Exploring the immunological impact of particles across dimensions in antigen and drug delivery systems

Hua Yue , Shaoyu Guan

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (7) : 60

PDF (3998KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (7) : 60 DOI: 10.1007/s11705-025-2565-y
REVIEW ARTICLE

Exploring the immunological impact of particles across dimensions in antigen and drug delivery systems

Author information +
History +
PDF (3998KB)

Abstract

Particle formulation engineering stands as a focal point of research and a critical trajectory within the chemical industry. In response to the challenges associated with antigen/drug delivery, our research group has proposed a suite of strategies centered on micro/nanoparticle platforms. This review integrates our investigations into the applications of particles across various dimensions in biomedical delivery systems. Specifically, it delineates the mechanisms by which particles augment vaccine-induced immune responses, notably through antigen cross-presentation, and the pivotal roles they play in facilitating drug-mediated targeting of cancer cells via confined mass transfer. This review also encompasses recent advancements in particle formulations, offering prospective insights into the utilization of chemical engineering principles in the design of next-generation biomedical delivery systems.

Graphical abstract

Keywords

micro/nanoparticles / graphene oxide / precise drug delivery / vaccine adjuvant

Cite this article

Download citation ▾
Hua Yue, Shaoyu Guan. Exploring the immunological impact of particles across dimensions in antigen and drug delivery systems. Front. Chem. Sci. Eng., 2025, 19(7): 60 DOI:10.1007/s11705-025-2565-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Crecente-Campo J , Guerra-Varela J , Peleteiro M , Gutierrez-Lovera C , Fernandez-Marino I , Dieguez-Docampo A , González-Fernández Á , Sánchez L , Alonso M J . The size and composition of polymeric nanocapsules dictate their interaction with macrophages and biodistribution in zebrafish. Journal of Controlled Release, 2019, 308: 98–108

[2]

Walker S , Busatto S , Pham A , Tian M , Suh A , Carson K , Quintero A , Lafrence M , Malik H , Santana M X . . Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics, 2019, 9(26): 8001–8017

[3]

Lu Y , Liu G . Nano alum: a new solution to the new challenge. Human Vaccines & Immunotherapeutics, 2022, 18(5): 2060667

[4]

Khong H , Overwijk W W . Adjuvants for peptide-based cancer vaccines. Journal for Immunotherapy of Cancer, 2016, 4(1): 56

[5]

Li S R , Huo F Y , Wang H Q , Wang J , Xu C , Liu B , Bu L L . Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20(1): 277

[6]

Koziara J M , Lockman P R , Allen D D , Mumper R J . In situ blood-brain barrier transport of nanoparticles. Pharmaceutical Research, 2003, 20(11): 1772–1778

[7]

Luo L , Qin T , Huang Y , Zheng S , Bo R , Liu Z , Xing J , Hu Y , Liu J , Wang D . Exploring the immunopotentiation of Chinese yam polysaccharide poly(lactic-co-glycolic acid) nanoparticles in an ovalbumin vaccine formulation in vivo. Drug Delivery, 2017, 24(1): 1099–1111

[8]

Chen W , Li Y , Liu C , Kang Y , Qin D , Chen S , Zhou J , Liu H J , Ferdows B E , Patel D N . . In situ engineering of tumor-associated macrophages via a nanodrug-delivering-drug (β-elemene@stanene) strategy for enhanced cancer chemo-immunotherapy. Angewandte Chemie International Edition, 2023, 62(41): e202308413

[9]

Hoppentocht M , Hagedoorn P , Frijlink H W , de Boer A H . Technological and practical challenges of dry powder inhalers and formulations. Advanced Drug Delivery Reviews, 2014, 75: 18–31

[10]

Fiolet T , Kherabi Y , MacDonald C J , Ghosn J , Peiffer-Smadja N . Comparing COVID-19 vaccines for their characteristics, efficacy, and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clinical Microbiology and Infection, 2022, 28(2): 202–221

[11]

Lopes de Assis F , Hoehn K B , Zhang X , Kardava L , Smith C D , El Merhebi O , Buckner C M , Trihemasava K , Wang W , Seamon C A . . Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine. Cell Reports, 2023, 42(7): 112780

