PDF
(10166KB)
Abstract
Plasma-based gas conversion has emerged as a sustainable and promising approach for chemical production, attracting increasing attention in recent years. Significant progress has been achieved in areas such as nitrogen fixation, CO 2 conversion, methane activation, and others, driven by the contributions of researchers from diverse disciplines. Given that most research in this field is experimental, the methodologies employed play a pivotal role and demand careful consideration. However, due to the interdisciplinary nature of the field and variations in research objectives, available resources, and laboratory standards, experimental set-ups and approaches often differ significantly. Moreover, critical details regarding operational techniques and key methodologies are sometimes overlooked. This paper provides a comprehensive review of the methodologies and experimental approaches used in the study of plasma-based gas conversion for chemical production. It first examines experimental systems, including plasma reactor design, plasma-catalyst integration, and set-up configuration. Subsequently, operational schemes, conditions, and analytical procedures are discussed, with examples showcasing state-of-the-art advancements. Finally, discussion on emerging research trends and potential opportunities are presented, aiming to inspire further advancements and broaden the scope of this growing field.
Graphical abstract
Keywords
plasma catalysis
/
plasma reactor
/
CO 2 utilization
/
nitrogen fixation
/
methane conversion
Cite this article
Download citation ▾
Sirui Li, Pranav Arun, Huub van den Bogaard, Thijs van Raak, Changjun Liu, Fausto Gallucci.
A review of experimental approaches, trends and opportunities in plasma-based gas conversion research.
Front. Chem. Sci. Eng., 2025, 19(10): 96 DOI:10.1007/s11705-025-2567-9
| [1] |
Kim H H , Teramoto Y , Ogata A , Takagi H , Nanba T . Plasma catalysis for environmental treatment and energy applications. Plasma Chemistry and Plasma Processing, 2016, 36(1): 45–72
|
| [2] |
Bogaerts A , Centi G . Plasma technology for CO2 conversion: a personal perspective on prospects and gaps. Frontiers in Energy Research, 2020, 8: 1–23
|
| [3] |
George A , Shen B , Craven M , Wang Y , Kang D , Wu C , Tu X . A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization. Renewable & Sustainable Energy Reviews, 2021, 135: 109702
|
| [4] |
Chen G , Snyders R , Britun N . CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. Journal of CO2 Utilization, 2021, 49: 101557
|
| [5] |
Xu S , Chen H , Hardacre C , Fan X . Non-thermal plasma catalysis for CO2 conversion and catalyst design for the process. Journal of Physics D: Applied Physics, 2021, 54(23): 233001
|
| [6] |
Anoop N , Sundaramurthy S , Jha J M , Chandrabalan S , Singh N , Verma J , Parvatalu D , Katti S . Plasma catalysis: a feasible solution for carbon dioxide valorization. Clean Technologies and Environmental Policy, 2021, 23(10): 2789–2811
|
| [7] |
Salden A , Budde M , Garcia-Soto C A , Biondo O , Barauna J , Faedda M , Musig B , Fromentin C , Nguyen-Quang M , Philpott H . . Meta-analysis of CO2 conversion, energy efficiency, and other performance data of plasma-catalysis reactors with the open access PIONEER database. Journal of Energy Chemistry, 2023, 86: 318–342
|
| [8] |
Ullah S , Gao Y , Dou L , Liu Y , Shao T , Yang Y , Murphy A B . Recent trends in plasma-assisted CO2 methanation: a critical review of recent studies. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1335–1383
|
| [9] |
Chen X , Kim H H , Nozaki T . Plasma catalytic technology for CH4 and CO2 conversion: a review highlighting fluidized-bed plasma reactor. Plasma Processes and Polymers, 2023, 21(1): 2200207
|
| [10] |
Bogaerts A , Tu X , Nozaki T . Plasma-Based CO2 Conversion. In: Zhang G, Bogaerts A, Ye J, Liu C, eds. Advances in CO2 Utilization. Singapore: Springer, 2024, 209–243
|
| [11] |
Maitre P A , Bieniek M S , Kechagiopoulos P N . Plasma-enhanced catalysis for the upgrading of methane: a review of modelling and simulation methods. Reaction Chemistry & Engineering, 2020, 5(5): 814–837
|
| [12] |
Li S , Ahmed R , Yi Y , Bogaerts A . Methane to methanol through heterogeneous catalysis and plasma catalysis. Catalysts, 2021, 11(5): 590
|
| [13] |
Maslova V , Nastase R , Veryasov G , Nesterenko N , Fourré E , Batiot-Dupeyrat C . Current status and challenges of plasma and plasma-catalysis for methane coupling: a review. Progress in Energy and Combustion Science, 2024, 101(1): 101096
|
| [14] |
Wang N , Otor H O , Rivera-Castro G , Hicks J C . Plasma catalysis for hydrogen production: a bright future for decarbonization. ACS Catalysis, 2024, 14(9): 6749–6798
|
| [15] |
Baig S , Sajjadi B . Non-thermal plasma enhanced catalytic conversion of methane into value added chemicals and fuels. Journal of Energy Chemistry, 2024, 97: 265–301
|
| [16] |
Rouwenhorst K H R , Engelmann Y , van ’t Veer K , Postma R S , Bogaerts A , Lefferts L . Plasma-driven catalysis: green ammonia synthesis with intermittent electricity. Green Chemistry, 2020, 22(19): 6258–6287
|
| [17] |
Zhou D , Zhou R , Zhou R , Liu B , Zhang T , Xian Y , Cullen P J , Lu X , Ostrikov K . Sustainable ammonia production by non-thermal plasmas: status, mechanisms, and opportunities. Chemical Engineering Journal, 2021, 421(P1): 129544
|
| [18] |
Zeng X , Zhang S , Hu X , Zhang C , Ostrikov K , Shao T . Recent advances in plasma-enabled ammonia synthesis: state-of-the-art, challenges, and outlook. Faraday Discussions, 2023, 243: 473–491
|
| [19] |
Rouwenhorst K H R , Jardali F , Bogaerts A , Lefferts L . From the Birkeland-Eyde process towards energy-efficient plasma-based NOx synthesis: a techno-economic analysis. Energy & Environmental Science, 2021, 14(5): 2520–2534
|
| [20] |
Abdelaziz A A , Komuro A , Teramoto Y , Schiorlin M , Kim D Y , Nozaki T , Kim H H . Atmospheric-pressure plasmas for NOx production: short review on current status. Current Opinion in Green and Sustainable Chemistry, 2024, 50: 100977
