Ni nanoparticles with high thermal stability for methane dry reforming
Meng Han , Dan Guo , Xuening Zhang , Yitong Yao , Haozhe Zhang , Yifei Lu , Zelong Fu , Jing Lv , Yong Wang , Joe Yeang Cheah , Shengping Wang , Xinbin Ma
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (8) : 70
Ni nanoparticles with high thermal stability for methane dry reforming
The upgrading of underutilized methane in shale gas with anthropogenic CO2 can produce the value-added syngas via dry reforming. Nickel-based catalysts, due to their efficiency and cost-effectiveness, have received widespread attention. However, Ni-catalyzed dry reforming of methane is usually subjected to sintering or coking-induced instability. To address these issues, a series of Al2O3-supported nickel nanoparticle catalysts with uniform sizes are synthesized by varying the calcination temperatures and applied in methane dry reforming (DRM). Ni/Al2O3-700 °C catalyst behaves better catalytic performance compared to the other catalysts, which can be attributed to its higher metal dispersion and stronger metal-support interaction. In addition, the abundant moderate-strength basic sites and optimal AlIV/AlVI ratio can promote the adsorption and activation of CO2 and suppress the deep cracking of CH4 for Ni/Al2O3-700 °C catalyst, respectively, causing the enhancement of anti-coking performance. Furthermore, combining CH4-temperature programmed surface reaction and in situ Fourier transform infrared spectroscopy demonstrates that the presence of CO2 can promote the activation of CH4 for Ni/Al2O3-700 °C catalyst, which is rate-determining step for DRM system. These findings provide valuable theoretical guidance for the rational design of Ni-based catalysts with enhanced catalytic performance.
dry reforming of methane / nickel-based catalysts / calcination temperature / metal-support interaction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |