Progress in one-carbon metabolism: Clostridium in green biomanufacturing

Zhuoheng Wu , Ming Ma , Bowen Zeng , Kai Wang , Tianwei Tan

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 97

PDF (4002KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 97 DOI: 10.1007/s11705-025-2568-8
REVIEW ARTICLE

Progress in one-carbon metabolism: Clostridium in green biomanufacturing

Author information +
History +
PDF (4002KB)

Abstract

The growing emphasis on low-carbon lifestyles and the reduction of carbon emissions has spurred interest in renewable energy-driven biomanufacturing. The third-generation biomanufacturing concept leverages microbial cell factories to convert renewable energy sources, including solar and electrical energy, and inorganic materials, into high-value fuels and chemicals. Microbial CO2 fixation, with its mild reaction conditions and ability to generate diverse products, is a compelling alternative to traditional chemical catalysis, which is generally characterized by high energy demands, pollution, and limited product diversity. Clostridium stands out among microorganisms for its natural ability to fix carbon via the Wood-Ljungdahl pathway, which enables CO2, CO, and H2 to be used for growth and product synthesis. Advances in genetic engineering tools for Clostridium have led to the biosynthesis of over 40 natural compounds, expanding its industrial potential. Furthermore, integrating Clostridium into photoelectrochemical systems has demonstrated the feasibility of coupling microbial fermentation with renewable energy inputs. This review comprehensively examines the Wood-Ljungdahl pathway, related metabolic pathways, and key enzymes, along with the latest progress in genetic modification tools. The potential of Clostridium as a biocatalyst for one-carbon gas conversion and its integration with clean energy technologies is highlighted, offering valuable perspectives for future research.

Graphical abstract

Keywords

Clostridium / syngas conversion / gene editing / fermentation optimization / photoelectrochemical coupling

Cite this article

Download citation ▾
Zhuoheng Wu, Ming Ma, Bowen Zeng, Kai Wang, Tianwei Tan. Progress in one-carbon metabolism: Clostridium in green biomanufacturing. Front. Chem. Sci. Eng., 2025, 19(10): 97 DOI:10.1007/s11705-025-2568-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang W , Hernández Villamor D , Peng H , Chen J , Liu L , Haritos V , Ledesma-Amaro R . Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nature Chemical Biology, 2021, 17(8): 845–855

[2]

Liu Z , Deng Z , Davis S J , Giron C , Ciais P . Monitoring global carbon emissions in 2021. Nature Reviews: Earth & Environment, 2022, 3(4): 217–219

[3]

Rajendran A , Sakthivel A , Dong Z , Li W . What makes biochar an interesting CO2 adsorbent. Frontiers of Chemical Science and Engineering, 2025, 19(2): 12

[4]

Schmidt S B , Eisenhut M , Schneider A . Chloroplast transition metal regulation for efficient photosynthesis. Trends in Plant Science, 2020, 25(8): 817–828

[5]

Liu G , Zhong Y , Liu Z , Wang G , Gao F , Zhang C , Wang Y , Zhang H , Ma J , Hu Y . . Solar-driven sugar production directly from CO2 via a customizable electrocatalytic–biocatalytic flow system. Nature Communications, 2024, 15(1): 2636

[6]

Antonovsky N , Gleizer S , Noor E , Zohar Y , Herz E , Barenholz U , Zelcbuch L , Amram S , Wides A , Tepper N . . Sugar synthesis from CO2 in Escherichia coli. Cell, 2016, 166(1): 115–125

[7]

Zhu X , Tan X . Metalloproteins/metalloenzymes for the synthesis of acetyl-CoA in the Wood-Ljungdahl pathway. Science in China Series B: Chemistry, 2009, 52(12): 2071–2082

[8]

Ioannou P , Kopidakis I , Makraki E , Baliou S , Samonis G . Infective endocarditis by Clostridioides and Clostridium species: a narrative review. Antibiotics, 2023, 13(1): 33

[9]

Asadnabizadeh M . Critical findings of the sixth assessment report (AR6) of working Group I of the intergovernmental panel on climate change (IPCC) for global climate change policymaking a summary for policymakers (SPM) analysis. International Journal of Climate Change Strategies and Management, 2023, 15(5): 652–670

[10]

Henstra A M , Sipma J , Rinzema A , Stams A J . Microbiology of synthesis gas fermentation for biofuel production. Current Opinion in Biotechnology, 2007, 18(3): 200–206

[11]

Li C , Zhu X , Angelidaki I . Syngas biomethanation: effect of biomass-gas ratio, syngas composition, and pH buffer. Bioresource Technology, 2021, 342: 125997

[12]

Patil S C , Fahim S T M , Lee J H , Gilliard-Abdulaziz K L . Electrothermal carbon capture and utilization: a review. ACS Energy Letters, 2025, 10(1): 371–392

[13]

Yang G , Jia D , Jin L , Jiang Y , Wang Y , Jiang W , Gu Y . Rapid generation of universal synthetic promoters for controlled gene expression in both gas-fermenting and saccharolytic Clostridium species. ACS Synthetic Biology, 2017, 6(9): 1672–1678

[14]

Heap J T , Pennington O J , Cartman S T , Minton N P . A modular system for Clostridium shuttle plasmids. Journal of Microbiological Methods, 2009, 78(1): 79–85

[15]

Minton N P , Ehsaan M , Humphreys C M , Little G T , Baker J , Henstra A M , Liew F , Kelly M L , Sheng L , Schwarz K . . A roadmap for gene system development in Clostridium. Anaerobe, 2016, 41: 104–112

[16]

Heap J T , Ehsaan M , Cooksley C M , Ng Y K , Cartman S T , Winzer K , Minton N P . Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Research, 2012, 40(8): e59

[17]

Cui Y , Yang K L , Zhou K . Using co-culture to functionalize Clostridium fermentation. Trends in Biotechnology, 2021, 39(9): 914–926

[18]

Jin S , Bae J , Song Y , Pearcy N , Shin J , Kang S , Minton N P , Soucaille P , Cho B K . Synthetic biology on acetogenic bacteria for highly efficient conversion of C1 gases to biochemicals. International Journal of Molecular Sciences, 2020, 21(20): 7639

[19]

Schwarz I , Angelina A , Hambrock P , Weuster-Botz D . Simultaneous formate and syngas conversion boosts growth and product formation by Clostridium ragsdalei. Molecules, 2024, 29(11): 2661

[20]

Moon J , Dönig J , Kramer S , Poehlein A , Daniel R , Müller V . Formate metabolism in the acetogenic bacterium Acetobacterium woodii. Environmental Microbiology, 2021, 23(8): 4214–4227

[21]

Trifunović D , Schuchmann K , Müller V . Ethylene glycol metabolism in the acetogen Acetobacterium woodii. Journal of Bacteriology, 2016, 198(7): 1058–1065

[22]

Wiechmann A , Müller V . Energy conservation in the acetogenic bacterium Clostridium aceticum. Microorganisms, 2021, 9(2): 258

[23]

Riegler P , Bieringer E , Chrusciel T , Stärz M , Löwe H , Weuster-Botz D . Continuous conversion of CO2/H2 with Clostridium aceticum in biofilm reactors. Bioresource Technology, 2019, 291: 121760

[24]

Tremblay P L , Zhang T . Genetic tools for the electrotroph Sporomusa ovata and autotrophic biosynthesis. Applied and Environmental Microbiology, 2024, 90(1): e01757–23

[25]

Poehlein A , Gottschalk G , Daniel R . First insights into the genome of the Gram-negative, endospore-forming organism Sporomusa ovata strain H1 DSM 2662. Genome Announcements, 2013, 1(5): 00734–13

[26]

Hess V , Poehlein A , Weghoff M C , Daniel R , Müller V . A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genomics, 2014, 15(1): 1139

[27]

Malleck T , Daufouy G , André S , Broussolle V , Planchon S . Temperature impacts the sporulation capacities and spore resistance of Moorella thermoacetica. Food Microbiology, 2018, 73: 334–341

[28]

Jia D , Deng W , Hu P , Jiang W , Gu Y . Thermophilic Moorella thermoacetica as a platform microorganism for C1 gas utilization: physiology, engineering, and applications. Bioresources and Bioprocessing, 2023, 10(1): 61

[29]

Song Y , Lee J S , Shin J , Lee G M , Jin S , Kang S , Lee J K , Kim D R , Lee E Y , Kim S C . . Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13): 7516–7523

[30]

Jeong Y , Song Y , Shin H S , Cho B K . Draft genome sequence of acid-tolerant Clostridium drakei SL1T, a potential chemical producer through syngas fermentation. Genome Announcements, 2014, 2(3): e00387–14

[31]

Bengelsdorf F R , Poehlein A , Linder S , Erz C , Hummel T , Hoffmeister S , Daniel R , Dürre P . Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Frontiers in Microbiology, 2016, 7: 1036

[32]

Flüchter S , Follonier S , Schiel-Bengelsdorf B , Bengelsdorf F R , Zinn M , Dürre P . Anaerobic production of poly(3-hydroxybutyrate) and its precursor 3-hydroxybutyrate from synthesis gas by autotrophic clostridia. Biomacromolecules, 2019, 20(9): 3271–3282

[33]

Oliveira L , Röhrenbach S , Holzmüller V , Weuster-Botz D . Continuous sulfide supply enhanced autotrophic production of alcohols with Clostridium ragsdalei. Bioresources and Bioprocessing, 2022, 9(1): 15

[34]

Li N , Yang J , Chai C , Yang S , Jiang W , Gu Y . Complete genome sequence of Clostridium carboxidivorans P7T, a syngas-fermenting bacterium capable of producing long-chain alcohols. Journal of Biotechnology, 2015, 211: 44–45

[35]

Kottenhahn P , Philipps G , Bunk B , Spröer C , Jennewein S . The restriction-modification systems of Clostridium carboxidivorans P7. Microorganisms, 2023, 11(12): 2962

[36]

Fernández-Naveira Á , Veiga M C , Kennes C . Glucose bioconversion profile in the syngas-metabolizing species Clostridium carboxidivorans. Bioresource Technology, 2017, 244: 552–559

[37]

Heffernan J K , Lai C Y , Gonzalez-Garcia R A , Nielsen L K , Guo J , Marcellin E . Biogas upgrading using Clostridium autoethanogenum for value-added products. Chemical Engineering Journal, 2023, 452: 138950

[38]

Nagaraju S , Davies N K , Walker D J F , Köpke M , Simpson S D . Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnology for Biofuels, 2016, 9(1): 219

[39]

Zhang L , Zhao R , Jia D , Jiang W , Gu Y . Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals. Current Opinion in Chemical Biology, 2020, 59: 54–61

[40]

Köpke M , Held C , Hujer S , Liesegang H , Wiezer A , Wollherr A , Ehrenreich A , Liebl W , Gottschalk G , Dürre P . Clostridium ljungdahlii represents a microbial production platform based on syngas. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 13087–13092

[41]

Hwang S , Song Y , Cho B-K . Draft genome sequence of Acetobacterium bakii DSM 8239, a potential psychrophilic chemical producer through syngas fermentation. Genome Announcements, 2015, 3(5): e01070–15

[42]

Shin J , Song Y , Jin S , Lee J K , Kim D R , Kim S C , Cho S , Cho B K . Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation. RNA, 2018, 24(12): 1839–1855

[43]

Uhlig R , Poehlein A , Fischer R J , Daniel R , Bahl H . Genome sequence of the autotrophic acetogen Clostridium magnum DSM 2767. Genome Announcements, 2016, 4(3): e00464–16