|
| [21] |
Zhang Y , Niu J , Chen S , Chen Y , Chen H , Fan X . Ammonia synthesis by nonthermal plasma catalysis: a review on recent research progress. Journal of Physics D: Applied Physics, 2024, 57(32): 323001
|
| [22] |
Bogaerts A , Tu X , Whitehead J C , Centi G , Lefferts L , Guaitella O , Azzolina-Jury F , Kim H H , Murphy A B , Schneider W F . . The 2020 plasma catalysis roadmap. Journal of Physics D: Applied Physics, 2020, 53(443001):
|
| [23] |
Biset-Peiró M , Mey R , Guilera J , Andreu T . Adiabatic plasma-catalytic reactor configuration: energy efficiency enhancement by plasma and thermal synergies on CO2 methanation. Chemical Engineering Journal, 2020, 393: 124786
|
| [24] |
Wang L , Yi Y , Guo H , Tu X . Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100
|
| [25] |
Lisi N , Pasqual Laverdura U , Chierchia R , Luisetto I , Stendardo S . A water cooled, high power, dielectric barrier discharge reactor for CO2 plasma dissociation and valorization studies. Scientific Reports, 2023, 13(1): 1–12
|
| [26] |
De la Fuente J F , Moreno S H , Stankiewicz A I , Stefanidis G D . On the improvement of chemical conversion in a surface-wave microwave plasma reactor for CO2 reduction with hydrogen (The Reverse Water-Gas Shift reaction). International Journal of Hydrogen Energy, 2017, 42(18): 12943–12955
|
| [27] |
Mohsenian S , Nagassou D , Elahi R , Yu P , Nallar M , Wong H-W , Trelles J P . Carbon dioxide conversion by solar-enhanced microwave plasma: effect of specific power and argon/nitrogen carrier gases. Journal of CO2 Utilization, 2019, 34: 725–732
|
| [28] |
Ivanov V , Paunska T , Lazarova S , Bogaerts A , Kolev S . Gliding arc/glow discharge for CO2 conversion: comparing the performance of different discharge configurations. Journal of CO2 Utilization, 2023, 67: 102300
|
| [29] |
Paulussen S , Verheyde B , Tu X , De Bie C , Martens T , Petrovic D , Bogaerts A , Sels B . Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Science & Technology, 2010, 19(3): 034015
|
| [30] |
Fridman A , Chirokov A , Gutsol A . Non-thermal atmospheric pressure discharges. Journal of Physics D: Applied Physics, 2005, 38(2): R1–R24
|
| [31] |
Conrads H , Schmidt M . Plasma sources science and technology plasma generation and plasma sources related content plasma generation and plasma sources. Plasma Sources Science & Technology, 2000, 9(4): 441–454
|
| [32] |
Kołek J , Hołub M . Practical design of a high-voltage pulsed power supply implementing SiC technology for atmospheric pressure plasma reactors. Applied Sciences (Basel, Switzerland), 2019, 9(7): 1451
|
| [33] |
Stryczewska H D . Supply systems of non-thermal plasma reactors. Construction review with examples of applications. Applied Sciences (Basel, Switzerland), 2020, 10(9): 3242
|
| [34] |
Stryczewska H D , Jakubowski T , Kalisiak S , Gizewski T , Pawlat J . Power systems of plasma reactors for non-thermal plasma generation. Journal of Advanced Oxidation Technologies, 2013, 16(1): 52–62
|
| [35] |
Ray D , Saha R , Ch S . DBD plasma assisted CO2 decomposition: influence of diluent gases. Catalysts, 2017, 7(9): 244
|
| [36] |
Rutberg P G , Nakonechny G V , Pavlov A V , Popov S D , Serba E O , Surov A V . AC plasma torch with a H2O/CO2/CH4 mix as the working gas for methane reforming. Journal of Physics D: Applied Physics, 2015, 48(24): 245204
|
| [37] |
Kim S C , Chun Y N . Development of a gliding arc plasma reactor for CO2 destruction. Environmental Technology, 2014, 35(23): 2940–2946
|
| [38] |
Shao T , Wang R , Zhang C , Yan P . Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications. High Voltage, 2018, 3(1): 14–20
|
| [39] |
Huiskamp T . Nanosecond pulsed streamer discharges Part I: generation, source-plasma interaction and energy-efficiency optimization. Plasma Sources Science & Technology, 2020, 29(2): 023002
|
| [40] |
Montesano C , Quercetti S , Martini L M , Dilecce G , Tosi P . The effect of different pulse patterns on the plasma reduction of CO2 for a nanosecond discharge. Journal of CO2 Utilization, 2020, 39: 101157
|
| [41] |
Montesano C , Salden T P W , Martini L M , Dilecce G , Tosi P . CO2 reduction by nanosecond-plasma discharges: revealing the dissociation’s time scale and the importance of pulse sequence. Journal of Physical Chemistry C, 2023, 127(21): 10045–10050
|
| [42] |
Komarzyniec G , Stryczewska H D , Krupski P . The Influence of the architecture of the power system on the operational parameters of the glidarc plasma reactor. IEEE International Pulsed Power & Plasma Science, 2019,
|
| [43] |
Cheng J , Ding W , Zi Y , Lu Y , Ji L , Liu F , Wu C , Wang Z L . Triboelectric microplasma powered by mechanical stimuli. Nature Communications, 2018, 9(1): 3733
|
| [44] |
Liu F , Liu Y , Lu Y , Wang Z , Shi Y , Ji L , Cheng J . Electrical analysis of triboelectric nanogenerator for high voltage applications exampled by DBD microplasma. Nano Energy, 2019, 56: 482–493
|
| [45] |
Wong M C , Xu W , Hao J . Microplasma-discharge-based nitrogen fixation driven by triboelectric nanogenerator toward self-powered mechano-nitrogenous fertilizer supplier. Advanced Functional Materials, 2019, 29(44): 1904090
|
| [46] |
Han K , Luo J , Feng Y , Xu L , Tang W , Wang Z L . Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy & Environmental Science, 2020, 13(8): 2450–2458
|
| [47] |
Li S , Zhang B , Gu G , Xiang X , Zhang W , Shi X , Zhao K , Zhu Y , Guo J , Cui P . . Triboelectric plasma decomposition of CO2 at room temperature driven by mechanical energy. Nano Energy, 2021, 88: 106287
|
| [48] |
Zhang B , Ru Q , Liu L , Wang J , Zhang Y , Zhao K , Gu G , Xiang X , Li S , Zhu Y . . Overcoming energy mismatch of metal oxide semiconductor catalysts for CO2 reduction with triboelectric plasma. Journal of Catalysis, 2023, 419: 1–8
|
| [49] |
Wanten B , Vertongen R , De Meyer R , Bogaerts A . Plasma-based CO2 conversion: how to correctly analyze the performance. Journal of Energy Chemistry, 2023, 86: 180–196
|
| [50] |
Snoeckx R , Bogaerts A . Plasma technology-a novel solution for CO2 conversion. Chemical Society Reviews, 2017, 46(19): 5805–5863
|
| [51] |
Bogaerts A , Neyts E , Gijbels R , van der Mullen J . Gas discharge plasmas and their applications. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57(4): 609–658
|
| [52] |
Siemens W . Ueber die elektrostatische induction und die Verzögerung des stroms in Flaschendrähten. Annalen der Physik, 1857, 178(9): 66–122
|
| [53] |
Brandenburg R . Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science & Technology, 2017, 26(5): 53001
|
| [54] |
Wu P , Li X , Ullah N , Li Z . Synergistic effect of catalyst and plasma on CO2 decomposition in a dielectric barrier discharge plasma reactor. Molecular Catalysis, 2021, 499: 111304
|
| [55] |
Belov I , Paulussen S , Bogaerts A . Appearance of a conductive carbonaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency. Plasma Sources Science & Technology, 2016, 25(1): 015023
|
| [56] |
Wang B , Wang X , Zhang B . Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2. Frontiers of Chemical Science and Engineering, 2020, 15(3): 687–697
|
| [57] |
Niu G , Qin Y , Li W , Duan Y . Investigation of CO2 splitting process under atmospheric pressure using multi-electrode cylindrical DBD plasma reactor. Plasma Chemistry and Plasma Processing, 2019, 39(4): 809–824
|
| [58] |
Almazova K I , Belonogov A N , Borovkov V V , Gorelov E V , Dubinov A E , Klyushin D S , Morozov I V . Dynamics of gliding arc climbing in a unipolar Jacob’s ladder. Technical Physics, 2020, 65(7): 1032–1035
|
| [59] |
Liu J , Wang X , Li X , Likozar B , Zhu A . CO2 conversion, utilisation and valorisation in gliding arc plasma. Journal of Physics D: Applied Physics, 2020, 53(25): 253001
|
| [60] |
Fridman A , Nester S , Kennedy L A , Saveliev A , Mutaf-Yardimci O . Gliding arc gas discharge. Progress in Energy and Combustion Science, 1999, 25(2): 211–231
|
| [61] |
Sun H , Chen Z , Chen J , Long H , Wu Y , Zhou W . The influence of back-breakdown on the CO2 conversion in gliding arc plasma: based on experiments of different materials and improved structures. Journal of Physics D: Applied Physics, 2021, 54(49): 495203
|
| [62] |
Li L , Zhang H , Li X , Kong X , Xu R , Tay K , Tu X . Plasma-assisted CO2 conversion in a gliding arc discharge: improving performance by optimizing the reactor design. Journal of CO2 Utilization, 2019, 29: 296–303
|
| [63] |
Li LL , Zhang H , Li X , Huang J , Kong X , Xu R , Tu X . Magnetically enhanced gliding arc discharge for CO2 activation. Journal of CO2 Utilization, 2020, 35: 28–37
|
| [64] |
Chen Z , Sun H , Wu W , Chen B , Wu Y , Jiang X , Guo Y . Better CO2 utilization under comprehensive control of airflow and electromagnetic field. Physica Scripta, 2023, 98(9): 095605
|
| [65] |
Zhao T L , Liu J L , Li X S , Liu J B , Song Y H , Xu Y , Zhu A M . Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow. Physics of Plasmas, 2014, 21(5): 053507
|
| [66] |
Vertongen R , Bogaerts A . How important is reactor design for CO2 conversion in warm plasmas. Journal of CO2 Utilization, 2023, 72: 102510
|
| [67] |
Trenchev G , Bogaerts A . Dual-vortex plasmatron: a novel plasma source for CO2 conversion. Journal of CO2 Utilization, 2020, 39: 101152
|
| [68] |
Bromberg L , Cohn D R , Rabinovich A . Plasma reformer-fuel cell system for decentralized power applications. International Journal of Hydrogen Energy, 1997, 22(1): 83–94
|
| [69] |
Bromberg L , Cohn D R , Rabinovich A , Heywood J . Emissions reductions using hydrogen from plasmatron fuel converters. International Journal of Hydrogen Energy, 2001, 26(10): 1115–1121
|
| [70] |
KalraC SGutsolA FFridmanA A. Gliding arc discharges as a source of intermediate plasma for methane partial oxidation. IEEE Transacation on Plasma Science, 2005, 33(1 I): 32–41
|
| [71] |
Nunnally T , Gutsol K , Rabinovich A , Fridman A , Gutsol A , Kemoun A . Dissociation of CO2 in a low current gliding arc plasmatron. Journal of Physics D: Applied Physics, 2011, 44(27): 274009
|
| [72] |
Liu J L , Li X S , Liu J L , Zhu A M . Insight into gliding arc (GA) plasma reduction of CO2 with H2: GA characteristics and reaction mechanism. Journal of Physics D: Applied Physics, 2019, 52(28): 284001
|
| [73] |
Liu J , Zhu X , Li X , Li K , Shi C , Zhu A . Effect of O2/CH4 ratio on the optimal specific-energy-input (SEI) for oxidative reforming of biogas in a plasma-shade reactor. Journal of Energy Chemistry, 2013, 22(5): 681–684
|
| [74] |
Lee D H , Kim K T , Kang H S , Jo S , Song Y H . Optimization of NH3 decomposition by control of discharge mode in a rotating arc. Plasma Chemistry and Plasma Processing, 2014, 34(1): 111–124
|
| [75] |
Ramakers M , Medrano J A , Trenchev G , Gallucci F , Bogaerts A . Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2 conversion. Plasma Sources Science & Technology, 2017, 26(12): 125002
|
| [76] |
Dinh D K , Trenchev G , Lee D H , Bogaerts A . Arc plasma reactor modification for enhancing performance of dry reforming of methane. Journal of CO2 Utilization, 2020, 42: 101352
|
| [77] |
Kwon H , Kim T , Song S . Dry reforming of methane in a rotating gliding arc plasma: improving efficiency and syngas cost by quenching product gas. Journal of CO2 Utilization, 2023, 70: 102448
|
| [78] |
Nagassou D , Mohsenian S , Bhatta S , Elahi R , Trelles J P . Solar-gliding arc plasma reactor for carbon dioxide decomposition: design and characterization. Solar Energy, 2019, 180: 678–689
|
| [79] |
Lebedev Y A . Microwave discharges: generation and diagnostics. Journal of Physics: Conference Series, 2010, 257: 012016
|
| [80] |
Chen G , Britun N , Godfroid T , Georgieva V , Snyders R , Delplancke-Ogletree M P . An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis. Journal of Physics D: Applied Physics, 2017, 50(8): 084001