[12]

Mohsen M O , Bachmann M F . Virus-like particle vaccinology, from bench to bedside. Cellular & Molecular Immunology, 2022, 19(9): 993–1011

[13]

Wahl I , Wardemann H . How to induce protective humoral immunity against plasmodium falciparum circumsporozoite protein. Journal of Experimental Medicine, 2022, 219(2): e20201313

[14]

Li J . The principle of compromise-in-competition: understanding mesoscale complexity of different levels. Proceedings of The Royal Society A: Mathematical, Physical, and Engineering Sciences, 2024, 480(2301): 20240031

[15]

Khan N H , Mir M , Qian L , Baloch M , Ali Khan M F , Rehman A U , Ngowi E E , Wu D D , Ji X Y . Skin cancer biology and barriers to treatment: recent applications of polymeric micro/nanostructures. Journal of Advanced Research, 2022, 36: 223–247

[16]

Zaiki Y , Iskandar A , Wong T W . Functionalized chitosan for cancer nano drug delivery. Biotechnology Advances, 2023, 67: 108200

[17]

Xi X , Ye T , Wang S , Na X , Wang J , Qing S , Gao X , Wang C , Li F , Wei W . . Self-healing microcapsules synergetically modulate immunization microenvironments for potent cancer vaccination. Science Advances, 2020, 6(21): eaay7735

[18]

Wu Y , Yue X , Zhang Y , Yu N , Ge C , Liu R , Duan Z , Gao L , Zang X , Sun X . . Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration. Materials Today Bio, 2025, 30: 101436

[19]

Kaushik N , Borkar S B , Nandanwar S K , Panda P K , Choi E H , Kaushik N K . Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. Journal of Nanobiotechnology, 2022, 20(1): 152

[20]

Miao Y , Yang T , Yang S , Yang M , Mao C . Protein nanoparticles directed cancer imaging and therapy. Nano Convergence, 2022, 9(1): 2

[21]

Wang Y , Xu Y , Song J , Liu X , Liu S , Yang N , Wang L , Liu Y , Zhao Y , Zhou W . . Tumor cell-targeting and tumor microenvironment-responsive nanoplatforms for the multimodal imaging-guided photodynamic/photothermal/chemodynamic treatment of cervical cancer. International Journal of Nanomedicine, 2024, 19: 5837–5858

[22]

Ye M , Zhou Y , Zhao H , Wang X . Magnetic microrobots with folate targeting for drug delivery. Cyborg and Bionic Systems, 2023, 4: 0019

[23]

Chen G , Kang W , Li W , Chen S , Gao Y . Oral delivery of protein and peptide drugs: from non-specific formulation approaches to intestinal cell targeting strategies. Theranostics, 2022, 12(3): 1419–1439

[24]

Liu H , Zhang Y , Yue H , Ma G . Particle adjuvants for vaccines. Chinese Science Bulletin, 2025, 70(7): 888–889

[25]

Xue Y , Liu C , Andrews G , Wang J , Ge Y . Recent advances in carbon quantum dots for virus detection, as well as inhibition and treatment of viral infection. Nano Convergence, 2022, 9(1): 15

[26]

Singh M , Chakrapani A , O’Hagan D . Nanoparticles and microparticles as vaccine-delivery systems. Expert Review of Vaccines, 2007, 6(5): 797–808

[27]

Oyewumi M O , Kumar A , Cui Z . Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Review of Vaccines, 2010, 9(9): 1095–1107

[28]

Ma G H , Nagai M , Omi S . Study on preparation and morphology of uniform artificial polystyrene-poly(methyl methacrylate) composite microspheres by employing the spg (shirasu porous glass) membrane emulsification technique. Journal of Colloid and Interface Science, 1999, 214(2): 264–282

[29]

Wei W , Wang L Y , Yuan L , Yang X D , Su Z G , Ma G H . Bioprocess of uniform-sized crosslinked chitosan microspheres in rats following oral administration. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(3): 878–886

[30]

Yue H , Ma G . Polymeric micro/nanoparticles: particle design and potential vaccine delivery applications. Vaccine, 2015, 33(44): 5927–5936

[31]

