Carbon dioxide conversion and characterization of microwave-induced plasma

Balázs Péter Kiss , Csenge Emese Toth , István Slezsak , Zsolt Dobo , George Kaptay

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (7) : 58

PDF (2964KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (7) : 58 DOI: 10.1007/s11705-025-2563-0
RESEARCH ARTICLE

Carbon dioxide conversion and characterization of microwave-induced plasma

Author information +
History +
PDF (2964KB)

Abstract

Graphical abstract

Keywords

microwave / carbon dioxide plasma / carbon dioxide conversion

Cite this article

Download citation ▾
Balázs Péter Kiss, Csenge Emese Toth, István Slezsak, Zsolt Dobo, George Kaptay. Carbon dioxide conversion and characterization of microwave-induced plasma. Front. Chem. Sci. Eng., 2025, 19(7): 58 DOI:10.1007/s11705-025-2563-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Mamoori A, Krishnamurthy A, Rownaghi A A, Rezaei F. Carbon capture and utilization update. Energy Technology, 2017, 5(6): 834–849

[2]

Baena-Moreno F M, Rodríguez-Galán M, Vega F, Alonso-Fariñas B, Vilches Arenas L F, Navarrete B. Carbon capture and utilization technologies: a literature review and recent advances. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(12): 1403–1433

[3]

Koytsoumpa E I, Bergins C, Buddenberg T, Wu S, Sigurbjörnsson Ó, Tran K C, Kakaras E. The challenge of energy storage in europe: focus on power to fuel. Journal of Energy Resources Technology, 2016, 138(4): 042002

[4]

Bogaerts A, Centi G. Plasma technology for CO2 conversion: a personal perspective on prospects and gaps. Frontiers in Energy Research, 2020, 8: 111

[5]

Snoeckx R, Bogaerts A. Plasma technology—a novel solution for CO2 conversion. Chemical Society Reviews, 2017, 46(19): 5805–5863

[6]

Qin Y, Niu G, Wang X, Luo D, Duan Y. Status of CO2 conversion using microwave plasma. Journal of CO2 Utilization, 2018, 28: 283–91

[7]

Zhu H, Huang Y, Yin S, Zhang W. Microwave plasma setups for CO2 conversion: a mini-review. Green Energy and Resources, 2024, 2(1): 100061

[8]

de la Fuente J F, Kiss A A, Radoiu M T, Stefanidis G D. Microwave plasma emerging technologies for chemical processes. Journal of Chemical Technology and Biotechnology, 2017, 92(10): 2495–2505

[9]

Ong M Y, Nomanbhay S, Kusumo F, Show P L. Application of microwave plasma technology to convert carbon dioxide (CO2) into high value products: a review. Journal of Cleaner Production, 2022, 336: 130447

[10]

Wanten B, Vertongen R, De Meyer R, Bogaerts A. Plasma-based CO2 conversion: How to correctly analyze the performance. Journal of Energy Chemistry, 2023, 86: 180–196

[11]

Wiegers K, Schulz A, Walker M, Tovar G E M. Determination of the conversion and efficiency for CO2 in an atmospheric pressure microwave plasma torch. Chemie Ingenieur Technik, 2022, 94(3): 299–308

[12]

Mitsingas C M, Rajasegar R, Hammack S, Do H, Lee T. High energy efficiency plasma conversion of CO2 at atmospheric pressure using a direct-coupled microwave plasma system. IEEE Transactions on Plasma Science, 2016, 44(4): 651–656

[13]

van Rooij G J, van den Bekerom D C M, den Harder N, Minea T, Berden G, Bongers W A, Engeln R, Graswinckel M F, Zoethout E, van de Sanden M C M. Taming microwave plasma to beat thermodynamics in CO2 dissociation. Faraday Discussions, 2015, 183: 233–248

[14]

Bongers W, Bouwmeester H, Wolf B, Peeters F, Welzel S, van den Bekerom D, den Harder N, Goede A, Graswinckel M, Groen P W. . Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Processes and Polymers, 2017, 14(6): 1600126

[15]

Chen G, Snyders R, Britun N. CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. Journal of CO2 Utilization, 2021, 49: 101557

[16]

Spencer L F, Gallimore A D. CO2 dissociation in an atmospheric pressure plasma/catalyst system: a study of efficiency. Plasma Sources Science & Technology, 2012, 22(1): 015019

[17]

Salden A, Budde M, Garcia-Soto C A, Biondo O, Barauna J, Faedda M, Musig B, Fromentin C, Nguyen-Quang M, Philpott H. . Meta-analysis of CO2 conversion, energy efficiency, and other performance data of plasma-catalysis reactors with the open access PIONEER database. Journal of Energy Chemistry, 2023, 86: 318–342

[18]