|
| [81] |
Qin Y , Niu G , Wang X , Luo D , Duan Y . Status of CO2 conversion using microwave plasma. Journal of CO2 Utilization, 2018, 28: 283–291
|
| [82] |
Vermeiren V , Bogaerts A . Plasma-based CO2 conversion: to quench or not to quench. Journal of Physical Chemistry C, 2020, 123(34): 18401–18415
|
| [83] |
Li J , Zhang X , Shen J , Ran T , Chen P , Yin Y . Dissociation of CO2 by thermal plasma with contracting nozzle quenching. Journal of CO2 Utilization, 2017, 21: 72–76
|
| [84] |
Hecimovic A , D’Isa F A , Carbone E , Fantz U . Enhancement of CO2 conversion in microwave plasmas using a nozzle in the effluent. Journal of CO2 Utilization, 2022, 57: 101870
|
| [85] |
Mercer E R , Van Alphen S , van Deursen C F A M , Righart T W H , Bongers W A , Snyders R , Bogaerts A , van de Sanden M C M , Peeters F J J . Post-plasma quenching to improve conversion and energy efficiency in a CO2 microwave plasma. Fuel, 2023, 334(P2): 126734
|
| [86] |
Carreon M L . Plasma catalysis: a brief tutorial. Plasma Research Express, 2019, 1(4): 043001
|
| [87] |
Babaeva N Y , Naidis G V . On the efficiency of CO2 conversion in corona and dielectric-barrier discharges. Plasma Sources Science & Technology, 2021, 30(3): 03LT03
|
| [88] |
Mierczyński P , Mierczynska-Vasilev A , Szynkowska-Jóźwik M I , Ostrikov K , Vasilev K . (Ken), Vasilev K. Plasma-assisted catalysis for CH4 and CO2 conversion. Catalysis Communications, 2023, 180: 106709
|
| [89] |
Moshrefi M M , Rashidi F , Bozorgzadeh H R , Ehtemam Haghighi M . Dry reforming of methane by DC spark discharge with a rotating electrode. Plasma Chemistry and Plasma Processing, 2013, 33(2): 453–466
|
| [90] |
Lašič Jurković D , Liu J L , Pohar A , Likozar B . Methane dry reforming over Ni/Al2O3 catalyst in spark plasma reactor: linking computational fluid dynamics (CFD) with reaction kinetic modelling. Catalysis Today, 2021, 362: 11–21
|
| [91] |
Ma T , Wang H X , Shi Q , Li S N , Sun S R , Murphy A B . Experimental study of CO2 decomposition in a DC micro-slit sustained glow discharge reactor. Plasma Chemistry and Plasma Processing, 2019, 39(4): 825–844
|
| [92] |
Dębek R , Azzolina-Jury F , Travert A , Maugé F , Thibault-Starzyk F . Low-pressure glow discharge plasma-assisted catalytic CO2 hydrogenation—the effect of metal oxide support on the performance of the Ni-based catalyst. Catalysis Today, 2019, 337: 182–194
|
| [93] |
Renninger S , Lambarth M , Birke K P . High efficiency CO2-splitting in atmospheric pressure glow discharge. Journal of CO2 Utilization, 2020, 42: 101322
|
| [94] |
Wanten B , Maerivoet S , Vantomme C , Slaets J , Trenchev G , Bogaerts A . Dry reforming of methane in an atmospheric pressure glow discharge: confining the plasma to expand the performance. Journal of CO2 Utilization, 2022, 56: 101869
|
| [95] |
Trenchev G , Nikiforov A , Wang W , Kolev S , Bogaerts A . Atmospheric pressure glow discharge for CO2 conversion: model-based exploration of the optimum reactor configuration. Chemical Engineering Journal, 2019, 362: 830–841
|
| [96] |
Meng G , Xia L , Cheng Y , Yin Z . AC-driven atmospheric pressure glow discharge co-improves conversion and energy efficiency of CO2 splitting. Journal of CO2 Utilization, 2023, 70: 102447
|
| [97] |
Chen G , Wang L , Godfroid T , Snyders R . Progress in plasma-assisted catalysis for carbon dioxide reduction. In: Plasma Chemistry and Gas Conversion, 2018,
|
| [98] |
Zhu F , Zhang H , Yan X , Yan J , Ni M , Li X , Tu X . Plasma-catalytic reforming of CO2-rich biogas over Ni/Γ-Al2O3 catalysts in a rotating gliding arc reactor. Fuel, 2017, 199: 430–437
|
| [99] |
Chun S , Shin D , Ma S , Yang G , Hong Y . CO2 microwave plasma-catalytic reactor for efficient reforming of methane to syngas. Catalysts, 2019, 9(3): 1–18
|
| [100] |
Renninger S , Rößner P , Stein J , Lambarth M , Birke K P . Towards high efficiency CO2 utilization by glow discharge plasma. Processes, 2021, 9(11): 4–9
|
| [101] |
Zhang H , Li L , Xu R , Huang J , Wang N , Li X , Tu X . Plasma-enhanced catalytic activation of CO2 in a modified gliding arc reactor. Waste Disposal & Sustainable Energy, 2020, 2(2): 139–150
|
| [102] |
Mizuno A , Craven M . Plasma Catalysis Systems. In: Tu X, Whitehead J, Nozaki T, eds. Plasma Catalysis. Springer Series on Atomic, Optical, and Plasma Physics. Berlin: Springer, 2019, 21–46
|
| [103] |
Michielsen I , Uytdenhouwen Y , Pype J , Michielsen B , Mertens J , Reniers F , Meynen V , Bogaerts A . CO2 dissociation in a packed bed DBD reactor: first steps towards a better understanding of plasma catalysis. Chemical Engineering Journal, 2017, 326: 477–488
|
| [104] |
Butterworth T , Elder R , Allen R . Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor. Chemical Engineering Journal, 2016, 293: 55–67
|
| [105] |
Uytdenhouwen Y , van Alphen S , Michielsen I , Meynen V , Cool P , Bogaerts A . A packed-bed DBD micro plasma reactor for CO2 dissociation: does size matter. Chemical Engineering Journal, 2018, 348: 557–568
|
| [106] |
Van Laer K , Bogaerts A . How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: a modelling study. Plasma Sources Science & Technology, 2017, 26(8): 085007
|
| [107] |
Tu X , Whitehead J C . Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature. Applied Catalysis B: Environmental, 2012, 125: 439–448
|
| [108] |
Gadkari S , Tu X , Gu S . Fluid model for a partially packed dielectric barrier discharge plasma reactor. Physics of Plasmas, 2017, 24(9): 093510
|
| [109] |
Wang J , AlQahtani M S , Wang X , Knecht S D , Bilén S G , Song C , Chu W . One-step plasma-enabled catalytic carbon dioxide hydrogenation to higher hydrocarbons: significance of catalyst-bed configuration. Green Chemistry, 2021, 23(4): 1642–1647
|
| [110] |
Kim H H , Abdelaziz A A , Teramoto Y , Nozaki T , Hensel K , Mok Y S . . Interim report of plasma catalysis: footprints in the past and blueprints for the future. International Journal of Plasma Environmental Science and Technology, 2021, 15: 1–39