[44]

Zhu Z , Guo T , Zheng H , Song T , Ouyang P , Xie J . Complete genome sequence of a malodorant-producing acetogen, Clostridium scatologenes ATCC 25775T. Journal of Biotechnology, 2015, 212: 19–20

[45]

Liu H , Song T , Fei K , Wang H , Xie J . Microbial electrosynthesis of organic chemicals from CO2 by Clostridium scatologenes ATCC 25775T. Bioresources and Bioprocessing, 2018, 5(1): 7

[46]

Song Y , Cho B K . Draft genome sequence of chemolithoautotrophic acetogenic butanol-producing Eubacterium limosum ATCC 8486. Genome Announcements, 2015, 3(1): e01564–14

[47]

Wenk S , Yishai O , Lindner S N , Bar-Even A . An engineering approach for rewiring microbial metabolism. Methods in Enzymology, 2018, 608: 329–367

[48]

Roh H , Ko H J , Kim D , Choi D G , Park S , Kim S , Chang I S , Choi I G . Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612. Journal of Bacteriology, 2011, 193(1): 307–308

[49]

Rosenthal A Z , Matson E G , Eldar A , Leadbetter J R . RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture. ISME Journal, 2011, 5(7): 1133–1142

[50]

Nielsen J , Keasling J D . Engineering cellular metabolism. Cell, 2016, 164(6): 1185–1197

[51]

Fernández-Naveira Á , Veiga M C , Kennes C . Selective anaerobic fermentation of syngas into either C2–C6 organic acids or ethanol and higher alcohols. Bioresource Technology, 2019, 280: 387–395

[52]

Schuchmann K , Müller V . Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nature Reviews: Microbiology, 2014, 12(12): 809–821

[53]

Claassens N J , Cotton C A , Kopljar D , Bar-Even A . Making quantitative sense of electromicrobial production. Nature Catalysis, 2019, 2(5): 437–447

[54]

Fast A G , Papoutsakis E T . Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Current Opinion in Chemical Engineering, 2012, 1(4): 380–395

[55]

Lee S , Song Y , Choe D , Cho S , Yu S J , Cho Y , Kim S C , Cho B K . Reconstruction of acetogenesis pathway using short-read sequencing of Clostridium aceticum genome. Journal of Nanoscience and Nanotechnology, 2015, 15(5): 3852–3861

[56]

Latif H , Zeidan A A , Nielsen A T , Zengler K . Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Current Opinion in Biotechnology, 2014, 27: 79–87

[57]

Jeon W B , Cheng J , Ludden P W . Purification and characterization of membrane-associated CooC protein and its functional role in the insertion of nickel into carbon monoxide dehydrogenase from Rhodospirillum rubrum. Journal of Biological Chemistry, 2001, 276(42): 38602–38609

[58]

Kim S M , Lee J , Kang S H , Heo Y , Yoon H J , Hahn J S , Lee H H , Kim Y H . O2-tolerant CO dehydrogenase via tunnel redesign for the removal of CO from industrial flue gas. Nature Catalysis, 2022, 5(9): 807–817

[59]

Domnik L , Merrouch M , Goetzl S , Jeoung J H , Léger C , Dementin S , Fourmond V , Dobbek H . CODH‐IV: a high‐efficiency CO‐scavenging CO dehydrogenase with resistance to O2. Angewandte Chemie International Edition, 2017, 56(48): 15466–15469

[60]

Min K , Moon M , Park G W , Lee J P , Kim S J , Lee J S . Newly explored formate dehydrogenases from Clostridium species catalyze carbon dioxide to formate. Bioresource Technology, 2022, 348: 126832

[61]

Öppinger C , Kremp F , Müller V . Is reduced ferredoxin the physiological electron donor for MetVF-type methylenetetrahydrofolate reductases in acetogenesis? A hypothesis. International Microbiology, 2022, 25(1): 75–88

[62]

Yasin M , Jeong Y , Park S , Jeong J , Lee E Y , Lovitt R W , Kim B H , Lee J , Chang I S . Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresource Technology, 2015, 177: 361–374

[63]

Schuchmann K , Müller V . Energetics and application of heterotrophy in acetogenic bacteria. Applied and Environmental Microbiology, 2016, 82(14): 4056–4069

[64]

Grimm C , Pompei S , Egger K , Fuchs M , Kroutil W . Anaerobic demethylation of guaiacyl-derived monolignols enabled by a designed artificial cobalamin methyltransferase fusion enzyme. RSC Advances, 2023, 13(9): 5770–5777

[65]

Doukov T I , Blasiak L C , Seravalli J , Ragsdale S W , Drennan C L . Xenon in and at the end of the tunnel of bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Biochemistry, 2008, 47(11): 3474–3483

[66]

Moreira J P , Domingues L , Alves J I . Metabolic Versatility of acetogens in syngas fermentation: responding to varying CO availability. Bioresource Technology, 2025, 417: 131823

[67]

Asimakopoulos K , Gavala H N , Skiadas I V . Reactor systems for syngas fermentation processes: a review. Chemical Engineering Journal, 2018, 348: 732–744

[68]

Bomar M , Hippe H , Schink B . Lithotrophic growth and hydrogen metabolism by Clostridium magnum. FEMS Microbiology Letters, 1991, 83(3): 347–350

[69]

Köpke M , Mihalcea C , Liew F , Tizard J H , Ali M S , Conolly J J , Al-Sinawi B , Simpson S D . 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Applied and Environmental Microbiology, 2011, 77(15): 5467–5475

[70]

Marcellin E , Behrendorff J B , Nagaraju S , Detissera S , Segovia S , Palfreyman R W , Daniell J , Licona-Cassani C , Quek L E , Speight R . . Low carbon fuels and commodity chemicals from waste gases–systematic approach to understand energy metabolism in a model acetogen. Green Chemistry, 2016, 18(10): 3020–3028

