Modulating the secondary coordination sphere of the Cu site for boosting acetylene hydrochlorination

Dingqiang Feng , Linfeng Li , Yunsheng Dai , Wei Li , Jinli Zhang , Bao Wang , Jiangjiexing Wu

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (8) : 67

PDF (5762KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (8) : 67 DOI: 10.1007/s11705-025-2577-7
RESEARCH ARTICLE

Modulating the secondary coordination sphere of the Cu site for boosting acetylene hydrochlorination

Author information +
History +
PDF (5762KB)

Abstract

Ligand modification of Cu catalysts has emerged as a promising strategy to enhance activity and stability in acetylene hydrochlorination. However, the limited availability of primary coordinating heteroatoms hinders precise engineering of the Cu active site microenvironment. Herein, a secondary coordination sphere modulation strategy was developed using various substituted hydrocarbon groups in the ligands. The local microenvironment around the Cu active sites was precisely tuned, leading to the Cu+ ratio of freshly prepared catalysts and reactive activity revealing a linear correlation, and the C2H2 adsorption energy exhibiting a distinct volcano plot correlation with catalytic activity. Among these catalysts, Cu-MMTB/AC exhibited the highest activity, achieving an acetylene conversion of 88.5% under the reaction conditions (T = 180 °C, gas hourly space velocity (GHSV) (C2H2) = 180 h−1, and V(HCl): V(C2H2) = 1.2). Moreover, 1#Cu3-MMTB1 exhibits advantages in both intermediate formation and HCl activation processes along the reaction pathway. This strategy offers a new avenue for designing high-performance Cu catalysts and promoting the use of mercury-free industrial catalysts.

Graphical abstract

Keywords

acetylene hydrochlorination / secondary coordination sphere / electronic microenvironment / ligand regulation / Cu catalyst

Cite this article

Download citation ▾
Dingqiang Feng, Linfeng Li, Yunsheng Dai, Wei Li, Jinli Zhang, Bao Wang, Jiangjiexing Wu. Modulating the secondary coordination sphere of the Cu site for boosting acetylene hydrochlorination. Front. Chem. Sci. Eng., 2025, 19(8): 67 DOI:10.1007/s11705-025-2577-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y , Gu X , Busari F K , Barkaoui S , Han Z K , Baiker A , Zhao Z , Li G . Size hierarchy of gold clusters in nanogold-catalyzed acetylene hydrochlorination. Nano Research, 2024, 17(11): 9594–9600

[2]

Yue Y , Wang B , Huang J , Wang S , Jin C , Chang R , Pan Z , Zhu Y , Zhao J , Li X . Reaction-driven dynamic and reversible transformations of Au single atoms and Au-Zr alloys on zirconia for efficient acetylene hydrochlorination. ACS Applied Materials & Interfaces, 2024, 16(13): 16106–16119

[3]

Giulimondi V , Ruiz-Ferrando A , Giannakakis G , Surin I , Agrachev M , Jeschke G , Krumeich F , López N , Clark A H , Pérez-Ramírez J . Evidence of bifunctionality of carbons and metal atoms in catalyzed acetylene hydrochlorination. Nature Communications, 2023, 14(1): 5557

[4]

Ali S , Wang L , Yan H , Yang C , Wang J , Sun H , Li X , Wu R , Liang C . Enhanced catalytic performance of palladium-based catalysts modified with the dibenzofuran ligand for acetylene hydrochlorination. Applied Organometallic Chemistry, 2024, 38(11): e7681

[5]

Lazaridou A , Smith L R , Pattisson S , Dummer N F , Smit J J , Johnston P , Hutchings G J . Recognizing the best catalyst for a reaction. Nature Reviews Chemistry, 2023, 7(4): 287–295

[6]

Yang Y , Zhao C , Qiao X , Guan Q , Li W . Regulating the coordination environment of Ru single-atom catalysts and unraveling the reaction path of acetylene hydrochlorination. Green Energy & Environment, 2023, 8(4): 1141–1153

[7]

Zhao J , Wang S , Wang B , Yue Y , Jin C , Lu J , Fang Z , Pang X , Feng F , Guo L . . Acetylene hydrochlorination over supported ionic liquid phase (SILP) gold-based catalyst: stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms. Chinese Journal of Catalysis, 2021, 42(2): 334–346

[8]

Malta G , Kondrat S A , Freakley S J , Davies C J , Lu L , Dawson S , Thetford A , Gibson E K , Morgan D J , Jones W . . Identification of single-site gold catalysis in acetylene hydrochlorination. Science, 2017, 355(6332): 1399–1403

[9]

Ye L , Duan X , Wu S , Wu T S , Zhao Y , Robertson A W , Chou H L , Zheng J , Ayvalı T , Day S . . Self-regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination. Nature Communications, 2019, 10(1): 914

[10]

O’Connell K C , Monnier J R , Regalbuto J R . The curious relationship of sintering to activity in supported gold catalysts for the hydrochlorination of acetylene. Applied Catalysis B: Environmental, 2018, 225: 264–272

[11]