|
| [111] |
Oda T , Takahashi T , Kohzuma S . Decomposition of dilute trichloroethylene by using nonthermal plasma processing-frequency and catalyst effects. IEEE Transactions on Industry Applications, 2001, 37(4): 965–970
|
| [112] |
Nguyen D B , Shirjana S , Hossain M M , Heo I , Mok Y S . Effective generation of atmospheric pressure plasma in a sandwich-type honeycomb monolith reactor by humidity control. Chemical Engineering Journal, 2020, 401: 125970
|
| [113] |
Hossain M M , Mok Y S , Nguyen D B , Kim S-J , Kim Y J , Lee J H , Heo I . Nonthermal plasma in practical-scale honeycomb catalysts for the removal of toluene. Journal of Hazardous Materials, 2021, 404(PB): 123958
|
| [114] |
Cimerman R , Hensel K . Generation of honeycomb discharge assisted by micro-hollow surface dielectric barrier discharge. International Journal of Plasma Environmental Science and Technology, 2021, 15: e01003
|
| [115] |
Nguyen V T , Dinh D K , Mok Y S , Yoon K H , Dao V D , Hossain M M , Saud S , Sosiawati T . High-throughput volatile organic compounds removal in a sandwich-type honeycomb catalyst system combined with plasma. Applied Catalysis B: Environmental, 2022, 310: 121328
|
| [116] |
Taghvaei H , Pirzadeh E , Jahanbakhsh M , Khalifeh O , Rahimpour M R . Polyurethane foam: a novel support for metal oxide packing used in the non-thermal plasma decomposition of CO2. Journal of CO2 Utilization, 2021, 44: 101398
|
| [117] |
Bartolomeu R , Foix M , Fernandes A , Tatoulian M , Ribeiro M F , Henriques C , da Costa P . Fluidized bed plasma for pre-treatment of Co-ferrierite catalysts: an approach to NOx abatement. Catalysis Today, 2011, 176(1): 234–238
|
| [118] |
Foix M , Guyon C , Tatoulian M , Da Costa P . Study of the use of fluidized bed plasma reactors for the treatment of alumina supported palladium catalyst: application for SCR NOx by CH4 in stationary sources. Catalysis Communications, 2010, 12(1): 20–24
|
| [119] |
Oberbossel G , Güntner A T , Kündig L , Roth C , Von Rohr P R . Polymer powder treatment in atmospheric pressure plasma circulating fluidized bed reactor. Plasma Processes and Polymers, 2015, 12(3): 285–292
|
| [120] |
Chen G , Chen S , Feng W , Chen W , Yang S Z . Surface modification of the nanoparticles by an atmospheric room-temperature plasma fluidized bed. Applied Surface Science, 2008, 254(13): 3915–3920
|
| [121] |
Chen G , Chen S , Zhou M , Feng W , Gu W , Yang S . Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification. Journal of Physics D: Applied Physics, 2006, 39(24): 5211–5215
|
| [122] |
Du C , Qiu R , Ruan J . Plasma Fluidized Bed. Singapore: Springer, 2018,
|
| [123] |
Andalib M , Zhu J , Nakhla G . Terminal settling velocity and drag coefficient of biofilm-coated particles at high Reynolds numbers. AIChE Journal, 2010, 56(10): 2598–2606
|
| [124] |
Jia Z , Vega-Gonzalez A , Ben Amar M , Hassouni K , Tieng S , Touchard S , Kanaev A , Duten X . Acetaldehyde removal using a diphasic process coupling a silver-based nano-structured catalyst and a plasma at atmospheric pressure. Catalysis Today, 2013, 208: 82–89
|
| [125] |
Pou J O , Colominas C , Gonzalez-Olmos R . CO2 reduction using non-thermal plasma generated with photovoltaic energy in a fluidized reactor. Journal of CO2 Utilization, 2018, 27: 528–535
|
| [126] |
Wang Q , Cheng Y , Jin Y . Dry reforming of methane in an atmospheric pressure plasma fluidized bed with Ni/γ-Al2O3 catalyst. Catalysis Today, 2009, 148(3-4): 275–282
|
| [127] |
Bouchoul N , Touati H , Fourré E , Clacens J M , Batiot-Dupeyrat C . Efficient plasma-catalysis coupling for CH4 and CO2 transformation in a fluidized bed reactor: comparison with a fixed bed reactor. Fuel, 2021, 288: 288
|
| [128] |
Chen X , Sheng Z , Murata S , Zen S , Kim H H , Nozaki T . CH4 dry reforming in fluidized-bed plasma reactor enabling enhanced plasma-catalyst coupling. Journal of CO2 Utilization, 2021, 54: 101771
|
| [129] |
Lee H , Sekiguchi H . Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge: CH4 reforming as a model reaction. Journal of Physics D: Applied Physics, 2011, 44(27): 274008
|
| [130] |
Młotek M , Sentek J , Krawczyk K , Schmidt-Szałowski K . The hybrid plasma-catalytic process for non-oxidative methane coupling to ethylene and ethane. Applied Catalysis A: General, 2009, 366(2): 232–241
|
| [131] |
Schmidt-Szałowski K , Krawczyk K , Młotek M . Catalytic effects of metals on the conversion of methane in gliding discharges. Plasma Processes and Polymers, 2007, 4(7-8): 728–736
|
| [132] |
Zhang H , Tan Q , Huang Q , Wang K , Tu X , Zhao X , Wu C , Yan J , Li X . Boosting the conversion of CO2 with biochar to clean CO in an atmospheric plasmatron: a synergy of plasma chemistry and thermochemistry. ACS Sustainable Chemistry & Engineering, 2022, 10(23): 7712–7725
|
| [133] |
Martin-Del-Campo J , Uceda M , Coulombe S , Kopyscinski J . Plasma-catalytic dry reforming of methane over Ni-supported catalysts in a rotating gliding arc-spouted bed reactor. Journal of CO2 Utilization, 2021, 46: 101474
|
| [134] |
Ding W , Xia M , Shen C , Wang Y , Zhang Z , Tu X , Liu C-J . Enhanced CO2 conversion by frosted dielectric surface with ZrO2 coating in a dielectric barrier discharge reactor. Journal of CO2 Utilization, 2022, 61(2): 102045
|
| [135] |
Xia M , Ding W , Shen C , Zhang Z , Liu C J . CeO2-enhanced CO2 decomposition via frosted dielectric barrier discharge plasma. Industrial & Engineering Chemistry Research, 2022, 61(29): 10455–10460
|
| [136] |
Subrahmanyam C , Magureanu M , Renken A , Kiwi-Minsker L . Catalytic abatement of volatile organic compounds assisted by non-thermal plasma. Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Applied Catalysis B: Environmental, 2006, 65(1-2): 150–156
|
| [137] |