Ma G , Yue H . Advances in uniform polymer microspheres and microcapsules: preparation and biomedical applications. Chinese Journal of Chemistry, 2020, 38(9): 911–923

[32]

Eckhardt A , Harorli T , Limtanyakul J , Hiller K A , Bosl C , Bolay C , Reichl F X , Schmalz G , Schweikl H . Inhibition of cytokine and surface antigen expression in LPS-stimulated murine macrophages by triethylene glycol dimethacrylate. Biomaterials, 2009, 30(9): 1665–1674

[33]

Kanchan V , Panda A K . Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials, 2007, 28(35): 5344–5357

[34]

Wu S , Yue H , Wu J , Zhang W , Jiang M , Ma G . The interacting role of physical stiffness and tumor cells on the macrophages polarization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 552: 81–88

[35]

Yue H , Wei W , Yue Z , Lv P , Wang L , Ma G , Su Z . Particle size affects the cellular response in macrophages. European Journal of Pharmaceutical Sciences, 2010, 41(5): 650–657

[36]

Yue H , Yuan L , Zhang W , Zhang S , Wei W , Ma G . Macrophage responses to the physical burden of cell-sized particles. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(3): 393–400

[37]

Lu T , Hu F , Yue H , Yang T , Ma G . The incorporation of cationic property and immunopotentiator in poly(lactic acid) microparticles promoted the immune response against chronic hepatitis B. Journal of Controlled Release, 2020, 321: 576–588

[38]

Wang H , Gao X D , Yue H . Lentinan-laden microspheres reprogram the tumor microenvironment and improve anti-PD-L1 efficacy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2023, 11(20): 4475–4484

[39]

Yue H , Wei W , Fan B , Yue Z , Wang L , Ma G , Su Z . The orchestration of cellular and humoral responses is facilitated by divergent intracellular antigen trafficking in nanoparticle-based therapeutic vaccine. Pharmacological Research, 2012, 65(2): 189–197

[40]

Wei W , Zhu D , Wang Z , Ni D , Yue H , Wang S , Tao Y , Ma G . Positively charged armed nanoparticles demonstrate their precise delivery performance for effective treatment of chorioretinal diseases. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2016, 4(15): 2548–2552

[41]

Yue Z G , Wei W , Lv P P , Yue H , Wang L Y , Su Z G , Ma G H . Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules, 2011, 12(7): 2440–2446

[42]

Hu F , Yue H , Lu T , Ma G . Cytosolic delivery of HBsAg and enhanced cellular immunity by pH-responsive liposome. Journal of Controlled Release, 2020, 324: 460–470

[43]

Wang S , Ni D , Yue H , Luo N , Xi X , Wang Y , Shi M , Wei W , Ma G . Exploration of antigen induced CaCO3 nanoparticles for therapeutic vaccine. Small, 2018, 14(14): 1704272

[44]

Xia Y , Song T , Hu Y , Ma G . Synthetic particles for cancer vaccines: connecting the inherent supply chain. Accounts of Chemical Research, 2020, 53(10): 2068–2080

[45]

Wu S , Zhou Y , Asakawa N , Wen M , Sun Y , Ming Y , Song T , Chen W , Ma G , Xia Y . Engineering CaP-Pickering emulsion for enhanced mRNA cancer vaccines via dual DC and NK activations. Journal of Controlled Release, 2024, 373: 837–852

[46]

Du Y , Song T , Wu J , Gao X D , Ma G , Liu Y , Xia Y . Engineering mannosylated pickering emulsions for the targeted delivery of multicomponent vaccines. Biomaterials, 2022, 280: 121313

[47]

Peng S , Yan Y , Ogino K , Ma G , Xia Y . Spatiotemporal coordination of antigen presentation and co-stimulatory signal for enhanced anti-tumor vaccination. Journal of Controlled Release, 2024, 374: 312–324

[48]

Yan Y , Huang X , Yuan L , Ngai T , Ma G , Xia Y . Dictating the spatial-temporal delivery of molecular adjuvant and antigen for the enhanced vaccination. Biomaterials, 2024, 311: 122697

[49]

Xia Y , Wu J , Wei W , Du Y , Wan T , Ma X , An W , Guo A , Miao C , Yue H . . Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nature Materials, 2018, 17(2): 187–194