Faust Akl D , Giannakakis G , Ruiz-Ferrando A , Agrachev M , Medrano-García J D , Guillén-Gosálbez G , Jeschke G , Clark A H , Safonova O V , Mitchell S . . Reaction-induced formation of stable mononuclear Cu(I)Cl species on carbon for low-footprint vinyl chloride production. Advanced Materials, 2023, 35(26): 2211464

[12]

Zhang T , Wang B , Nian Y , Liu M , Jia Y , Zhang J , Han Y . Excess copper chloride induces active sites over Cu-ligand catalysts for acetylene hydrochlorination. ACS Catalysis, 2023, 13(12): 8307–8316

[13]

Yue Y , Wang S , Zhou Q , Wang B , Jin C , Chang R , Wan L , Pan Z , Zhu Y , Zhao J . . Tailoring asymmetric Cu-O-P coupling site by carbothermal shock method for efficient vinyl chloride synthesis over carbon supported Cu catalysts. ACS Catalysis, 2023, 13(14): 9777–9791

[14]

Giulimondi V , Vanni M , Damir S , Zou T , Mitchell S , Krumeich F , Ruiz-Ferrando A , López N , Gata-Cuesta J J , Guillén-Gosálbez G . . Convergent active site evolution in platinum single atom catalysts for acetylene hydrochlorination and implications for toxicity minimization. ACS Catalysis, 2024, 14(18): 13652–13664

[15]

Kaiser S K , Fako E , Manzocchi G , Krumeich F , Hauert R , Clark A H , Safonova O V , López N , Pérez-Ramírez J . Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nature Catalysis, 2020, 3(4): 376–385

[16]

Zhang Q , Zhang H , Huang M , Guo Z , Yang L , Peng W , Zhang J . Phthalimide ligand coordination as a critical “Key” for constructing chlorine-platinum-nitrogen single-site catalysts for effective acetylene hydrochlorination. ACS Sustainable Chemistry & Engineering, 2023, 11(7): 3103–3113

[17]

Wang B , Yue Y , Jin C , Lu J , Wang S , Yu L , Guo L , Li R , Hu Z T , Pan Z . . Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: importance of pyridinic-N synergism. Applied Catalysis B: Environmental, 2020, 272: 118944

[18]

Zhao J , Yue Y , Sheng G , Wang B , Lai H , Di S , Zhai Y , Guo L , Li X . Supported ionic liquid-palladium catalyst for the highly effective hydrochlorination of acetylene. Chemical Engineering Journal, 2019, 360: 38–46

[19]

Dong X , Liu G , Chen Z , Zhang Q , Xu Y , Liu Z . Enhanced performance of Pd-[DBU][Cl]/AC mercury-free catalysts in acetylene hydrochlorination. Chinese Journal of Catalysis, 2023, 46: 137–147

[20]

Zhang M , Zhang H , Li F , Peng W , Yao L , Dong Y , Xie D , Liu Z , Li C , Zhang J . Construction of Ru-N single sites for effective acetylene hydrochlorination: effect of polyethyleneimine modifiers. ACS Sustainable Chemistry & Engineering, 2022, 10(42): 13991–14000

[21]

Fan Y , Xu H , Gao G , Wang M , Huang W , Ma L , Yao Y , Qu Z , Xie P , Dai B . . Asymmetric Ru-In atomic pairs promote highly active and stable acetylene hydrochlorination. Nature Communications, 2024, 15(1): 6035

[22]

Wang X , Lan G , Cheng Z , Han W , Tang H , Liu H , Li Y . Carbon-supported ruthenium catalysts prepared by a coordination strategy for acetylene hydrochlorination. Chinese Journal of Catalysis, 2020, 41(11): 1683–1691

[23]

Huang T , Yan B . Evaluation and application of kinetic models for Cu-catalyzed acetylene hydrochlorination. Chinese Journal of Chemical Engineering, 2024, 72: 209–219

[24]

Han Y , Wang Y , Wang Y , Hu Y , Nian Y , Li W , Zhang J . Pyrrolidone ligand improved Cu-based catalysts with high performance for acetylene hydrochlorination. Applied Organometallic Chemistry, 2021, 35(1): e6066

[25]

Zhang Y , Li S , Qiao X , Guan Q , Li W . Efficient and stable N-heterocyclic ketone-Cu complex catalysts for acetylene hydrochlorination: the promotion effect of ligands revealed from DFT calculations. Physical Chemistry Chemical Physics, 2023, 25(37): 25581–25593

[26]

Walmsley J D , Hill J W , Saha P , Hill C M . Probing electrocatalytic CO2 reduction at individual Cu nanostructures via optically targeted electrochemical cell microscopy. Journal of Analysis and Testing, 2019, 3(2): 140–149

[27]

Ren Y , Wu B , Wang F , Li H , Lv G , Sun M , Zhang X . Chlorocuprate(I) ionic liquid as an efficient and stable Cu-based catalyst for hydrochlorination of acetylene. Catalysis Science & Technology, 2019, 9(11): 2868–2878

[28]