Magureanu M , Mandache N B , Parvulescu V I , Subrahmanyam C , Renken A , Kiwi-Minsker L . Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: optimization of the reactor geometry and introduction of catalytic electrode. Applied Catalysis B: Environmental, 2007, 74(3-4): 270–277
|
| [138] |
Subrahmanyam C , Renken A , Kiwi-Minsker L . Catalytic abatement of volatile organic compounds assisted by non-thermal plasma. Part II. Optimized catalytic electrode and operating conditions. Applied Catalysis B: Environmental, 2006, 65(1-2): 157–162
|
| [139] |
Belov I , Vermeiren V , Paulussen S , Bogaerts A . Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations. Journal of CO2 Utilization, 2018, 24: 386–397
|
| [140] |
Vialetto L , Van De Steeg A W , Viegas P , Longo S , van Rooij G J , van De Sanden M C M , van Dijk J , Diomede P . Charged particle kinetics and gas heating in CO2 microwave plasma contraction: comparisons of simulations and experiments. Plasma Sources Science & Technology, 2022, 31(5): 055005
|
| [141] |
Hosseini Rad R , Brüser V , Schiorlin M , Schäfer J , Brandenburg R . Enhancement of CO2 splitting in a coaxial dielectric barrier discharge by pressure increase, packed bed and catalyst addition. Chemical Engineering Journal, 2023, 456: 141072–141090
|
| [142] |
Yong T , Zhong H , Pannier E , Laux C , Cappelli M A . High-pressure CO2 dissociation with nanosecond pulsed discharges. Plasma Sources Science & Technology, 2023, 32(11): 115012
|
| [143] |
van Raak T , Li S , Gallucci F . Prevailing surface reactions in the plasma-catalytic ammonia synthesis with Ru/CeO2 and Ru/Ti-CeO2. Chemical Engineering Journal, 2022, 455: 140691
|
| [144] |
Barboun P M , Daemen L L , Waitt C , Wu Z , Schneider W F , Hicks J C . Inelastic neutron scattering observation of plasma-promoted nitrogen reduction intermediates on Ni/γ-Al2O3. ACS Energy Letters, 2021, 6(6): 2048–2053
|
| [145] |
Ma X , Li S , Ronda-Lloret M , Chaudhary R , Lin L , van Rooij G , Gallucci F , Rothenberg G , Shiju N R , Hessel V . Plasma assisted catalytic conversion of CO2 and H2O over Ni/Al2O3 in a DBD reactor. Plasma Chemistry and Plasma Processing, 2018, 39(1): 109–124
|
| [146] |
Li S , Ongis M , Manzolini G , Gallucci F . Non-thermal plasma-assisted capture and conversion of CO2. Chemical Engineering Journal, 2021, 410: 128335
|
| [147] |
Ozkan A , Dufour T , Silva T , Britun N , Snyders R , Reniers F , Bogaerts A . DBD in burst mode: solution for more efficient CO2 conversion. Plasma Sources Science & Technology, 2016, 25(5): 55005
|
| [148] |
Chaudhary R , van Rooij G , Li S , Wang Q , Hensen E , Hessel V . Low-temperature, atmospheric pressure reverse water-gas shift reaction in dielectric barrier plasma discharge, with outlook to use in relevant industrial processes. Chemical Engineering Science, 2020, 225: 115803
|
| [149] |
Li S , van Raak T , Kriek R , De Felice G , Gallucci F . Gliding arc reactor under AC pulsed mode operation: spatial performance profile for NOx synthesis. ACS Sustainable Chemistry & Engineering, 2023, 11(34): 12821–12832
|
| [150] |
Bruggeman P J , Iza F , Brandenburg R . Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Science & Technology, 2017, 26(12): 123002
|
| [151] |
WongC SMongkolnavinR. Methods of plasma generation. In: Elements of Plasma Technology. Singapore: Springer, 2016, 15–48
|
| [152] |
Kogelschatz U , Eliasson B , Egli W . Dielectric-barrier discharges. Principle and applications. Journal de Physique, IV JP, 1997, 7(4): 47–66
|
| [153] |
Peeters F , Butterworth T . Electrical diagnostics of dielectric barrier discharges. In: Chen AN and Z, eds. Atmospheric Pressure Plasma–from Diagnostics to Applications. London: IntechOpen, 2018,
|
| [154] |
Peeters F J J , van de Sanden M C M . The influence of partial surface discharging on the electrical characterization of DBDs. Plasma Sources Science & Technology, 2015, 24(1): 15016
|
| [155] |
Pipa A V , Brandenburg R . The equivalent circuit approach for the electrical diagnostics of dielectric barrier discharges: the classical theory and recent developments. Atoms, 2019, 7(1): 14
|
| [156] |
Pipa A V , Hoder T , Brandenburg R . On the role of capacitance determination accuracy for the electrical characterization of pulsed driven dielectric barrier discharges. Contributions to Plasma Physics, 2013, 53(6): 469–480
|
| [157] |
Butterworth T , Allen R W K . Plasma-catalyst interaction studied in a single pellet DBD reactor: dielectric constant effect on plasma dynamics. Plasma Sources Science & Technology, 2017, 26(6): 065008
|
| [158] |
Pipa A V , Koskulics J , Brandenburg R , Hoder T . The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer. Review of Scientific Instruments, 2012, 83(11): 115112
|
| [159] |
Pipa A V , Hoder T , Koskulics J , Schmidt M , Brandenburg R . Experimental determination of dielectric barrier discharge capacitance. Review of Scientific Instruments, 2012, 83(7): 075111
|
| [160] |
Van RaakT. Development of Non-thermal Plasma Reactors For Nitrogen Fixation. 2025
|
| [161] |
Manley T C . The electric characteristics of the ozonator discharge. Transactions of The Electrochemical Society, 1943, 84(1): 83–96
|
| [162] |
Brandenburg R , Jahanbakhsh S , Schiorlin M , Schmidt M . About the development and dynamics of microdischarges in toluene-containing air. Plasma Chemistry and Plasma Processing, 2019, 39(3): 667–682
|
| [163] |
Mujahid Z , Hala A . Plasma dynamics in a packed bed dielectric barrier discharge (DBD) operated in Helium. Journal of Physics D: Applied Physics, 2018, 51(11): 1–6
|
| [164] |
Engeling K W , Kruszelnicki J , Kushner M J , Foster J E . Time-resolved evolution of micro-discharges, surface ionization waves and plasma propagation in a two-dimensional packed bed reactor. Plasma Sources Science & Technology, 2018, 27(8): 085002
|
| [165] |
Kim H , Teramoto Y , Ogata A . Time-resolved imaging of positive pulsed corona-induced surface streamers on TiO2 and γ-Al2O3-supported Ag catalysts. Journal of Physics D: Applied Physics, 2016, 49(41): 415204
