Single-atom alloys for sustainability-related electrocatalytic applications

Mingming Yin , Yunfei Gao , Chenchen Cui , Wei Ma , Li-Li Zhang , Zhen Zhou

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (7) : 63

PDF (8568KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (7) : 63 DOI: 10.1007/s11705-025-2572-z
REVIEW ARTICLE

Single-atom alloys for sustainability-related electrocatalytic applications

Author information +
History +
PDF (8568KB)

Abstract

Single-atom alloy catalysts represent a novel and advanced category of materials in heterogeneous catalysis, attracting considerable interest in electrochemical power storage and utilization because of the distinctive structural attributes and remarkable catalytic capabilities. By establishing atomically precise arrangements of catalytic centers on metallic surfaces, single-atom alloy create highly efficient active sites with near-perfect atomic utilization. The robust electronic coupling and geometric interactions between the atomic-scale precision sites and the supporting metal matrix impart exceptional catalytic properties, such as improved kinetic performance, precise molecular recognition, and prolonged operational durability. In essence, the structural integrity of the isolated metal active sites in single-atom alloy, combined with their precisely tunable coordination environments, substantially boosts the electrochemical performance and catalytic efficiency. This review begins by introducing and discussing the fundamental concepts and inherent attributes of single-atom alloy. The methodological framework for single-atom alloy development was systematically examined, encompassing architectural design principles, fabrication methodologies, and analytical characterization techniques. Following this, the comprehensive summarization was conducted regarding the implementation of single-atom alloy catalysts in energy transformation technologies, with specific emphasis on fuel cells and environmentally electrochemical processes. Finally, forward-looking insights and perspectives are presented on the current challenges facing the development of single-atom alloy catalysts.

Graphical abstract

Keywords

single-atom alloys / fuel cells / electrochemical reactions / electrocatalysts / conversion efficiency

Cite this article

Download citation ▾
Mingming Yin, Yunfei Gao, Chenchen Cui, Wei Ma, Li-Li Zhang, Zhen Zhou. Single-atom alloys for sustainability-related electrocatalytic applications. Front. Chem. Sci. Eng., 2025, 19(7): 63 DOI:10.1007/s11705-025-2572-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xie B , Wang L , Li H , Huo H , Cui C , Sun B , Ma Y , Wang J , Yin G , Zuo P . An interface-reinforced rhombohedral Prussian blue analogue in semi-solid state electrolyte for sodium-ion battery. Energy Storage Materials, 2021, 36: 99–107

[2]

Jiao K , Xuan J , Du Q , Bao Z , Xie B , Wang B , Zhao Y , Fan L , Wang H , Hou Z . . Designing the next generation of proton-exchange membrane fuel cells. Nature, 2021, 595(7867): 361–369

[3]

Yan D , Mebrahtu C , Wang S , Palkovits R . Innovative electrochemical strategies for hydrogen production: from electricity input to electricity output. Angewandte Chemie International Edition, 2023, 62(16): e202214333

[4]

Feng W , Yuan J , Gao F , Weng B , Hu W , Lei Y , Huang X , Yang L , Shen J , Xu D . . Piezopotential-driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N-doped graphene vesicles for superhigh H2 production from pure water. Nano Energy, 2020, 75: 104990

[5]

Chen Z , Yun S , Wu L , Zhang J , Shi X , Wei W , Liu Y , Zheng R , Han N , Ni B . Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Letters, 2023, 15(1): 4

[6]

Gao X , Wang P , Sun X , Jaroniec M , Zheng Y , Qiao S . Membrane-free water electrolysis for hydrogen generation with low cost. Angewandte Chemie International Edition, 2025, 64(6): e202417987

[7]

Fan L , Deng H , Zhang Y , Du Q , Leung D Y C , Wang Y , Jiao K . Towards ultralow platinum loading proton exchange membrane fuel cells. Energy & Environmental Science, 2023, 16(4): 1466–1479

[8]

Zhuang Z , Li Y , Yu R , Xia L , Yang J , Lang Z , Zhu J , Huang J , Wang J , Wang Y . . Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nature Catalysis, 2022, 5(4): 300–310

[9]

Wang N , Jiang W , Yang J , Feng H , Zheng Y , Wang S , Li B , Heng J Z X , Ong W C , Tan H . . Contact-electro-catalytic CO2 reduction from ambient air. Nature Communications, 2024, 15(1): 591

[10]

Zhao C , Wang Y , Li Z , Chen W , Xu Q , He D , Xi D , Zhang Q , Yuan T , Qu Y . . Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule, 2019, 3(2): 584–594

[11]

Fang H , Liu D , Luo Y , Zhou Y , Liang S , Wang X , Lin B , Jiang L . Challenges and opportunities of Ru-based catalysts toward the synthesis and utilization of ammonia. ACS Catalysis, 2022, 12(7): 3938–3954

[12]

Xie M , Dai F , Guo H , Du P , Xu X , Liu J , Zhang Z , Lu X . Improving electrocatalytic nitrogen reduction selectivity and yield by suppressing hydrogen evolution reaction via electronic metal-support interaction. Advanced Energy Materials, 2023, 13(21): 2203032

[13]

Duan W , Li Y , Ou Y , Tuo H , Tian L , Zhu Y , Fu H , Zheng W , Feng C . Insights into electrochemical nitrate reduction to nitrogen on metal catalysts for wastewater treatment. Environmental Science & Technology, 2025, 59(6): 3263–3275

[14]

Wan Y , Pei M , Tang Y , Liu Y , Yan W , Zhang J , Lv R . Interfacial water regulation for nitrate electroreduction to ammonia at ultralow overpotentials. Advanced Materials, 2025, 37(8): 2417696

[15]

Govindarajan N , Kastlunger G , Heenen H H , Chan K . Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go. Chemical Science, 2021, 13(1): 14–26

[16]

Yuan J , Wang P , Song N , Wang Y , Ma J , Xiong S , Li X , Feng J , Xi B . Alloying strategy regulating size and electronic structure of Mo0.25Nb0.75Se2 to achieve high-performance lithium-sulfur batteries. Angewandte Chemie International Edition, 2024, 64(9): e202420866

[17]

Okatenko V , Loiudice A , Newton M A , Stoian D C , Blokhina A , Chen A N , Rossi K , Buonsanti R . Alloying as a strategy to boost the stability of copper nanocatalysts during the electrochemical CO2 reduction reaction. Journal of the American Chemical Society, 2023, 145(9): 5370–5383

[18]

Zhang R , Pan L , Guo B , Huang Z , Chen Z , Wang L , Zhang X , Guo Z , Xu W , Loh K P . . Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. Journal of the American Chemical Society, 2023, 145(4): 2271–2281

[19]

Ma W , Yao J , Xie F , Wang X , Wan H , Shen X , Zhang L , Jiao M , Zhou Z . Optimizing electronic structure through point defect engineering for enhanced electrocatalytic energy conversion. Green Energy & Environment, 2025, 10(1): 109–131

[20]

Zhao J , Wang H , Feng L , Zhu J , Liu J , Li W . Crystal-phase engineering in heterogeneous catalysis. Chemical Reviews, 2024, 124(1): 164–209

[21]

Dong C , Wang X , Zhu Z , Zhan C , Lin X , Bu L , Ye J , Wang Y , Liu W , Huang X . Highly selective synthesis of monoclinic-phased platinum-tellurium nanotrepang for direct formic acid oxidation catalysis. Journal of the American Chemical Society, 2023, 145(28): 15393–15404

[22]

Du G , Fan Y , Jia L , Wang Y , Hao Y , Zhao W , Su Q , Xu B . Sulfur-deficient CoNi2S4 nanoparticles-anchored porous carbon nanofibers as bifunctional electrocatalyst for overall water splitting. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1707–1717

[23]

Zhang A , Liang Y , Zhang H , Geng Z , Zeng J . Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50(17): 9817–9844

[24]

Yang X , Li X , Huang Y . Single-atom catalysis: a promising avenue for precisely controlling reaction pathways. Frontiers of Chemical Science and Engineering, 2024, 18(7): 79

[25]

Xie J , Zhang H , Li S , Wang R , Sun X , Zhou M , Zhou J , Lou X , Xie Y . Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials, 2013, 25(40): 5807–5813

[26]

Du C , Li P , Zhuang Z , Fang Z , He S , Feng L , Chen W . Highly porous nanostructures: rational fabrication and promising application in energy electrocatalysis. Coordination Chemistry Reviews, 2022, 466: 214604

[27]

Su J , Musgrave C B III , Song Y , Huang L , Liu Y , Li G , Xin Y , Xiong P , Li M M J , Wu H . . Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nature Catalysis, 2023, 6(9): 818–828

[28]

Lyu Z , Yu S , Wang M , Tieu P , Zhou J , Shi Q , Du D , Feng Z , Pan X , Lin H . . NiFe nanoparticle nest supported on graphene as electrocatalyst for highly efficient oxygen evolution reaction. Small, 2024, 20(15): 2308278

[29]

Xiao Y , Zhang J , Liu T , Xu M , Dong Y , Wang C . Constructing morphologically stable supported noble metal catalysts in heterogeneous catalysis: mechanisms and strategies. Nano Energy, 2024, 129: 109975

[30]

Zhang J , Xia Z , Dai L . Carbon-based electrocatalysts for advancedenergy conversion and storage. Science Advances, 2015, 1(7): e1500564

[31]

Liu L , Lu J , Yang Y , Ruettinger W , Gao X , Wang M , Lou H , Wang Z , Liu Y , Tao X . . Dealuminated beta zeolite reverses Ostwald ripening for durable copper nanoparticle catalysts. Science, 2024, 383(6678): 94–101

[32]

Han J , Bai X , Xu X , Bai X , Husile A , Zhang S , Qi L , Guan J . Advances and challenges in the electrochemical reduction of carbon dioxide. Chemical Science, 2024, 15(21): 7870–7907

[33]

Yu A , Yang Y . Atomically dispersed metal catalysts for oxygen reduction reaction: two-electron vs. four-electron pathways. Angewandte Chemie International Edition, 2025, 64(16): e202424161

[34]

Zheng S , Zhang F , Jiang Y , Xu T , Li H , Guo H , Zhou Y . Advances in catalysts and reaction systems for electro/photocatalytic ammonia production. Frontiers of Chemical Science and Engineering, 2024, 18(10): 112

[35]

Wang Y , Wang D , Li Y . Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications. Advanced Materials, 2021, 33(34): 2008151

[36]

Sun T , Mitchell S , Li J , Lyu P , Wu X , Pérez-Ramírez J , Lu J . Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Advanced Materials, 2021, 33(5): 2003075

[37]

Wang L , Wang H , Lu J . Local chemical environment effect in single-atom catalysis. Chem Catalysis, 2023, 3(4): 100492

[38]

Liang X , Fu N , Yao S , Li Z , Li Y . The progress and outlook of metal single-atom-site catalysis. Journal of the American Chemical Society, 2022, 144(40): 18155–18174

[39]

Zhang T , Walsh A G , Yu J , Zhang P . Single-atom alloy catalysts: structural analysis, electronic properties, and catalytic activities. Chemical Society Reviews, 2021, 50(1): 569–588

[40]

Sun X , Song Y , Jiang G , Lan X , Xu C . Fundamentals and catalytic applications of single-atom alloys. Science China Materials, 2024, 67(1): 1–17

[41]

Gao Q , Han X , Liu Y , Zhu H . Electrifying energy and chemical transformations with single-atom alloy nanoparticle catalysts. ACS Catalysis, 2024, 14(8): 6045–6061

[42]

He C , Gong Y , Li S , Wu J , Lu Z , Li Q , Wang L , Wu S , Zhang J . Single-atom alloys materials for CO2 and CH4 catalytic conversion. Advanced Materials, 2024, 36(16): 2311628

[43]

Jiang B , Zhu J , Xia Z , Lyu J , Li X , Zheng L , Chen C , Chaemchuen S , Bu T , Verpoort F . . Correlating single-atomic ruthenium interdistance with long-range interaction boosts hydrogen evolution reaction kinetics. Advanced Materials, 2024, 36(2): 2310699

[44]

Kyriakou G , Boucher M B , Jewell A D , Lewis E A , Lawton T J , Baber A E , Tierney H L , Flytzani-Stephanopoulos M , Sykes E C H . Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209–1212

[45]

Hannagan R T , Giannakakis G , Flytzani-Stephanopoulos M , Sykes E C H . Single-atom alloy catalysis. Chemical Reviews, 2020, 120(21): 12044–12088

[46]

Réocreux R , Stamatakis M . One decade of computational studies on single-atom alloys: is in silico design within reach. Accounts of Chemical Research, 2022, 55(1): 87–97

[47]

Liu J , Wang S , Tian Y , Guo H , Chen X , Lei W , Yu Y , Wang C . Screening of silver-based single-atom alloy catalysts for no electroreduction to NH3 by DFT calculations and machine learning. Angewandte Chemie International Edition, 2025, 64(2): e202414314

[48]

Qin F , Chen W . Copper-based single-atom alloys for heterogeneous catalysis. Chemical Communications, 2021, 57(22): 2710–2723

[49]

Li R , Zhao J , Liu B , Wang D . Atomic distance engineering in metal catalysts to regulate catalytic performance. Advanced Materials, 2024, 36(3): 2308653

[50]

Darby M T , Sykes E C H , Michaelides A , Stamatakis M . Carbon monoxide poisoning resistance and structural stability of single atom alloys. Topics in Catalysis, 2018, 61(5–6): 428–438

[51]

Shen T , Wang S , Zhao T , Hu Y , Wang D . Recent advances of single-atom-alloy for energy electrocatalysis. Advanced Energy Materials, 2022, 12(39): 2201823

[52]

Hannagan R T , Giannakakis G , Réocreux R , Schumann J , Finzel J , Wang Y , Michaelides A , Deshlahra P , Christopher P , Flytzani-Stephanopoulos M . . First-principles design of a single-atom-alloy propane dehydrogenation catalyst. Science, 2021, 372(6549): 1444–1447

[53]

Zhuang J , Wang D . Recent advances of single-atom alloy catalyst: properties, synthetic methods, and electrocatalytic applications. Materials Today Catalysis, 2023, 2: 100009

[54]

Da Y , Jiang R , Tian Z , Han X , Chen W , Hu W . The applications of single-atom alloys in electrocatalysis: progress and challenges. SmartMat, 2023, 4(1): e1136

[55]

Liu X , Ao C , Shen X , Wang L , Wang S , Cao L , Zhang W , Dong J , Bao J , Ding T . . Dynamic surface reconstruction of single-atom bimetallic alloy under operando electrochemical conditions. Nano Letters, 2020, 20(11): 8319–8325

[56]

Li J , Zeng H , Dong X , Ding Y , Hu S , Zhang R , Dai Y , Cui P , Xiao Z , Zhao D . . Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nature Communications, 2023, 14(1): 340

[57]

Ren W , Tan X , Qu J , Li S , Li J , Liu X , Ringer S P , Cairney J M , Wang K , Smith S C . . Isolated copper-tin atomic interfaces tuning electrocatalytic CO2 conversion. Nature Communications, 2021, 12(1): 1449

[58]

Giannakakis G , Trimpalis A , Shan J , Qi Z , Cao S , Liu J , Ye J , Biener J , Flytzani-Stephanopoulos M . NiAu single atom alloys for the non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. Topics in Catalysis, 2018, 61(5–6): 475–486

[59]

Liu J , Shan J , Lucci F R , Cao S , Sykes E C H , Flytzani-Stephanopoulos M . Palladium-gold single atom alloy catalysts for liquid phase selective hydrogenation of 1-hexyne. Catalysis Science & Technology, 2017, 7(19): 4276–4284

[60]

Ouyang M , Papanikolaou K G , Boubnov A , Hoffman A S , Giannakakis G , Bare S R , Stamatakis M , Flytzani-Stephanopoulos M , Sykes E C H . Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nature Communications, 2021, 12(1): 1549

[61]

Olowoyo J O , Gharahshiran V S , Zeng Y , Zhao Y , Zheng Y . Atomic/molecular layer deposition strategies for enhanced CO2 capture, utilisation, and storage materials. Chemical Society Reviews, 2024, 53(11): 5428–5488

[62]

Yang J , Ma D , Li Y , Zhang P , Mi H , Deng L , Sun L , Ren X . Atomic layer deposition of amorphous oxygen-deficient TiO2–x on carbon nanotubes as cathode materials for lithium-air batteries. Journal of Power Sources, 2017, 360: 215–220

[63]

Jin Z , Xu Y , Chhetri M , Wood J , Torreon B , Che F , Yang M . Recent developments of single atom alloy catalysts for electrocatalytic hydrogenation reactions. Chemical Engineering Journal, 2024, 491: 152072

[64]

Fonseca J , Lu J . Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catalysis, 2021, 11(12): 7018–7059

[65]

Wang H , Luo Q , Liu W , Lin Y , Guan Q , Zheng X , Pan H , Zhu J , Sun Z , Wei S . . Quasi Pd1Ni single-atom surface alloy catalyst enables hydrogenation of nitriles to secondary amines. Nature Communications, 2019, 10(1): 4998

[66]

Zhang L , Liu H , Liu S , Norouzi B M , Song Z , Li J , Yang L , Markiewicz M , Zhao Y , Li R . . Pt/Pd single-atom alloys as highly active electrochemical catalysts and the origin of enhanced activity. ACS Catalysis, 2019, 9(10): 9350–9358

[67]

Ahmed M , Wang C , Zhao Y , Sathish C I , Lei Z , Qiao L , Sun C , Wang S , Kennedy J V , Vinu A . . Bridging together theoretical and experimental perspectives in single-atom alloys for electrochemical ammonia production. Small, 2024, 20(13): 2308084

[68]

Yan P , Xi S , Peng H , Mitchell D R G , Harvey L , Drewery M , Kennedy E M , Zhu Z , Sankar G , Stockenhuber M . Facile and eco-friendly approach to produce confined metal cluster catalysts. Journal of the American Chemical Society, 2023, 145(17): 9718–9728

[69]

Lee J , Kwon T , Hyuk K K , Won W , Ro I . Tandem catalysis for plastic depolymerization: in situ hydrogen generation via methanol aqueous phase reforming for sustainable polyethylene hydrogenolysis. Angewandte Chemie International Edition, 2025, 64(15): e202420748

[70]

Wang Y , Zhuang Q , Cao R , Li Y , Gao F , Li Z , He Z , Shi L , Meng Y , Li X . . Reduction-controlled atomic migration for single atom alloy library. Nano Letters, 2022, 22(10): 4232–4239

[71]

Sheng Y , Liu Y , Yin Y , Zou X , Ren J , Wu B , Wang X , Lu X . Rh promotional effects on Pt-Rh alloy catalysts for chemoselective hydrogenation of nitrobenzene to p-aminophenol. Chemical Engineering Journal, 2023, 452: 139448

[72]

Silva A G M , Rodrigues T S , Haigh S J , Camargo P H C . Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, 2017, 53: 7135–7148

[73]

Chung M , Jin K , Zeng J S , Ton T N , Manthiram K . Tuning single-atom dopants on manganese oxide for selective electrocatalytic cyclooctene epoxidation. Journal of the American Chemical Society, 2022, 144(38): 17416–17422

[74]

Gan T , Shang W , Handschuh W S , Zhang Y , Zhou X . Liquid metal nanoreactor enables living galvanic replacement reaction. Chemistry of Materials, 2024, 36(6): 3042–3053

[75]

Wang N , Zhao W , Zhang M , Cao P , Sun S , Ma H , Lin M . Bismuth-induced synthesis of Au–X (X = Pt, Pd) nanoalloys for electrocatalytic reactions. Chemical Communications, 2021, 57(3): 391–394

[76]

Luo S , Zhang L , Liao Y , Li L , Yang Q , Wu X , Wu X , He D , He C , Chen W . . A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation. Advanced Materials, 2021, 33(17): 2008508

[77]

Zhang X , Cui G , Feng H , Chen L , Wang H , Wang B , Zhang X , Zheng L , Hong S , Wei M . Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nature Communications, 2019, 10(1): 5812

[78]

Liu W , Feng H , Yang Y , Niu Y , Wang L , Yin P , Hong S , Zhang B , Zhang X , Wei M . Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13(1): 3188

[79]

Feng Q , Zhu C , Sheng G , Sun T , Li Y , Zhu Y . Four-dimensional scanning transmission electron microscopy: from material microstructures to physicochemical properties. Acta Physico-Chimica Sinica, 2022, 39(3): 2210017

[80]

Krivanek O L , Chisholm M F , Nicolosi V , Pennycook T J , Corbin G J , Dellby N , Murfitt M F , Own C S , Szilagyi Z S , Oxley M P . . Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature, 2010, 464(7288): 571–574

[81]

Kwak J H , Hu J , Mei D , Yi C W , Kim D H , Peden C H F , Allard L F , Szanyi J . Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on g-Al2O3. Science, 2009, 325(5948): 1670–1673

[82]

Jin C , Lin Y , Wang Y , Shi J , Li R , Liu Y , Yue Z , Leng K , Zhao Y , Wang Y . . Engineering atom-scale cascade catalysis via multi-active site collaboration for ampere-level CO2 electroreduction to C2+ products. Advanced Materials, 2025, 37(8): 2412658

[83]

Mao J , Yin J , Pei J , Wang D , Li Y . Single atom alloy: an emerging atomic site material for catalytic applications. Nano Today, 2020, 34: 100917

[84]

Varela M , Lupini A R , Benthem K , Borisevich A Y , Chisholm M F , Shibata N , Abe E , Pennycook S J . Materials characterization in the aberration-corrected scanning transmission electron microscope. Annual Review of Materials Research, 2005, 35(1): 539–569

[85]

Jiang N . Electron beam damage in oxides: a review. Reports on Progress in Physics, 2016, 79(1): 016501

[86]

Frenkel A I . Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chemical Society Reviews, 2012, 41(24): 8163–8178

[87]

Newton M A , Dent A J , Evans J . Bringing time resolution to EXAFS: recent developments and application to chemical systems. Chemical Society Reviews, 2002, 31(2): 83–95

[88]

Li M , Duanmu K , Wan C , Cheng T , Zhang L , Dai S , Chen W , Zhao Z , Li P , Fei H . . Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nature Catalysis, 2019, 2(6): 495–503

[89]

Ren H , Yu W , Lv M , Gao J , Hu H , Wang M , Cui X , Liu J , Jiang L . Carbon-encapsulated single-atom platinum nickel alloy for efficient and durable alkaline hydrogen oxidation through enhanced charge polarization. Advanced Functional Materials, 2025, 35(3): 2413754

[90]

Xing F , Jeon J , Toyao T , Shimizu K , Furukawa S . A Cu-Pd single-atom alloy catalyst for highly efficient NO reduction. Chemical Science, 2019, 10(36): 8292–8298

[91]

Cao Y , Chen S , Bo S , Fan W , Li J , Jia C , Zhou Z , Liu Q , Zheng L , Zhang F . Single atom Bi decorated copper alloy enables C–C coupling for electrocatalytic reduction of CO2 into C2+ products. Angewandte Chemie International Edition, 2023, 62(30): e202303048

[92]

Xu Y , Li J , Wu J , Li W , Yang Y , Wu H , Fu H , Zhu M , Wang X , Dai S . . Orbital matching mechanism-guided synthesis of Cu-based single atom alloys for acidic CO2 electroreduction. Advanced Materials, 2025, 37(18): 2500343

[93]

Wang Y , Han C , Ma L , Duan T , Du Y , Wu J , Zou J , Gao J , Zhu X , Zhang Y . Recent progress of transition metal selenides for electrochemical oxygen reduction to hydrogen peroxide: from catalyst design to electrolyzers application. Small, 2024, 20(22): 2309448

[94]

Zhang L , Jiang S , Ma W , Zhou Z . Oxygen reduction reaction on Pt-based electrocatalysts: four-electron vs. two-electron pathway. Chinese Journal of Catalysis, 2022, 43(6): 1433–1443

[95]

Sang W , Liu K , Wang T , Lyu J , Nie Z , Zhang L , Xiong M , Li X , Zheng L , Chen C . . Nature-inspired diatomic Zn-Cu pairs trigger active two OH* -involved oxygen reduction reaction. Nano Energy, 2025, 138: 110861

[96]

Peng B , Liu Z , Sementa L , Jia Q , Sun Q , Segre C U , Liu E , Xu M , Tsai Y H , Yan X . . Embedded oxide clusters stabilize sub-2 nm Pt nanoparticles for highly durable fuel cells. Nature Catalysis, 2024, 7(7): 818–828

[97]

Ali A , Laaksonen A , Huang G , Hussain S , Luo S , Chen W , Shen P K , Zhu J , Ji X . Emerging strategies and developments in oxygen reduction reaction using high-performance platinum-based electrocatalysts. Nano Research, 2024, 17(5): 3516–3532

[98]

Cheng X , Wang Y , Lu Y , Zheng L , Sun S , Li H , Chen G , Zhang J . Single-atom alloy with Pt-Co dual sites as an efficient electrocatalyst for oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 306: 121112

[99]

Niu X , Wei J , Xu D , Pei J , Sui R . Charge-asymmetry Fe1Cu single-atom alloy catalyst for efficient oxygen reduction reaction. Nano Research, 2024, 17(6): 4702–4710

[100]

Zhang L , Lu P , Yin M , Li R , Wang B , Ma X , Jiao M , Ma W , Zhou Z . Black phosphorus nanodots-modified Pt/C electrocatalyst for methanol-tolerant oxygen reduction in direct methanol fuel cells. Rare Metals, 2025, 44(3): 1767–1776

[101]

Li Q , Sun C , Sun X , Yin Z , Du Y , Liu J , Luo F . Synthesis of palladium-rare earth alloy as a high-performance bifunctional catalyst for direct ethanol fuel cells. Nano Research, 2024, 17(11): 9525–9531

[102]

Hu X , An Z , Wang W , Lin X , Chan T , Zhan C , Hu Z , Yang Z , Huang X , Bu L . Sub-monolayer SbOx on PtPb/Pt nanoplate boosts direct formic acid oxidation catalysis. Journal of the American Chemical Society, 2023, 145(35): 19274–19282

[103]

Chen W , Cao J , Fu W , Zhang J , Qian G , Yang J , Chen D , Zhou X , Yuan W , Duan X . Molecular-level insights into the notorious CO poisoning of platinum catalyst. Angewandte Chemie, 2022, 134(16): e202200190

[104]

Wang J , Zhang B , Guo W , Wang L , Chen J , Pan H , Sun W . Toward electrocatalytic methanol oxidation reaction: longstanding debates and emerging catalysts. Advanced Materials, 2023, 35(26): 2211099

[105]