[50]

Ni D , Qing S , Ding H , Yue H , Yu D , Wang S , Luo N , Su Z , Wei W , Ma G . Biomimetically engineered demi-bacteria potentiate vaccination against cancer. Advanced Science, 2017, 4(10): 1700083

[51]

Zhao C , Song W , Wang J , Tang X , Jiang Z . Immunoadjuvant-functionalized metal-organic frameworks: synthesis and applications in tumor immune modulation. Chemical Communications, 2025, 61(10): 1962–1977

[52]

Yue H , Liu Z , Wang S . Editorial: the exploration of low-dimensional nanoparticles for disease diagnosis and therapy. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1227295

[53]

Wei P , Luo Q , Edgehouse K J , Hemmingsen C M , Rodier B J , Pentzer E B . 2D particles at fluid-fluid interfaces: assembly and templating of hybrid structures for advanced applications. ACS Applied Materials & Interfaces, 2018, 10(26): 21765–21781

[54]

Ma G , Yue H . Advances in functionalized carriers based on graphene’s unique biological interface effect. Acta Chimica Sinica, 2021, 79(10): 1244

[55]

JanegitzB CSilvaT AWongARibovskiLVicentiniF CTaboada SotomayorM D PFatibello-FilhoO. The application of graphene for in vitro and in vivo electrochemical biosensing. Biosensors & Bioelectronics, 2017, 89(Pt 1): 224–233

[56]

Balandin A A . Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581

[57]

Wen Y , Wu M , Zhang M , Li C , Shi G . Topological design of ultrastrong and highly conductive graphene films. Advanced Materials, 2017, 29(41): 1702831

[58]

Weiss N O , Zhou H , Liao L , Liu Y , Jiang S , Huang Y , Duan X . Graphene: an emerging electronic material. Advanced Materials, 2012, 24(43): 5782–5825

[59]

Wang N , Samani M K , Li H , Dong L , Zhang Z , Su P , Chen S , Chen J , Huang S , Yuan G . . Tailoring the thermal and mechanical properties of graphene film by structural engineering. Small, 2018, 14(29): 1801346

[60]

Xu Y , Li Z , Duan W . Thermal and thermoelectric properties of graphene. Small, 2014, 10(11): 2182–2199

[61]

Tu Y , Lv M , Xiu P , Huynh T , Zhang M , Castelli M , Liu Z , Huang Q , Fan C , Fang H . . Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 2013, 8(8): 594–601

[62]

Zhou R , Huang X , Margulis C J , Berne B J . Hydrophobic collapse in multidomain protein folding. Science, 2004, 305(5690): 1605–1609

[63]

Yue H , Wei W , Yue Z , Wang B , Luo N , Gao Y , Ma D , Ma G , Su Z . The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials, 2012, 33(16): 4013–4021

[64]

Dai X , Zhang X , Gao L , Xu Z , Yan L T . Topology mediates transport of nanoparticles in macromolecular networks. Nature Communications, 2022, 13(1): 4094

[65]

Yue H , Wei W , Gu Z , Ni D , Luo N , Yang Z , Zhao L , Garate J A , Zhou R , Su Z . . Exploration of graphene oxide as an intelligent platform for cancer vaccines. Nanoscale, 2015, 7(47): 19949–19957

[66]

Romagnoli A , D’Agostino M , Pavoni E , Ardiccioni C , Motta S , Crippa P , Biagetti G , Notarstefano V , Rexha J , Perta N . . SARS-CoV-2 multi-variant rapid detector based on graphene transistor functionalized with an engineered dimeric ACE2 receptor. Nano Today, 2023, 48: 101729

[67]

Wang Y , Zhang X , Yue H . Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. Journal of Nanobiotechnology, 2024, 22(1): 67

[68]

Chen P , Yue H , Zhai X , Huang Z , Ma G H , Wei W , Yan L T . Transport of a graphene nanosheet sandwiched inside cell membranes. Science Advances, 2019, 5(6): eaaw3192

[69]

Marrack P , McKee A S , Munks M W . Towards an understanding of the adjuvant action of aluminium. Nature Reviews: Immunology, 2009, 9(4): 287–293

[70]

