The role of Li2CO3 promoter and steam in increasing C2H4/C2H6 selectivity in chemical looping oxidative coupling of CH4 over Mn-Na2WO4/support catalysts

Jianshu Li , Juan Chen , Anna Zanina , Vita A. Kondratenko , Henrik Lund , Wen Jiang , Hanyang Zhou , Yuming Li , Guiyuan Jiang , Evgenii V. Kondratenko

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 98

PDF (1413KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 98 DOI: 10.1007/s11705-025-2571-0
RESEARCH ARTICLE

The role of Li2CO3 promoter and steam in increasing C2H4/C2H6 selectivity in chemical looping oxidative coupling of CH4 over Mn-Na2WO4/support catalysts

Author information +
History +
PDF (1413KB)

Abstract

The main challenge in the oxidative coupling of methane to C2H6/C2H4 (C2-hydrocarbons) lies in the low selectivity to the desired products due to their high reactivity to form carbon oxides. Herein, we report that the selectivity in chemical looping oxidative coupling of methane over supported Mn-Na2WO4-based catalysts can be significantly increased by catalyst promotion with Li2CO3 and performing the reaction with co-fed steam. The selectivity reaches 89% (about 60% C2H4 selectivity) at a methane conversion of 19%. The best-performing catalyst showed durable within 90 reaction/reoxidation cycles. With the aid of sophisticated catalyst characterization studies combined with temporal analysis of products, the origins of the enhancing effects of the promoter and steam have been elucidated and can be applied for the development of selective catalysts in various alkane oxidation reactions.

Graphical abstract

Keywords

chemical looping / oxidative coupling of methane / C2 selectivity / oxygen species / Li2CO3 / Mn-Na2WO4

Cite this article

Download citation ▾
Jianshu Li, Juan Chen, Anna Zanina, Vita A. Kondratenko, Henrik Lund, Wen Jiang, Hanyang Zhou, Yuming Li, Guiyuan Jiang, Evgenii V. Kondratenko. The role of Li2CO3 promoter and steam in increasing C2H4/C2H6 selectivity in chemical looping oxidative coupling of CH4 over Mn-Na2WO4/support catalysts. Front. Chem. Sci. Eng., 2025, 19(10): 98 DOI:10.1007/s11705-025-2571-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kiani D , Sourav S , Baltrusaitis J , Wachs I E . Oxidative xoupling of methane (OCM) by SiO2-supported tungsten oxide catalysts promoted with Mn and Na. ACS Catalysis, 2019, 9(7): 5912–5928

[2]

Schwach P , Pan X L , Bao X H . Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chemical Reviews, 2017, 117(13): 8497–8520

[3]

Keller G E , Bhasin M M . Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. Journal of Catalysis, 1982, 73(1): 9–19

[4]

Arinaga A M , Ziegelski M C , Marks T J . Alternative oxidants for the catalytic oxidative coupling of methane. Angewandte Chemie International Edition, 2021, 60(19): 10502–10515

[5]

Zavyalova U , Holena M , Schlögl R , Baerns M . Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem, 2011, 3(12): 1935–1947

[6]

Farrell B L , Igenegbai V O , Linic S . A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catalysis, 2016, 6(7): 4340–4346

[7]

Qin L , Cheng Z , Baser D , Goldenbaum T , Fan J A , Fan L S . Cyclic redox scheme towards shale gas reforming: a review and perspectives. Reaction Chemistry & Engineering, 2020, 5(12): 2204–2220

[8]

Fleischer V , Littlewood P , Parishan S , Schomäcker R . Chemical looping as reactor concept for the oxidative coupling of methane over a Na2WO4/Mn/SiO2 catalyst. Chemical Engineering Journal, 2016, 306: 646–654

[9]

Parishan S , Littlewood P , Arinchtein A , Fleischer V , Schomäcker R . Chemical looping as a reactor concept for the oxidative coupling of methane over the MnxOy-Na2WO4/SiO2 catalyst, benefits, and limitation. Catalysis Today, 2018, 311: 40–47

[10]

Sun W , Zhao G , Gao Y , Si J , Liu Y , Lu Y . An oxygen carrier catalyst toward efficient chemical looping-oxidative coupling of methane. Applied Catalysis B: Environmental, 2022, 304: 120948

[11]