Hecimovic A, Kiefer C K, Meindl A, Antunes R, Fantz U. Fast gas quenching of microwave plasma effluent for enhanced CO2 conversion. Journal of CO2 Utilization, 2023, 71: 102473

[19]

Kiefer C K, Antunes R, Hecimovic A, Meindl A, Fantz U. CO2 dissociation using a lab-scale microwave plasma torch: an experimental study in view of industrial application. Chemical Engineering Journal, 2024, 481: 148326

[20]

D’Isa F A, Carbone E A D, Hecimovic A, Fantz U. Performance analysis of a 2.45 GHz microwave plasma torch for CO2 decomposition in gas swirl configuration. Plasma Sources Science & Technology, 2020, 29(10): 105009

[21]

de la Fuente J F, Moreno S H, Stankiewicz A I, Stefanidis G D. Reduction of CO2 with hydrogen in a non-equilibrium microwave plasma reactor. International Journal of Hydrogen Energy, 2016, 41(46): 21067–21077

[22]

Chen G, Britun N, Godfroid T, Georgieva V, Snyders R, Delplancke-Ogletree M P. An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis. Journal of Physics D: Applied Physics, 2017, 50(8): 084001

[23]

Silva T, Britun N, Godfroid T, Snyders R. Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Science & Technology, 2014, 23(2): 025009

[24]

Belov I, Vermeiren V, Paulussen S, Bogaerts A. Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations. Journal of CO2 Utilization, 2018, 24: 386–397

[25]

Leins M, Walker M, Schulz A, Schumacher U, Stroth U. Spectroscopic investigation of a microwave-generated atmospheric pressure plasma torch. Contributions to Plasma Physics, 2012, 52(7): 615–628

[26]

PozarD M. Microwave Engineering. New Jersey: Wiley, 2011

[27]

Kiss B P, Tóth C E, Slezsák I, Kaptay G, Dobó Z. Experimental study on microwave-induced plasma-assisted premixed methane-air combustion. IEEE Transactions on Plasma Science, 2024, 52(2): 319–327

[28]

Yang L, Tan X, Wan X, Chen L, Jin D, Qian M, Li G. Stark broadening for diagnostics of the electron density in non-equilibrium plasma utilizing isotope hydrogen alpha lines. Journal of Applied Physics, 2014, 115(16): 163106

[29]

de la FuenteJ F. Application of microwave plasma technology to convert CO2 into high value products. Dissertation for the Doctoral Degree. Delft: Delft University of Technology, 2017

[30]

VoigtW. Uber das gesetz der intensitatsverteilung innerhalb der linien eines gasspektrums. 1912

[31]

Konjević N, Ivković M, Sakan N. Hydrogen Balmer lines for low electron number density plasma diagnostics. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 76: 16–26

[32]

Gigosos M A, González M Á, Cardeñoso V. Computer simulated Balmer-α -β and -γ stark line profiles for non-equilibrium plasmas diagnostics. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58(8): 1489–1504

[33]

LeinsM. Development and spectroscopic investigation of a microwave plasma source for the decomposition of waste gases. Dissertation for the Doctoral Degree. Stuttgart: Institut für Plasmaforschung der Universität Stuttgart, 2010

[34]

Park H, Choe W. Parametric study on excitation temperature and electron temperature in low pressure plasmas. Current Applied Physics, 2010, 10(6): 1456–1460

[35]

Thouin J, Benmouffok M, Freton P, Gonzalez J J. Interpretation of temperature measurements by the Boltzmann plot method on spatially integrated plasma oxygen spectral lines. European Physical Journal Applied Physics, 2023, 98: 65

[36]

Hibbert A, Biemont E, Godefroid M, Vaeck N. E1 transitions of astrophysical interest in neutral oxygen. Journal of Physics B: Atomic, Molecular, and Optical Physics, 1991, 24(18): 3943–3958

[37]

Pellerin S, Cormier J M, Richard F, Musiol K, Chapelle J. A spectroscopic diagnostic method using UV OH band spectrum. Journal of Physics D: Applied Physics, 1996, 29(3): 726–739

[38]

de Izarra C. UV OH spectrum used as a molecular pyrometer. Journal of Physics D: Applied Physics, 2000, 33(14): 1697–1704

[39]

Krähling T, Geisler S, Okruss M, Florek S, Franzke J. Spectroscopic measurements of the electron number density, electron temperature and OH(A) rotational distribution in a liquid electrode dielectric barrier discharge. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 114: 20–26

[40]

Bruggeman P J, Sadeghi N, Schram D C, Linss V. Gas temperature determination from rotational lines in non-equilibrium plasmas: a review. Plasma Sources Science & Technology, 2014, 23(2): 023001

[41]