[71]

Utturkar S M , Klingeman D M , Bruno-Barcena J M , Chinn M S , Grunden A M , Köpke M , Brown S D . Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies. Scientific Data, 2015, 2(1): 150014

[72]

Shen S , Gu Y , Chai C , Jiang W , Zhuang Y , Wang Y . Enhanced alcohol titre and ratio in carbon monoxide-rich off-gas fermentation of Clostridium carboxidivorans through combination of trace metals optimization with variable-temperature cultivation. Bioresource Technology, 2017, 239: 236–243

[73]

Verduyn C , Postma E , Scheffers W A , Van Dijken J P . Effect of benzoic acid on metabolic fluxes in yeasts: a continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast, 1992, 8(7): 501–517

[74]

Huang H , Chai C , Li N , Rowe P , Minton N P , Yang S , Jiang W , Gu Y . CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synthetic Biology, 2016, 5(12): 1355–1361

[75]

Leang C , Ueki T , Nevin K P , Lovley D R . A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Applied and Environmental Microbiology, 2013, 79(4): 1102–1109

[76]

Joseph R C , Kim N M , Sandoval N R . Recent developments of the synthetic biology toolkit for Clostridium. Frontiers in Microbiology, 2018, 9: 154

[77]

Woolston B M , Emerson D F , Currie D H , Stephanopoulos G . Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metabolic Engineering, 2018, 48: 243–253

[78]

Merrick C A , Zhao J , Rosser S J . Serine integrases: advancing synthetic biology. ACS Synthetic Biology, 2018, 7(2): 299–310

[79]

Zhao R , Liu Y , Zhang H , Chai C , Wang J , Jiang W , Gu Y . CRISPR-Cas12a-mediated gene deletion and regulation in Clostridium ljungdahlii and its application in carbon flux redirection in synthesis gas fermentation. ACS Synthetic Biology, 2019, 8(10): 2270–2279

[80]

Huang H , Chai C , Yang S , Jiang W , Gu Y . Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii. Metabolic Engineering, 2019, 52: 293–302

[81]

Jiang S , Li H , Zhang L , Mu W , Zhang Y , Chen T , Wu J , Tang H , Zheng S , Liu Y . . Generic diagramming platform (GDP): a comprehensive database of high-quality biomedical graphics. Nucleic Acids Research, 2025, 53(D1): D1670–D1676

[82]

Hossain G S , Saini M , Miyake R , Ling H , Chang M W . Genetic biosensor design for natural product biosynthesis in microorganisms. Trends in Biotechnology, 2020, 38(7): 797–810

[83]

Wang H , Marcišauskas S , Sánchez B J , Domenzain I , Hermansson D , Agren R , Nielsen J , Kerkhoven E J . RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Computational Biology, 2018, 14(10): e1006541

[84]

Poulalier-Delavelle M , Baker J P , Millard J , Winzer K , Minton N P . Endogenous CRISPR/Cas systems for genome engineering in the acetogens Acetobacterium woodii and Clostridium autoethanogenum. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1213236

[85]

Ghadermazi P , Re A , Ricci L , Chan S H J . Metabolic engineering interventions for sustainable 2,3-butanediol production in gas-fermenting Clostridium autoethanogenum. mSystems, 2022, 7(2): e01111–21

[86]

Alsaker K V , Spitzer T R , Papoutsakis E T . Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. Journal of Bacteriology, 2004, 186(7): 1959–1971

[87]

Tomas C A , Welker N E , Papoutsakis E T . Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Applied and Environmental Microbiology, 2003, 69(8): 4951–4965

[88]

Tummala S B , Welker N E , Papoutsakis E T . Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. Journal of Bacteriology, 2003, 185(6): 1923–1934

[89]

Vidal J E , Chen J , Li J , Mcclane B . Use of an EZ-Tn5-based random mutagenesis system to identify a novel toxin regulatory Locus in Clostridium perfringens. Strain, 2009, 4(7): e6232

[90]

Xiao H , Gu Y , Ning Y , Yang Y , Mitchell W J , Jiang W , Yang S . Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Applied and Environmental Microbiology, 2011, 77(22): 7886–7895

[91]

Xia P F , Casini I , Schulz S , Klask C M , Angenent L T , Molitor B . Reprogramming acetogenic bacteria with CRISPR-targeted base editing via deamination. ACS Synthetic Biology, 2020, 9(8): 2162–2171

[92]

Zhang H , Zhang C , Nie X , Wu Y , Yang C , Jiang W , Gu Y . Pleiotropic regulator GssR positively regulates autotrophic growth of gas-fermenting Clostridium ljungdahlii. Microorganisms, 2023, 11(8): 1968

[93]

Irani N , Beccaria A J , Wagner R . Expression of recombinant cytoplasmic yeast pyruvate carboxylase for the improvement of the production of human erythropoietin by recombinant BHK-21 cells. Journal of Biotechnology, 2002, 93(3): 269–282

[94]

Hwang S , Choe D , Yoo M , Cho S , Kim S C , Cho S , Cho B K . Peptide transporter CstA imports pyruvate in Escherichia coli K-12. Journal of Bacteriology, 2018, 200(7): 00771–17

[95]

Pence M A , Haste N M , Meharena H S , Olson J , Gallo R L , Nizet V , Kristian S A . Beta-lactamase repressor BlaI modulates Staphylococcus aureus cathelicidin antimicrobial peptide resistance and virulence. PLoS One, 2015, 10(8): e0136605

[96]

Zhang C , Nie X , Zhang H , Wu Y , He H , Yang C , Jiang W , Gu Y . Functional dissection and modulation of the BirA protein for improved autotrophic growth of gas‐fermenting Clostridium ljungdahlii. Microbial Biotechnology, 2021, 14(5): 2072–2089

[97]

