromatics over hierarchical Ga/ZSM-5 catalyst. Journal of Energy Chemistry, 2025, 106: 587–599

[47]

Song J , Lv J , Pan Y , Wang J , Wang J , Cao A , Wu A , Williams P T , Huang Q . Low-temperature hydrogen production from waste polyethylene by nonthermal plasma (NTP)-assisted catalytic pyrolysis using NiCeOx/β catalyst. Chemical Engineering Journal, 2024, 490: 151676

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4441KB)

Supplementary files

FCE-25035-OF-HJ_suppl_1

534

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/