Peng J , Dong D , Wang Z , Yang H , Qiao D , Wang Q , Sun W , Liu M , Wang J , Zhu M . . Manipulating micro-electric field and coordination-saturated site configuration boosted activity and safety of frustrated single-atom Cu/O Lewis pair for acetylene hydrochlorination. Nano Research, 2023, 16(7): 9039–9049

[29]

Yang L , Li L , Li J , Xu Y , Dong Y , Xie D , Liu Z , Zhang Q , Qi J , Guo Z . . Role of a doped support strategy for maintaining stable Cun+ sites in acetylene hydrochlorination. Industrial & Engineering Chemistry Research, 2024, 63(28): 12394–12402

[30]

Zhai Y , Zhao J , Di X , Di S , Wang B , Yue Y , Sheng G , Lai H , Guo L , Wang H . . Carbon-supported perovskite-like CsCuCl3 nanoparticles: a highly active and cost-effective heterogeneous catalyst for the hydrochlorination of acetylene to vinyl chloride. Catalysis Science & Technology, 2018, 8(11): 2901–2908

[31]

Wang X , Chen W , Lei X , Lei C , Zhu N , Huang B . Progress of p-block element-regulated catalysts for acetylene hydrochlorination. Coordination Chemistry Reviews, 2024, 500: 215541

[32]

Chen Z , Wang S , Zhao J , Lin R . Advances in single-atom-catalyzed acetylene hydrochlorination. ACS Catalysis, 2024, 14(2): 965–980

[33]

Liu Y , Chen N , Li W , Sun M , Wu T , Huang B , Yong X , Zhang Q , Gu L , Song H . . Engineering the synergistic effect of carbon dots-stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat, 2022, 3(2): 249–259

[34]

Chen Y , Ma A , Chen L , Liu X , Li Y , Hong Y , Zhang Y , Liu Y , Wei L , Li Y . . Accelerating electrocatalytic nitrate reduction to ammonia via weakening of intermediate adsorption on Cu-based catalyst. Transactions of Tianjin University, 2024, 30(6): 488–497

[35]

Wang B , Jin C , Shao S , Yue Y , Zhang Y , Wang S , Chang R , Zhang H , Zhao J , Li X . Electron-deficient Cu site catalyzed acetylene hydrochlorination. Green Energy & Environment, 2023, 8(4): 1128–1140

[36]

Wang B , Zhang T , Liu Y , Li W , Zhang H , Zhang J . Phosphine-oxide organic ligand improved Cu-based catalyst for acetylene hydrochlorination. Applied Catalysis A: General, 2022, 630: 118461

[37]

Dang L , Wang L , Yan H , Gong B , Yang C , Wang J , Sun H , Li X , Wu R , Liang C . Urea modified USY zeolite supported Cu-based catalyst for acetylene hydrochlorination. Materials Today Communications, 2024, 40: 110070

[38]

Wang X , Zhu R , Dai Y , Xia H , Niu Q . N-hydroxyethyl-2-pyrrolidone improved Cu-based catalysts with high performance for acetylene hydrochlorination. Catalysis Letters, 2024, 154(5): 2285–2293

[39]

Yang L , Zhang H , Li L , Peng W , Dong Y , Xie D , Chen S , Zhang Q , Qi J , Guo Z . . Construction of highly dispersed Cu-P/Cl active sites using methyldiphenyloxophosphine for efficient acetylene hydrochlorination. ACS Sustainable Chemistry & Engineering, 2023, 11(5): 1666–1677

[40]

Peng J , Yin X , Dong D , Guo Z , Wang Q , Liu M , He F , Dai B , Huang C . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508

[41]

Wang B , Zhang T , Li L , Zhang H , Wu J , Zhang J . Data-informed discovery of high-performance Cu-ligand catalysts for acetylene hydrochlorination. Chemical Engineering Journal, 2024, 480: 148323

[42]

Yang G , Wang D , Wang Y , Hu W , Hu S , Jiang J , Huang J , Jiang H L . Modulating the primary and secondary coordination spheres of single Ni(II) sites in metal-organic frameworks for boosting photocatalysis. Journal of the American Chemical Society, 2024, 146(15): 10798–10805

[43]

Hsu C W , Rathnayaka S C , Islam S M , Macmillan S N , Mankad N P . N2O reductase activity of a [Cu4S] cluster in the 4CuI redox state modulated by hydrogen bond donors and proton relays in the secondary coordination sphere. Angewandte Chemie International Edition, 2020, 59(2): 627–631

[44]

Ravel B , Newville M . Athena, artemis, and hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 2005, 12(4): 537–541

[45]

FrischM JTrucksG WSchlegelH BScuseriaG ERobbM ACheesemanJ RScalmaniGBaroneVPeterssonG ANakatsujiH, . Gaussian 16 Revision C.01, Gaussian, Inc., Wallingford CT, 2016

[46]

Zhang T , Nian Y , Wang B , Zhang J , Goddard W A III , Han Y . Mechanistic insights into the evolution of Cu active center in acetylene hydrochlorination. Journal of Catalysis, 2025, 442: 115926

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5762KB)

Supplementary files

FCE-24101-OF-FD_suppl_1

407

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/