Zhang H , Feng H , Xing X H , Jiang W , Zhang C , Gu Y . Pooled CRISPR interference screening identifies crucial transcription factors in gas-fermenting Clostridium ljungdahlii. ACS Synthetic Biology, 2024, 13(6): 1893–1905

[98]

Molitor B , Marcellin E , Angenent L T . Overcoming the energetic limitations of syngas fermentation. Current Opinion in Chemical Biology, 2017, 41: 84–92

[99]

Klask C M , Jäger B , Casini I , Angenent L T , Molitor B . Genetic evidence reveals the indispensable role of the rseC gene for autotrophy and the importance of a functional electron balance for nitrate reduction in Clostridium ljungdahlii. Frontiers in Microbiology, 2022, 13: 887578

[100]

Emerson D F , Woolston B M , Liu N , Donnelly M , Currie D H , Stephanopoulos G . Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation. Biotechnology and Bioengineering, 2019, 116(2): 294–306

[101]

Tremblay P L , Zhang T , Dar S A , Leang C , Lovley D R . The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin: NAD+ oxidoreductase essential for autotrophic growth. mBio, 2013, 4(1): 00406–12

[102]

Hess V , Schuchmann K , Müller V . The ferredoxin: NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. Journal of Biological Chemistry, 2013, 288(44): 31496–31502

[103]

Beck M H , Flaiz M , Bengelsdorf F R , Dürre P . Induced heterologous expression of the arginine deiminase pathway promotes growth advantages in the strict anaerobe Acetobacterium woodii. Applied Microbiology and Biotechnology, 2020, 104(2): 687–699

[104]

Noens E E , Kaczmarek M B , Żygo M , Lolkema J S . ArcD1 and ArcD2 arginine/ornithine exchangers encoded in the arginine deiminase pathway gene cluster of Lactococcus lactis. Journal of Bacteriology, 2015, 197(22): 3545–3553

[105]

Annan F J , Al-Sinawi B , Humphreys C M , Norman R , Winzer K , Köpke M , Simpson S D , Minton N P , Henstra A M . Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum. Applied Microbiology and Biotechnology, 2019, 103(11): 4633–4648

[106]

Dietrich H M , Müller V . Ferredoxin as a physiological electron donor for carbon dioxide fixation to formate in a bacterial carbon dioxide reductase. ACS Catalysis, 2023, 13(18): 12374–12382

[107]

Wang S , Huang H , Kahnt J , Mueller A P , Köpke M , Thauer R K . NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. Journal of Bacteriology, 2013, 195(19): 4373–4386

[108]

Richter H , Molitor B , Wei H , Chen W , Aristilde L , Angenent L . Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression. Energy & Environmental Science, 2016, 9(7): 2392–2399

[109]

Dietrich H M , Righetto R D , Kumar A , Wietrzynski W , Trischler R , Schuller S K , Wagner J , Schwarz F M , Engel B D , Müller V . . Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation. Nature, 2022, 607(7920): 823–830

[110]

Cohen S E , Can M , Wittenborn E C , Hendrickson R A , Ragsdale S W , Drennan C L . Crystallographic characterization of the carbonylated A-cluster in carbon monoxide dehydrogenase/acetyl-CoA synthase. ACS Catalysis, 2020, 10(17): 9741–9746

[111]

Zhang L , Liu Y , Zhao R , Zhang C , Jiang W , Gu Y . Interactive regulation of formate dehydrogenase during CO2 fixation in gas-fermenting bacteria. mBio, 2020, 11(4): 00650–20

[112]

Ueki T , Nevin K P , Woodard T L , Lovley D R . Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio, 2014, 5(5): 01636–14

[113]

Liu Z Y , Jia D C , Zhang K D , Zhu H F , Zhang Q , Jiang W H , Gu Y , Li F L . Ethanol metabolism dynamics in Clostridium ljungdahlii grown on carbon monoxide. Applied and Environmental Microbiology, 2020, 86(14): e00730–20

[114]

Bengelsdorf F R , Dürre P . Gas fermentation for commodity chemicals and fuels. Microbial Biotechnology, 2017, 10(5): 1167–1170

[115]

Liu Y , Zhang Z , Jiang W , Gu Y . Protein acetylation-mediated cross regulation of acetic acid and ethanol synthesis in the gas-fermenting Clostridium ljungdahlii. Journal of Biological Chemistry, 2022, 298(2): 101538

[116]

Jia D , He M , Tian Y , Shen S , Zhu X , Wang Y , Zhuang Y , Jiang W , Gu Y . Metabolic engineering of gas-fermenting Clostridium ljungdahlii for efficient co-production of isopropanol, 3-hydroxybutyrate, and ethanol. ACS Synthetic Biology, 2021, 10(10): 2628–2638

[117]

Lauer I , Philipps G , Jennewein S . Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO2 and H2. Microbial Cell Factories, 2022, 21(1): 85

[118]

Brown S D , Nagaraju S , Utturkar S , De Tissera S , Segovia S , Mitchell W , Land M L , Dassanayake A , Köpke M . Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnology for Biofuels, 2014, 7(1): 40

[119]

Schiel-Bengelsdorf B , Dürre P . Pathway engineering and synthetic biology using acetogens. FEBS Letters, 2012, 586(15): 2191–2198

[120]

Banerjee A , Leang C , Ueki T , Nevin K P , Lovley D R . Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Applied and Environmental Microbiology, 2014, 80(8): 2410–2416

[121]

Köpke M , Straub M , Dürre P . Clostridium difficile is an autotrophic bacterial pathogen. PLoS One, 2013, 8(4): e62157

[122]

Jones S W , Fast A G , Carlson E D , Wiedel C A , Au J , Antoniewicz M R , Papoutsakis E T , Tracy B P . CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nature Communications, 2016, 7(1): 12800

[123]