|
| [166] |
Wang W , Kim H H , Van Laer K , Bogaerts A . Streamer propagation in a packed bed plasma reactor for plasma catalysis applications. Chemical Engineering Journal, 2018, 334: 2467–2479
|
| [167] |
Soldatov S , Link G , Silberer L , Schmedt C M , Carbone E , D’Isa F , Jelonnek J , Dittmeyer R , Navarrete A . Time-resolved optical emission spectroscopy reveals nonequilibrium conditions for CO2 splitting in atmospheric plasma sustained with ultrafast microwave pulsation. ACS Energy Letters, 2021, 6(1): 124–130
|
| [168] |
Engeln R , Klarenaar B , Guaitella O . Foundations of optical diagnostics in low-temperature plasmas. Plasma Sources Science & Technology, 2020, 29(6): 063001
|
| [169] |
Laux C O , Spence T G , Kruger C H , Zare R N . Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Science & Technology, 2003, 12(2): 125–138
|
| [170] |
Stancu G D , Kaddouri F , Lacoste D A , Laux C O . Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF. Journal of Physics D: Applied Physics, 2010, 43(12): 124002
|
| [171] |
Bogaerts A , Neyts E C , Guaitella O , Murphy A B . Foundations of plasma catalysis for environmental applications. Plasma Sources Science & Technology, 2022, 31(5): 053002
|
| [172] |
Dilecce G . Optical spectroscopy diagnostics of discharges at atmospheric pressure. Plasma Sources Science & Technology, 2014, 23(1): 015011
|
| [173] |
Ono R . Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma. Journal of Physics D: Applied Physics, 2016, 49(8): 83001
|
| [174] |
Chen S , Wang H , Dong F . Activation and characterization of environmental catalysts in plasma-catalysis: status and challenges. Journal of Hazardous Materials, 2022, 427: 128150
|
| [175] |
Zhang S , Oehrlein G S . From thermal catalysis to plasma catalysis: a review of surface processes and their characterizations. Journal of Physics D: Applied Physics, 2021, 54(21): 213001
|
| [176] |
Lee G , Go D B , O’Brien C P . Direct observation of plasma-stimulated activation of surface species using multimodal in situ/operando spectroscopy combining polarization-modulation infrared reflection-absorption spectroscopy, optical emission spectroscopy, and mass spectrometry. ACS Applied Materials & Interfaces, 2021, 13(47): 56242–56253
|
| [177] |
Clarke R J , Hicks J C . Interrogation of the plasma-catalyst interface via in situ/operando transmission infrared spectroscopy. ACS Engineering Au, 2022, 2(6): 535–546
|
| [178] |
Sheng Z , Kim H H , Yao S , Nozaki T . Plasma-chemical promotion of catalysis for CH4 dry reforming: unveiling plasma-enabled reaction mechanisms. Physical Chemistry Chemical Physics, 2020, 22(34): 19349–19358
|
| [179] |
Saito A , Sheng Z , Nozaki T . In situ raman spectroscopy of plasma-catalyst interface for conversion of CO2 and CH4 to valuable compounds. International Journal of Plasma Environmental Science and Technology, 2021, 15(2): 1–12
|
| [180] |
Sun Y , Li J , Chen P , Wang B , Wu J , Fu M , Chen L , Ye D . Reverse water-gas shift in a packed bed DBD reactor: investigation of metal-support interface towards a better understanding of plasma catalysis. Applied Catalysis A: General, 2020, 591: 117407
|
| [181] |
Gibson E K , Stere C E , Curran-McAteer B , Jones W , Cibin G , Gianolio D , Goguet A , Wells P P , Catlow C R A , Collier P . . Probing the role of a non-thermal plasma (NTP) in the hybrid NTP catalytic oxidation of methane. Angewandte Chemie International Edition, 2017, 56(32): 9351–9355
|
| [182] |
Navascués P , Cotrino J , González-Elipe A R , Gómez-Ramírez A . Plasma assisted dry reforming of methane: syngas and hydrocarbons formation mechanisms. Fuel Processing Technology, 2023, 248: 107827
|
| [183] |
Morillo-Candas A S , Klarenaar B L M , Guerra V , Guaitella O . Fast O atom exchange diagnosed by isotopic tracing as a probe of excited states in nonequilibrium CO2-CO-O2 plasmas. Journal of Physical Chemistry C, 2023, 127(13): 6135–6151
|
| [184] |
Janssen C , Tuzson B . Isotope evidence for ozone formation on surfaces. Journal of Physical Chemistry A, 2010, 114(36): 9709–9719
|
| [185] |
Marinov D , Guaitella O , De Los Arcos T , Von Keudell A , Rousseau A . Adsorption and reactivity of nitrogen atoms on silica surface under plasma exposure. Journal of Physics D: Applied Physics, 2014, 47(47): 475204
|
| [186] |
Parastaev A , Hoeben W F L M , van Heesch B E J M , Kosinov N , Hensen E J M . Temperature-programmed plasma surface reaction: an approach to determine plasma-catalytic performance. Applied Catalysis B: Environmental, 2018, 239: 168–177
|
| [187] |
Alves L L , Becker M M , van Dijk J , Gans T , Go D B , Stapelmann K , Tennyson J , Turner M M , Kushner M J . Foundations of plasma standards. Plasma Sources Science & Technology, 2023, 32(2): 023001
|
| [188] |
Sakai O , Kawaguchi S , Murakami T . Complexity visualization, dataset acquisition, and machine-learning perspectives for low-temperature plasma: a review. Japanese Journal of Applied Physics, 2022, 61(7): 070101
|
| [189] |
He M , Bai R , Tan S , Liu D , Zhang Y . Driven plasma science: a new perspective on modeling diagnostics and application through machine learning. Plasma Processes and Polymers, 2024, 21(9): 2400020
|
| [190] |
Dobbelaere M R , Plehiers P P , van de Vijver R , Stevens C V , van Geem K M . Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats. Engineering, 2021, 7(9): 1201–1211
|
| [191] |
Bonzanini A D , Shao K , Graves D B , Hamaguchi S , Mesbah A . Foundations of machine learning for low-temperature plasmas: methods and case studies. Plasma Sources Science & Technology, 2023, 32(2): 024003
|
| [192] |
Anirudh R , Archibald R , Asif M S , Becker M M , Benkadda S , Bremer P T , Budé R H S , Chang C S , Chen L , Churchill R M . . 2022 review of data-driven plasma science. IEEE Transactions on Plasma Science, 2023, 51(7): 1750–1838
|
| [193] |