Yan W , Li G , Cui S , Park G S , Oh R , Chen W , Cheng X , Zhang J , Li W , Ji L . . Ga-modification near-surface composition of Pt-Ga/C catalyst facilitates high-efficiency electrochemical ethanol oxidation through a C2 intermediate. Journal of the American Chemical Society, 2023, 145(31): 17220–17231

[106]

Chen T , Xu S , Zhao T , Zhou X , Hu J , Xu X , Liang C , Liu M , Ding W . Accelerating ethanol complete electrooxidation via introducing ethylene as the precursor for the C–C bond splitting. Angewandte Chemie International Edition, 2023, 62(38): e202308057

[107]

Tan X , Wang J , Xiao Y , Guo Y , He W , Du B , Cui H , Wang C . Engineering topological and chemical disorder in Pd sites for record-breaking formic acid electrocatalytic oxidation. Advanced Materials, 2025, 37(4): 2414283

[108]

Poerwoprajitno A R , Gloag L , Watt J , Cheong S , Tan X , Lei H , Tahini H A , Henson A , Subhash B , Bedford N M . . A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nature Catalysis, 2022, 5(3): 231–237

[109]

Wang H , Jiao L , Zheng L , Fang Q , Qin Y , Luo X , Wei X , Hu L , Gu W , Wen J . . PdBi single-atom alloy aerogels for efficient ethanol oxidation. Advanced Functional Materials, 2021, 31(38): 2103465

[110]

Duchesne P N , Li Z Y , Deming C P , Fung V , Zhao X , Yuan J , Regier T , Aldalbahi A , Almarhoon Z , Chen S . . Golden single-atomic-site platinum electrocatalysts. Nature Materials, 2018, 17(11): 1033–1039

[111]

Lang C , Xu Y , Yao X . Perfecting HER catalysts via defects: recent advances and perspectives. Chinese Journal of Catalysis, 2024, 64: 4–31

[112]

Jia Y , Zhang Y , Xu H , Li J , Gao M , Yang X . Recent advances in doping strategies to improve electrocatalytic hydrogen evolution performance of molybdenum disulfide. ACS Catalysis, 2024, 14(7): 4601–4637

[113]

Xu Q , Zhang J , Zhang H , Zhang L , Chen L , Hu Y , Jiang H , Li C . Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy & Environmental Science, 2021, 14(10): 5228–5259

[114]

Chen J , Fu G , Tian Y , Li X , Luo M , Wei X , Zhang T , Gao T , Chen C , Chaemchuen S . . Three-dimensional-printed Ni-based scaffold design accelerates bubble escape for ampere-level alkaline hydrogen evolution reaction. Interdisciplinary Materials, 2024, 3(4): 595–606

[115]

Zhao X , Wu G , Zheng X , Jiang P , Yi J , Zhou H , Gao X , Yu Z , Wu Y . A double atomic-tuned RuBi SAA/Bi@OG nanostructure with optimum charge redistribution for efficient hydrogen evolution. Angewandte Chemie, 2023, 135(12): e202300879

[116]

Wan R , Luo M , Wen J , Liu S , Kang X , Tian Y . Pt-Co single atom alloy catalysts: accelerated water dissociation and hydrogen evolution by strain regulation. Journal of Energy Chemistry, 2022, 69: 44–53

[117]

Ma Q , Mu S . Acidic oxygen evolution reaction: mechanism, catalyst classification, and enhancement strategies. Interdisciplinary Materials, 2023, 2(1): 53–90

[118]

Wan R , Yuan T , Wang L , Li B , Liu M , Zhao B . Earth-abundant electrocatalysts for acidic oxygen evolution. Nature Catalysis, 2024, 7(12): 1288–1304

[119]

Thao N T T , Jang J U , Nayak A K , Han H . Current trends of iridium-based catalysts for oxygen evolution reaction in acidic water electrolysis. Small Science, 2024, 4(1): 2300109

[120]

Yao Y , Lyu J , Li X , Chen C , Verpoort F , Wang J , Pan Z , Kou Z . A review of efficient electrocatalysts for the oxygen evolution reaction at large current density. DeCarbon, 2024, 5: 100062

[121]

Yang Z , Ding Y , Chen W , Luo S , Cao D , Long X , Xie L , Zhou X , Cai X , Liu K . . Phase-engineered Bi-RuO2 single-atom alloy oxide boosting oxygen evolution electrocatalysis in proton exchange membrane water electrolyzer. Advanced Materials, 2025, 37(9): 2417777

[122]