Chung E Y , Wang W K , Nadgouda S G , Baser D S , Sofranko J A , Fan L S . Catalytic oxygen carriers and process systems for oxidative coupling of methane using the chemical looping technology. Industrial & Engineering Chemistry Research, 2016, 55(50): 12750–12764

[12]

Jiang S , Ding W , Zhao K , Huang Z , Wei G , Feng Y , Lv Y , He F . Enhanced chemical looping oxidative coupling of methane by Na-doped LaMnO3 redox catalysts. Fuel, 2021, 299: 120932

[13]

Cheng Z , Baser D S , Nadgouda S G , Qin L , Fan J A , Fan L S . C2 selectivity enhancement in chemical looping oxidative coupling of methane over a Mg-Mn composite oxygen carrier by Li-doping-induced oxygen vacancies. ACS Energy Letters, 2018, 3(7): 1730–1736

[14]

Baser D S , Cheng Z , Fan J A , Fan L S . Codoping Mg-Mn based oxygen carrier with lithium and tungsten for enhanced C2 yield in a chemical looping oxidative coupling of methane system. ACS Sustainable Chemistry & Engineering, 2021, 9(7): 2651–2660

[15]

Zhao K , Gao Y , Wang X , Lis B M , Liu J , Jin B , Smith J , Huang C , Gao W , Wang X . . Lithium carbonate-promoted mixed rare earth oxides as a generalized strategy for oxidative coupling of methane with exceptional yields. Nature Communications, 2023, 14(1): 7749

[16]

Li J , Chen J , Zanina A , Li Y , Yu C , Liu M , Cui G , Wang Y , Zhou M , Kondratenko E V . . Fundamentals of enhanced oxygen releasability of Mn-Na2WO4/SiO2 through cofed water for efficient oxidative coupling of methane in a chemical looping mode. Journal of Catalysis, 2023, 428: 115176

[17]

Jones J , Xiong H , DeLaRiva A T , Peterson E J , Pham H , Challa S R , Qi G , Oh S , Wiebenga M H , Pereira Hernández X I . . Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 2016, 353(6295): 150–154

[18]

Zanina A , Kondratenko V A , Lund H , Li J , Chen J , Li Y , Jiang G , Kondratenko E V . Performance-defining factors of (MnOx)-M2WO4/SiO2 (M = Na, K, Rb, or Cs) catalysts in oxidative coupling of methane. Journal of Catalysis, 2023, 419: 68–79

[19]

Zanina A , Kondratenko V A , Lund H , Li J , Chen J , Li Y , Jiang G , Kondratenko E V . The role of adsorbed and lattice oxygen species in product formation in the oxidative coupling of methane over M2WO4/SiO2 (M = Na, K, Rb, Cs). ACS Catalysis, 2022, 12(24): 15361–15372

[20]

Gleaves J T , Yablonskii G S , Phanawadee P , Schuurman Y . TAP-2: an interrogative kinetics approach. Applied Catalysis A: General, 1997, 160(1): 55–88

[21]

Sahebdelfar S , Ravanchi M T , Gharibi M , Hamidzadeh M . Rule of 100: an inherent limitation or performance measure in oxidative coupling of methane. Journal of Natural Gas Chemistry, 2012, 21(3): 308–313

[22]

Wang Y , Otsuka K , Ebitani K . In situ FTIR study on the active oxygen species for the conversion of methane to methanol. Catalysis Letters, 1995, 35(3–4): 259–263

[23]

Xu J , Zhang Y , Xu X , Fang X , Xi R , Liu Y , Zheng R , Wang X . Constructing La2B2O7 (B = Ti, Zr, Ce) compounds with three typical crystalline phases for the oxidative coupling of methane: the effect of phase structures, superoxide anions, and alkalinity on the reactivity. ACS Catalysis, 2019, 9(5): 4030–4045

[24]

Aydin Z , Kondratenko V A , Lund H , Bartling S , Kreyenschulte C R , Linke D , Kondratenko E V . Revisiting activity- and selectivity-enhancing effects of water in the oxidative coupling of methane over MnOx-Na2WO4/SiO2 and proving for other materials. ACS Catalysis, 2020, 10(15): 8751–8764

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1413KB)

Supplementary files

FCE-25026-OF-LJ_suppl_1

515

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/