Diner B A , Fan J , Scotcher M C , Wells D H , Whited G M . Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the conversion of fructose and of syngas to mevalonate and isoprene. Applied and Environmental Microbiology, 2018, 84(1): e01723–17

[124]

Liew F , Koepke M . Recombinant microorganisms that make biodiesel. US Patent, 13 923 352. 2016-05-24, ,

[125]

Lemgruber R D S P , Valgepea K , Tappel R , Behrendorff J B , Palfreyman R W , Plan M , Hodson M P , Simpson S D , Nielsen L K , Köpke M . . Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metabolic Engineering, 2019, 53: 14–23

[126]

Richter H , Molitor B , Diender M , Sousa D Z , Angenent L T . A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction. Frontiers in Microbiology, 2016, 7: 1773

[127]

Oswald F , Dörsam S , Veith N , Zwick M , Neumann A , Ochsenreither K , Syldatk C . Sequential mixed cultures: from syngas to malic acid. Frontiers in Microbiology, 2016, 7: 891

[128]

Benito-Vaquerizo S , Diender M , Parera Olm I , Martins dos Santos V A P , Schaap P J , Sousa D Z , Suarez-Diez M . Modeling a co-culture of Clostridium autoethanogenum and Clostridium kluyveri to increase syngas conversion to medium-chain fatty-acids. Computational and Structural Biotechnology Journal, 2020, 18: 3255–3266

[129]

Tian L , Papanek B , Olson D G , Rydzak T , Holwerda E K , Zheng T , Zhou J , Maloney M , Jiang N , Giannone R J . . Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnology for Biofuels, 2016, 9(1): 116

[130]

Guo X , Zhang H , Feng J , Yang L , Luo K , Fu H , Wang J . De novo biosynthesis of butyl butyrate in engineered Clostridium tyrobutyricum. Metabolic Engineering, 2023, 77: 64–75

[131]

Oh H J , Ko J K , Gong G , Lee S M , Um Y . Production of hexanol as the main product through syngas fermentation by Clostridium carboxidivorans P7. Frontiers in Bioengineering and Biotechnology, 2022, 10: 850370

[132]

Song Y , Shin J , Jin S , Lee J K , Kim D R , Kim S C , Cho S , Cho B K . Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth. BMC Genomics, 2018, 19(1): 837

[133]

Arslan K , Veiga M C , Kennes C . Autotrophic (C1-gas) versus heterotrophic (fructose) accumulation of acetic acid and ethanol in Clostridium aceticum. Bioresource Technology, 2021, 337: 125485

[134]

Li D , Meng C , Wu G , Xie B , Han Y , Guo Y , Song C , Gao Z , Huang Z . Effects of zinc on the production of alcohol by Clostridium carboxidivorans P7 using model syngas. Journal of Industrial Microbiology & Biotechnology, 2018, 45(1): 61–69

[135]

Wu Y D , Xue C , Chen L J , Bai F W . Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Journal of Biotechnology, 2013, 165(1): 18–21

[136]

Ammam F , Tremblay P L , Lizak D M , Zhang T . Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata. Biotechnology for Biofuels, 2016, 9(1): 163

[137]

Saxena J , Tanner R S . Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. Journal of Industrial Microbiology & Biotechnology, 2011, 38(4): 513–521

[138]

Wang K , Da Y , Bi H , Liu Y , Chen B , Wang M , Liu Z , Nielsen J , Tan T . A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae. Renewable Energy, 2023, 208: 331–340

[139]

Cotton C A , Claassens N J , Benito-Vaquerizo S , Bar-Even A . Renewable methanol and formate as microbial feedstocks. Current Opinion in Biotechnology, 2020, 62: 168–180

[140]

Zhao R , Dong W , Yang C , Jiang W , Tian J , Gu Y . Formate as a supplementary substrate facilitates sugar metabolism and solvent production by Clostridium beijerinckii NCIMB 8052. Synthetic and Systems Biotechnology, 2023, 8(2): 196–205

[141]

Ramió Pujol S , Ganigué Pagès R , Bañeras Vives L , Colprim Galceran J . Impact of formate on the growth and productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 grown on syngas. International Microbiology, 2014, 17(4): 195–204

[142]

Klask C M , Kliem-Kuster N , Molitor B , Angenent L T . Nitrate feed improves growth and ethanol production of Clostridium ljungdahlii with CO2 and H2, but results in stochastic inhibition events. Frontiers in Microbiology, 2020, 11: 724

[143]

Shen S , Wang G , Zhang M , Tang Y , Gu Y , Jiang W , Wang Y , Zhuang Y . Effect of temperature and surfactant on biomass growth and higher-alcohol production during syngas fermentation by Clostridium carboxidivorans P7. Bioresources and Bioprocessing, 2020, 7(1): 56

[144]

Lanzillo F , Ruggiero G , Raganati F , Russo M E , Marzocchella A . Batch syngas fermentation by Clostridium carboxidivorans for production of acids and alcohols. Processes, 2020, 8(9): 1075

[145]

Straub M , Demler M , Weuster-Botz D , Dürre P . Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. Journal of Biotechnology, 2014, 178: 67–72

[146]

Mayer A , Schädler T , Trunz S , Stelzer T , Weuster-Botz D . Carbon monoxide conversion with Clostridium aceticum. Biotechnology and Bioengineering, 2018, 115(11): 2740–2750

[147]

Zhu H F , Liu Z Y , Zhou X , Yi J H , Lun Z M , Wang S N , Tang W Z , Li F L . Energy conservation and carbon flux distribution during fermentation of CO or H2/CO2 by Clostridium ljungdahlii. Frontiers in Microbiology, 2020, 11: 416

[148]

Benevenuti C , Amaral P , Ferreira T , Seidl P . Impacts of syngas composition on anaerobic fermentation. Reactions, 2021, 2(4): 391–407

[149]