Hu F , Wang D , Lu T , Ma G , Yue H . A two-pronged strategy utilizing exosomes extracted from antigen-presenting cells to combat hepatitis B. Nano Research, 2024, 17(10): 9084–9094

[71]

Ye T , Jiao Z , Li X , He Z , Li Y , Yang F , Zhao X , Wang Y , Huang W , Qin M . . Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature, 2023, 624(7992): 630–638

[72]

Peng J , Wang R , Sun W , Huang M , Wang R , Li Y , Wang P , Sun G , Xie S . Delivery of miR-320a-3p by gold nanoparticles combined with photothermal therapy for directly targeting Sp1 in lung cancer. Biomaterials Science, 2021, 9(19): 6528–6541

[73]

Yan M , Zhang Y , Wu Z , Li Y , Dou K , Wang B , Wang Y , Zhou Q . Recent progress in advanced biomaterials for long-acting reversible contraception. Journal of Nanobiotechnology, 2022, 20(1): 138

[74]

Yue Z G , Wei W , You Z X , Yang Q Z , Yue H , Su Z G , Ma G H . Iron oxide nanotubes for magnetically guided delivery and pH-activated release of insoluble anticancer drugs. Advanced Functional Materials, 2011, 21(18): 3446–3453

[75]

Ko Y S , Bae J A , Kim K Y , Kim S J , Sun E G , Lee K H , Kim N , Kang H , Seo Y W , Kim H . . MYO1D binds with kinase domain of the EGFR family to anchor them to plasma membrane before their activation and contributes carcinogenesis. Oncogene, 2019, 38(49): 7416–7432

[76]

Huang L , Zhang X , Ding Z , Qi Y , Wang W , Xu X , Yue H , Bai L , Wang H , Feng L . . PEGylated 2D-nanomaterials alleviate Parkinson’s disease by shielding PIP2 lipids to inhibit IP3 second messenger signaling. Nano Today, 2022, 46: 101556

[77]

Ding Z , Luo N , Yue H , Gao Y , Ma G , Wei W . In vivo immunological response of exposure to PEGylated graphene oxide via intraperitoneal injection. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(31): 6845–6856

[78]

Ding Z , Zhang X , Wang Y , Ogino K , Wu Y , Yue H , Jiao Z , Song C , Lu G , Wang S . . Nanomaterial’s interfacial stimulation of vascular endothelial cells and divergent guidances for nanomedicine treating vasculature-associated diseases. Nano Today, 2023, 49: 101815

[79]

Daneshmandi L , Barajaa M , Tahmasbi Rad A , Sydlik S A , Laurencin C T . Graphene-based biomaterials for bone regenerative engineering: a comprehensive review of the field and considerations regarding biocompatibility and biodegradation. Advanced Healthcare Materials, 2021, 10(1): 2001414

[80]

Luo N , Ni D , Yue H , Wei W , Ma G . Surface-engineered graphene navigate divergent biological outcomes toward macrophages. ACS Applied Materials & Interfaces, 2015, 7(9): 5239–5247

[81]

Larson T A , Joshi P P , Sokolov K . Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano, 2012, 6(10): 9182–9190

[82]

De Mattos-Arruda L , Vazquez M , Finotello F , Lepore R , Porta E , Hundal J , Amengual-Rigo P , Ng C K Y , Valencia A , Carrillo J . . Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 2020, 31(8): 978–990

[83]

Du Y , Liu Y , Wang D , Bai H , Wang Z , He X , Zhang P , Tian J , Wang J . Peptidic microarchitecture-trapped tumor vaccine combined with immune checkpoint inhibitor or PI3Kgamma inhibitor can enhance immunogenicity and eradicate tumors. Journal for Immunotherapy of Cancer, 2022, 10(2): e003564

[84]

Diao L , Liu M . Rethinking antigen source: cancer vaccines based on whole tumor cell/tissue lysate or whole tumor cell. Advanced Science, 2023, 10(22): 2300121

[85]

Zou L , Zhang Y , Yue H , Ma G . Porous PLGA microsphere as a vaccine adjuvant against COVID-19. The Chinese Journal of Process Engineering, 2024, 24(3): 360–370

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3998KB)

380

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/