Wang B , Li J , Li D , Xu J , Liu S , Jiang Q , Zhang Y , Duan Z , Zhang F . Single atom iridium decorated nickel alloys supported on segregated MoO for alkaline water electrolysis. Advanced Materials, 2024, 36(11): 2305437

[123]

Xu L , Trogadas P , Coppens M O . Nature-inspired electrocatalysts for CO2 reduction to C2+ products. Advanced Energy Materials, 2023, 13(48): 2302974

[124]

Gomes R J , Kumar R , Fejzić H , Sarkar B , Roy I , Amanchukwu C V . Modulating water hydrogen bonding within a non-aqueous environment controls its reactivity in electrochemical transformations. Nature Catalysis, 2024, 7(6): 689–701

[125]

Wang S , Li F , Zhao J , Zeng Y , Li Y , Lin Z , Lee T , Liu S , Ren X , Wang W . . Manipulating C–C coupling pathway in electrochemical CO2 reduction for selective ethylene and ethanol production over single-atom alloy catalyst. Nature Communications, 2024, 15(1): 10247

[126]

Fang C , Huang L , Gao W , Jiang X , Liu H , Hu R , Li X , Yu J , Zhou W . Oxygen-pinned Ag1In single-atom alloy for efficient electroreduction CO2 to formate. Advanced Energy Materials, 2024, 14(27): 2400813

[127]

Chu K , Weng B , Lu Z , Ding Y , Zhang W , Tan R , Zheng Y , Han N . Exploration of multidimensional structural optimization and regulation mechanisms: catalysts and reaction environments in electrochemical ammonia synthesis. Advanced Science, 2025, 12(11): 2416053

[128]

Li S , Wang Y , Du Y , Zhu X , Gao J , Zhang Y , Wu G . P-block metal-based electrocatalysts for nitrogen reduction to ammonia: a minireview. Small, 2023, 19(16): 2206776

[129]

Yue L , Song W , Zhang L , Luo Y , Wang Y , Li T , Ying B , Sun S , Zheng D , Liu Q . . Recent advance in heterogenous electrocatalysts for highly selective nitrite reduction to ammonia under ambient condition. Small Structures, 2023, 4(11): 2300168

[130]

Meng X , Tan X , Ma Y , Obisanya A A , Wang J , Xiao Z , Wang D . Recent progress in cobalt-based electrocatalysts for efficient electrochemical nitrate reduction reaction. Advanced Functional Materials, 2025, 35(14): 2418492

[131]

Li X , Shen P , Luo Y , Li Y , Guo Y , Zhang H , Chu K . PdFe single-atom alloy metallene for N2 electroreduction. Angewandte Chemie International Edition, 2022, 61(28): e202205923

[132]

Lan J , Wang Z , Kao C , Lu Y , Xie F , Tan Y . Isolating Cu-Zn active-sites in ordered intermetallics to enhance nitrite-to-ammonia electroreduction. Nature Communications, 2024, 15(1): 10173

[133]

Yu J , Gao R , Guo X , Truong Nguyen N , Wu L , Wang L . Electrochemical nitrate reduction to ammonia on AuCu single-atom alloy aerogels under wide potential window. Angewandte Chemie International Edition, 2025, 64(4): e202415975

[134]

Ji Y , Guan A , Zheng G . Copper-based catalysts for electrochemical carbon monoxide reduction. Cell Reports. Physical Science, 2022, 3(10): 101072

[135]

Sun Q , Tan X , Jia C , Rong C , Wang S , Han C , Xiao Y , Qi H , Smith S C , Zhao C . Molecule doping of atomically dispersed Cu-Au alloy for enhancing electroreduction of CO to C2+ products. Advanced Functional Materials, 2024, 34(48): 2406281

[136]

Ge R , Huo J , Lu P , Dou Y , Bai Z , Li W , Liu H , Fei B , Dou S . Multifunctional strategies of advanced electrocatalysts for efficient urea synthesis. Advanced Materials, 2024, 36(49): 2412031

[137]

Zhan P , Zhuang J , Yang S , Li X , Chen X , Wen T , Lu L , Qin P , Han B . Efficient electrosynthesis of urea over single-atom alloy with electronic metal support interaction. Angewandte Chemie International Edition, 2024, 63(33): e202409019

[138]

Jiang Z , Zeng Y , Hu D , Guo R , Yan K , Luque R . Chemical transformations of 5-hydroxymethylfurfural into highly added value products: present and future. Green Chemistry, 2023, 25(3): 871–892

[139]

Ji K , Xu M , Xu S , Wang Y , Ge R , Hu X , Sun X , Duan H . Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst. Angewandte Chemie International Edition, 2022, 61(37): e202209849

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (8568KB)

411

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/