Infantes A , Kugel M , Raffelt K , Neumann A . Side-by-side comparison of clean and biomass-derived, impurity-containing syngas as substrate for acetogenic fermentation with Clostridium ljungdahlii. Fermentation, 2020, 6(3): 84

[150]

Hermann M , Teleki A , Weitz S , Niess A , Freund A , Bengelsdorf F R , Dürre P , Takors R . Identifying and engineering bottlenecks of autotrophic isobutanol formation in recombinant C. ljungdahlii by systemic analysis. Frontiers in Bioengineering and Biotechnology, 2021, 9: 647853

[151]

Abubackar H N , Fernández-Naveira Á , Veiga M C , Kennes C . Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum. Fuel, 2016, 178: 56–62

[152]

Benevenuti C , Branco M , Do Nascimento-Correa M , Botelho A , Ferreira T , Amaral P . Residual gas for ethanol production by Clostridium carboxidivorans in a dual impeller stirred tank bioreactor (STBR). Fermentation, 2021, 7(3): 199

[153]

Liew F E , Nogle R , Abdalla T , Rasor B J , Canter C , Jensen R O , Wang L , Strutz J , Chirania P , De Tissera S . . Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 2022, 40(3): 335–344

[154]

Karim A S , Dudley Q M , Juminaga A , Yuan Y , Crowe S A , Heggestad J T , Garg S , Abdalla T , Grubbe W S , Rasor B J . . In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nature Chemical Biology, 2020, 16(8): 912–919

[155]

Dykstra J C , Van Oort J , Yazdi A T , Vossen E , Patinios C , Van Der Oost J , Sousa D Z , Kengen S W . Metabolic engineering of Clostridium autoethanogenum for ethyl acetate production from CO. Microbial Cell Factories, 2022, 21(1): 243

[156]

Höfele F , Schoch T , Oberlies C , Dürre P . Heterologous production of isopropanol using metabolically engineered Acetobacterium woodii strains. Bioengineering, 2023, 10(12): 1381

[157]

Weitz S , Hermann M , Linder S , Bengelsdorf F R , Takors R , Dürre P . Isobutanol production by autotrophic acetogenic bacteria. Frontiers in Bioengineering and Biotechnology, 2021, 9: 657253

[158]

Kato J , Takemura K , Kato S , Fujii T , Wada K , Iwasaki Y , Aoi Y , Matsushika A , Murakami K , Nakashimada Y . Metabolic engineering of Moorella thermoacetica for thermophilic bioconversion of gaseous substrates to a volatile chemical. AMB Express, 2021, 11(1): 59

[159]

Vees C A , Herwig C , Pflügl S . Mixotrophic co-utilization of glucose and carbon monoxide boosts ethanol and butanol productivity of continuous Clostridium carboxidivorans cultures. Bioresource Technology, 2022, 353: 127138

[160]

Mann M , Munch G , Regestein L , Rehmann L . Cultivation strategies of Clostridium autoethanogenum on xylose and carbon monoxide combination. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2632–2639

[161]

Kim T H , Lee J S , Lee M J , Lee J , Kim Y K , Na J G , Oh B K . Two-stage continuous CO fermentation process strategy for high-titer bioethanol production using Clostridium autoethanogenum. Bioresource Technology, 2025, 421: 132152

[162]

Perret L , Boukis N , Sauer J R . Influence of increased cell densities on product ratio and productivity in syngas fermentation. Industrial & Engineering Chemistry Research, 2023, 62(35): 13799–13810

[163]

Perret L , Boukis N , Sauer J . Synthesis gas fermentation at high cell density: how pH and hydrogen partial pressure affect productivity and product ratio in continuous fermentation. Bioresource Technology, 2024, 391: 129894

[164]

Nesbitt E R . Using waste carbon feedstocks to produce chemicals. Industrial Biotechnology, 2020, 16(3): 147–163

[165]

Nevin K P , Woodard T L , Franks A E , Summers Z M , Lovley D R . Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio, 2010, 1(2): 00103–10

[166]

Cheng C , Shao Y , Li W , Liu J , Liu X , Zhao Y , Li X , Yang S T , Xue C . Electricity-enhanced anaerobic, non-photosynthetic mixotrophy by Clostridium carboxidivorans with increased carbon efficiency and alcohol production. Energy Conversion and Management, 2022, 252: 115118

[167]

Pan Z , Guo Y , Rong W , Wang S , Cui K , Cai W , Shi Z , Hu X , Wang G , Guo K . Single-cell protein production from CO2 and electricity with a recirculating anaerobic-aerobic bioprocess. Environmental Science and Ecotechnology, 2025, 24: 100525

[168]

Panneerselvam M , Albuquerque M , Segtovich I S V , Tavares F W , Costa L T . Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations. Frontiers of Chemical Science and Engineering, 2024, 18(12): 150

[169]

Song Y E , Kim C , Baek J , Im C H , Seol E , Jae J , Nygård Y , Kim J R . Increased CODH activity in a bioelectrochemical system improves microbial electrosynthesis with CO. Sustainable Energy & Fuels, 2020, 4(12): 5952–5957

[170]

Li W , Gao Y , Sun X , Wan L , Ji H , Luo H , Tian Y , Song H , Wu G , Zhang L . Direct detection of a single [4Fe-4S] cluster in a tungsten-containing enzyme: electrochemical conversion of CO2 into formate by formate dehydrogenase. Carbon Energy, 2023, 5(5): e304

[171]

Kuk S K , Gopinath K , Singh R K , Kim T D , Lee Y , Choi W S , Lee J K , Park C B . NADH-free electroenzymatic reduction of CO2 by conductive hydrogel-conjugated formate dehydrogenase. ACS Catalysis, 2019, 9(6): 5584–5589

[172]

Bakonyi P , Koók L , Rózsenberszki T , Kalauz-Simon V , Bélafi-Bakó K , Nemestóthy N . CO2-refinery through microbial electrosynthesis (MES): a concise review on design, operation, biocatalysts, and perspectives. Journal of CO2 Utilization, 2023, 67: 102348

