Unveiling lightweight and high impact tough polypropylene foams through compatibilized in situ fibrillation integrated chemical foam injection molding
Jing Jiang , Caiyi Jia , Suyu Yang , Zhongxing Li , Lian Yang , Xiaofeng Wang , Changwei Zhu , Qian Li
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (6) : 54
Unveiling lightweight and high impact tough polypropylene foams through compatibilized in situ fibrillation integrated chemical foam injection molding
Lightweight and robust polypropylene foams are essential for resource efficiency; however, the poor foaming ability of polypropylene remains a significant challenge in developing high-performance foams. This study proposes a scalable and cost-effective strategy that integrates in situ fibrillation reinforcement with chemical foam injection molding. Nanofibrillar polypropylene/polyamide 6 composites were fabricated via twin-screw compounding and melt spinning. For the first time, polyamide 6 nanofibrils were observed to exhibit selective dispersion with distinct morphologies in the skin and core layers of in situ fibrillation injection-molded samples. The incorporation of maleic anhydride-grafted polypropylene induced a 70% reduction in polyamide 6 nanofibril diameter. Rheological and crystallization analyses demonstrated that polyamide 6 fibrils significantly enhance polypropylene viscoelasticity and crystal nucleation rate, thereby improving foamability. Compared to polypropylene foam, in situ fibrillation composite foam exhibited a refined and homogeneous cellular structure, with a cell size of 61 μm and a cell density of 5.8 × 105 cells·cm–3 in the core layer, alongside elongated cells in the skin layer. The synergistic effects of polyamide 6 nanofibrils and maleic anhydride-grafted polypropylene resulted in a 15.4% weight reduction and 100% enhancement in impact strength compared to polypropylene foam. This work provides new insights into developing lightweight, high-performance industrial porous materials.
polypropylene / in-situ fibrillation / chemical foam injection molding / fibril morphology / cellular structure / impact strength
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
Higher Education Press
/
| 〈 |
|
〉 |