Dieke G H, Crosswhite H M. The ultraviolet bands of OH fundamental data. Journal of Quantitative Spectroscopy & Radiative Transfer, 1962, 2(2): 97–199

[42]

Chidsey I L, Crosley D R. Calculated rotational transition probabilities for the AX system of OH. Journal of Quantitative Spectroscopy & Radiative Transfer, 1980, 23(2): 187–199

[43]

AtkinsPde Paula JKeelerJ. Atkins’ Physical Chemistry. Oxford: Oxford University Press, 2022

[44]

Lozano A I, García-Abenza A, Blanco Ramos F, Hasan M, Slaughter D S, Weber T, McEachran R P, White R D, Brunger M J, Limão-Vieira P. . Electron and positron scattering cross sections from CO2: a comparative study over a broad energy range (0.1–5000 eV). Journal of Physical Chemistry A, 2022, 126(36): 6032–6046

[45]

Itikawa Y. Cross sections for electron collisions with carbon monoxide. Journal of Physical and Chemical Reference Data, 2015, 44(1): 013105

[46]

Golden D E, Bandel H W, Salerno J A. Absolute total electron scattering cross sections in h2 and d2 for low electron energies. Physical Review, 1966, 146(1): 40–42

[47]

Naghma R, Vinodkumar M, Antony B. Total cross sections for O2 and S2 by electron impact. Radiation Physics and Chemistry, 2014, 97: 6–11

[48]

DinklageAKlinger TMarxGSchweikhardL. Plasma Physics. Berlin: Springer Berlin Heidelberg, 2005

[49]

Janzen G. Plasmatechnik. Berichte der Bunsengesellschaft für physikalische Chemie, 1992, 96(12): 1898–1898

[50]

Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: a review. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(1): 2–30

[51]

LiebermanM ALichtenbergA J. Principles of Plasma Discharges and Materials Processing. Hoboken: Wiley, 2005

[52]

BarinIPlatzki G. Thermochemical Data of Pure Substances. 3rd ed. Weinheim: VCH Verlagsgesellschaft mbH, 1995

[53]

InanU SGołkowski M. Principles of Plasma Physics for Engineers and Scientists. Cambridge: Cambridge University Press, 2011

[54]

Yubero C, García M C, Calzada M D. On the use of the Hα spectral line to determine the electron density in a microwave (2.45GHz) plasma torch at atmospheric pressure. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(5): 540–544

[55]

Laux C O, Spence T G, Kruger C H, Zare R N. Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Science & Technology, 2003, 12(2): 125–138

[56]

Zhang Q, Zhang G, Wang L, Wang X, Wang S, Chen Y. Measurement of the electron density in a microwave plasma torch at atmospheric pressure. Applied Physics Letters, 2009, 95(20): 201502

[57]

Tao X, Bai M, Li X, Long H, Shang S, Yin Y, Dai X. CH4–CO2 reforming by plasma—challenges and opportunities. Progress in Energy and Combustion Science, 2011, 37(2): 113–124

[58]

Ricard A, St-Onge L, Malvos H, Gicquel A, Hubert J, Moisan M. Torche à plasma à excitation micro-onde: deux configurations complémentaires. Journal de Physique III, 1995, 5(8): 1269–1285

[59]

Calzada M D, Moisan M, Gamero A, Sola A. Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure. Journal of Applied Physics, 1996, 80(1): 46–55

[60]

Carbone E, D’Isa F, Hecimovic A, Fantz U. Analysis of the C2 (d3Πg−a3Πu) Swan bands as a thermometric probe in CO2 microwave plasmas. Plasma Sources Science & Technology, 2020, 29(5): 055003

[61]

Vialetto L, van de Steeg A W, Viegas P, Longo S, van Rooij G J, van de Sanden M C M, van Dijk J, Diomede P. Charged particle kinetics and gas heating in CO2 microwave plasma contraction: comparisons of simulations and experiments. Plasma Sources Science & Technology, 2022, 31(5): 055005

[62]

Wolf A J, Righart T W H, Peeters F J J, Bongers W A, van de Sanden M C M. Implications of thermo-chemical instability on the contracted modes in CO2 microwave plasmas. Plasma Sources Science & Technology, 2020, 29(2): 025005

[63]

Wolf A J, Righart T W H, Peeters F J J, Groen P W C, van de Sanden M C M, Bongers W A. Characterization of CO2 microwave plasma based on the phenomenon of skin-depth-limited contraction. Plasma Sources Science & Technology, 2019, 28(11): 115022

[64]

Chen J, Lv Z, Zhang X, Xu T, Cheng Y. Temperature control of quartz-glass melting areas in laser additive manufacturing. Micromachines, 2024, 16(1): 29

AI Summary AI Mindmap
PDF (2964KB)

Supplementary files

FCE-25017-OF-KBP_suppl_1

506

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/