[173]

Madjarov J , Soares R , Paquete C M , Louro R O . Sporomusa ovata as catalyst for bioelectrochemical carbon dioxide reduction: a review across disciplines from microbiology to process engineering. Frontiers in Microbiology, 2022, 13: 913311

[174]

Tremblay P L , Höglund D , Koza A , Bonde I , Zhang T . Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products. Scientific Reports, 2015, 5(1): 16168

[175]

Bajracharya S , Krige A , Matsakas L , Rova U , Christakopoulos P . Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata. Chemosphere, 2022, 287: 132188

[176]

Kim J , Cestellos-Blanco S , Shen Y X , Cai R , Yang P . Enhancing biohybrid CO2 to multicarbon reduction via adapted whole-cell catalysts. Nano Letters, 2022, 22(13): 5503–5509

[177]

Boto S T , Bardl B , Harnisch F , Rosenbaum M A . Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products. Green Chemistry, 2023, 25(11): 4375–4386

[178]

Im C , Valgepea K , Modin O , Nygård Y . Clostridium ljungdahlii as a biocatalyst in microbial electrosynthesis-effect of culture conditions on product formation. Bioresource Technology Reports, 2022, 19: 101156

[179]

Yadav R , Chiranjeevi P , Yadav S , Singh R , Patil S A . Electricity-driven bioproduction from CO2 and N2 feedstocks using enriched mixed microbial culture. Journal of CO2 Utilization, 2022, 60: 101997

[180]

Bian Y , Leininger A , May H D , Ren Z J . H2 mediated mixed culture microbial electrosynthesis for high titer acetate production from CO2. Environmental Science and Ecotechnology, 2024, 19: 100324

[181]

Li S , Zhang H , Zhang H , Li S , Xing F , Chen T , Duan L . Impact analysis of operating conditions on carbon dioxide reduction in microbial electrosynthesis: insight into the substance utilization and microbial response. Bioresource Technology, 2023, 390: 129879

[182]

Roy M , Yadav R , Chiranjeevi P , Patil S A . Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis. Bioresource Technology, 2021, 320: 124289

[183]

Kracke F , Deutzmann J S , Gu W , Spormann A M . In situ electrochemical H2 production for efficient and stable power-to-gas electromethanogenesis. Green Chemistry, 2020, 22(18): 6194–6203

[184]

Zhu X , Jack J , Leininger A , Yang M , Bian Y , Lo J , Xiong W , Tsesmetzis N , Ren Z J . Syngas mediated microbial electrosynthesis for CO2 to acetate conversion using Clostridium ljungdahlii. Resources: Conservation and Recycling, 2022, 184: 106395

[185]

Luo D , Ding H , Guo T , Li X , Song T , Xie J . Self-assembly of graphene oxide and Shewanella oneidensis MR-1 formed a conductive bio-abiotic composite for enhancing microbial electrosynthesis performance. Renewable Energy, 2023, 215: 119018

[186]

Bajracharya S , Krige A , Matsakas L , Rova U , Christakopoulos P . Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation. Bioresource Technology, 2022, 354: 127178

[187]

Aryal N , Wan L , Overgaard M H , Stoot A C , Chen Y , Tremblay P L , Zhang T . Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode. Bioelectrochemistry, 2019, 128: 83–93

[188]

Bian B , Alqahtani M F , Katuri K P , Liu D , Bajracharya S , Lai Z , Rabaey K , Saikaly P E . Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(35): 17201–17211

[189]

Bajracharya S , Krige A , Matsakas L , Rova U , Christakopoulos P . Microbial electrosynthesis using 3D bioprinting of Sporomusa ovata on copper, stainless-steel, and titanium cathodes for CO2 reduction. Fermentation, 2023, 10(1): 34

[190]

Krige A , Rova U , Christakopoulos P . 3D bioprinting on cathodes in microbial electrosynthesis for increased acetate production rate using Sporomusa ovata. Journal of Environmental Chemical Engineering, 2021, 9(5): 106189

[191]

Ding C , Feng C , Mei Y , Liu F , Wang H , Dupuis M , Li C . Carbon nitride embedded with transition metals for selective electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2020, 268: 118391

[192]

Bau J A , Emwas A H , Nikolaienko P , Aljarb A A , Tung V , Rueping M . Mo3+ hydride as the common origin of H2 evolution and selective NADH regeneration in molybdenum sulfide electrocatalysts. Nature Catalysis, 2022, 5(5): 397–404

[193]

Lim J , Choi S Y , Lee J W , Lee S Y , Lee H . Biohybrid CO2 electrolysis for the direct synthesis of polyesters from CO2. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(14): e2221438120

[194]

Luo S , Adam D , Giaveri S , Barthel S , Cestellos-Blanco S , Hege D , Paczia N , Castañeda-Losada L , Klose M , Arndt F . . ATP production from electricity with a new-to-nature electrobiological module. Joule, 2023, 7(8): 1745–1758

[195]

Chen L , Wang L , Wan Y , Zhang Y , Qi Z , Wu X , Xu H . Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: a new two-electron water oxidation pathway. Advanced Materials, 2020, 32(2): 1904433

[196]

Wang Q , Kalathil S , Pornrungroj C , Sahm C D , Reisner E . Bacteria-photocatalyst sheet for sustainable carbon dioxide utilization. Nature Catalysis, 2022, 5(7): 633–641

[197]

Zhang K , Li R , Chen J , Chai L , Lin Z , Zou L , Shi Y . Biohybrids of twinning Cd0.8Zn0.2S nanoparticles and Sporomusa ovata for efficient solar-driven reduction of CO2 to acetate. Applied Catalysis B: Environmental, 2024, 342: 123375

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4002KB)

627

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/