Shen Y , Fu C , Luo W , Liang Z , Wang Z R , Huang Q . Machine learning for CO2 conversion driven by dielectric barrier discharge plasma and Cs2TeCl6 photocatalysts. Green Chemistry, 2023, 25(19): 7605–7611
|
| [194] |
Cai Y , Mei D , Chen Y , Bogaerts A , Tu X . Machine learning-driven optimization of plasma-catalytic dry reforming of methane. Journal of Energy Chemistry, 2024, 96: 153–163
|
| [195] |
Rashvand M , Altieri G , Abbaszadeh R , Matera A , Genovese F , Feyissa A H , di Renzo G C . Prediction of CO2 and ethylene produced in-packaged apricot under cold plasma treatment by machine learning approach. Journal of Food Process Engineering, 2023, 46(9): 1–17
|
| [196] |
Mei D , Zhang P , Duan G , Liu S , Zhou Y , Fang Z , Tu X . CH4 reforming with CO2 using a nanosecond pulsed dielectric barrier discharge plasma. Journal of CO2 Utilization, 2022, 62: 102073
|
| [197] |
Pan J , Liu Y , Zhang S , Hu X , Liu Y , Shao T . Deep learning-assisted pulsed discharge plasma catalysis modeling. Energy Conversion and Management, 2023, 277: 116620
|
| [198] |
Chen Y , Feng J , Wang X , Zhang C , Ke D , Zhu H , Wang S , Suo H , Liu C . Iterative approach of experiment-machine learning for efficient optimization of environmental catalysts: an example of NOx selective reduction catalysts. Environmental Science & Technology, 2023, 57(46): 18080–18090
|
| [199] |
Wilkinson M D , Dumontier M , Aalbersberg Ij J , Appleton G , Axton M , Baak A , Blomberg N , Boiten J W , da Silva Santos L B , Bourne P E . . Comment: the FAIR guiding principles for scientific data management and stewardship. Scientific Data, 2016, 3(1): 1–9
|
| [200] |
Bai R , Zhu H , Li J , Liu D , Lu X . Exploring the potential of ChatGPT in enhancing atmospheric pressure plasma research techniques. Plasma Processes and Polymers, 2024, 21(7): 1–12
|
| [201] |
Von Keudell A . Large language models for plasma research: curse or blessing. Plasma Processes and Polymers, 2024, 21(7): 2–3
|
| [202] |
Rouwenhorst K H R , Mani S , Lefferts L . Improving the energy yield of plasma-based ammonia synthesis with in situ adsorption. ACS Sustainable Chemistry & Engineering, 2022, 10(6): 1994–2000
|
| [203] |
Vertongen R , De Felice G , van den Bogaard H , Gallucci F , Bogaerts A , Li S . Sorption-enhanced dry reforming of methane in a DBD plasma reactor for single-stage carbon capture and utilization. ACS Sustainable Chemistry & Engineering, 2024, 12(29): 10841–10853
|
| [204] |
Attri P , Koga K , Razzokov J , Okumura T , Kamataki K , Nozaki T , Shiratani M . Plasma-ionic liquid-assisted CO2 capture and conversion: a novel technology. Applied Physics Express, 2024, 17(4): 046001
|
| [205] |
Fitriani S W , Okumura T , Kamataki K , Koga K , Shiratani M , Attri P . Capture and conversion of CO2 from ambient air using ionic liquid-plasma combination. Plasma Chemistry and Plasma Processing, 2024, 44(6): 2153–2162
|
| [206] |
Veng V , Tabu B , Simasiku E , Landis J , Mack J H , Carreon M , Trelles J P . Design and characterization of a membrane dielectric-barrier discharge reactor for ammonia synthesis. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1921–1940
|
| [207] |
Hayakawa Y , Kambara S , Miura T . Hydrogen production from ammonia by the plasma membrane reactor. International Journal of Hydrogen Energy, 2020, 45(56): 32082–32088
|
| [208] |
Zheng Q , Xie Y , Tan J , Xu Z , Luo P , Wang T , Liu Z , Liu F , Zhang K , Fang Z . . Coupling of dielectric barrier discharge plasma with oxygen permeable membrane for highly efficient low-temperature permeation. Journal of Membrane Science, 2022, 641: 119896
|
| [209] |
Chen G , Buck F , Kistner I , Widenmeyer M , Schiestel T , Schulz A , Walker M , Weidenkaff A . A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2019, 392: 123699
|
| [210] |
Chen G , Widenmeyer M , Yu X , Han N , Tan X , Homm G , Liu S , Weidenkaff A . Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. Journal of the American Ceramic Society, 2024, 107(3): 1490–1504
|
| [211] |
Li S , De Felice G , Eichkorn S , Shao T , Gallucci F . A review on plasma-based CO2 utilization: process considerations in the development of sustainable chemical production. Plasma Science & Technology, 2024, 26(9): 094001
|
| [212] |
Rabinovich A , Nirenberg G , Kocagoz S , Surace M , Sales C , Fridman A . Scaling up of non-thermal gliding arc plasma systems for industrial applications. Plasma Chemistry and Plasma Processing, 2022, 42(1): 35–50
|
| [213] |
Okubo M . Recent development of technology in scale-up of plasma reactors for environmental and energy applications. Plasma Chemistry and Plasma Processing, 2022, 42(1): 3–33
|
| [214] |
Tsonev I , Ahmadi Eshtehardi H , Delplancke M P , Bogaerts A . Importance of geometric effects in scaling up energy-efficient plasma-based nitrogen fixation. Sustainable Energy & Fuels, 2024, 8(10): 2191–2209
|
| [215] |
O’Modhrain C , Trenchev G , Gorbanev Y , Bogaerts A . Upscaling plasma-based CO2 conversion: case study of a multi-reactor gliding arc plasmatron. ACS Engineering Au, 2024, 4(3): 333–344
|
| [216] |
Van Raak T , van den Bogaard H , De Felice G , Emmery D , Gallucci F , Li S . Numbering up and sizing up gliding arc reactors to enhance the plasma-based synthesis of NOx. Catalysis Science & Technology, 2024, 14(18): 5405–5421
|
| [217] |
Winter L R , Chen J G . N2 fixation by plasma-activated processes. Joule, 2021, 5(2): 300–315
|
| [218] |
Van Rooij G J , Akse H N , Bongers W A , van de Sanden M C M . Plasma for electrification of chemical industry: a case study on CO2 reduction. Plasma Physics and Controlled Fusion, 2018, 60(1): 014019
|
| [219] |
Kaufmann S J , Rößner P , Renninger S , Lambarth M , Raab M , Stein J , Seithümmer V , Birke K P . Techno-economic potential of plasma-based CO2 splitting in power-to-liquid plants. Applied Sciences, 2023, 13(8): 4839
|
| [220] |
Delikonstantis E , Scapinello M , Stefanidis G D . Process modeling and evaluation of plasma-assisted ethylene production from methane. Processes, 2019, 7(2): 68
|