In situ thermally rearranged poly(benzoxazole-co-imide) membranes on α-alumina substrates for He/CH4 and He/N2 separation

Lu Wang , Zhiqiang Li , Yangdong He , Chenzhi Huang , Shijin Chen , Xianyun Zhou , Xiaosong Fan , Wenjing Xie , Xuerui Wang

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 94

PDF (2257KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 94 DOI: 10.1007/s11705-025-2552-3
RESEARCH ARTICLE

In situ thermally rearranged poly(benzoxazole-co-imide) membranes on α-alumina substrates for He/CH4 and He/N2 separation

Author information +
History +
PDF (2257KB)

Abstract

Membrane gas separation is an energy-efficient approach to extract helium from natural gas. However, the limited separation performance shown as Robeson’s upper bound has hindered the techno-economic feasibility. This study introduces an advanced copolyimide membrane engineered for He extraction from natural gas. The membranes were facilely achieved by dip-coating the α-alumina substrates in the copolyimide solution followed by in situ thermal rearrangement. In addition to the rigid 5-amino-2-(4-aminobenzene)benzimidazole segments, the active ortho-hydroxyl groups were converted to benzoxazole rings, contributing to extra micropores. The membrane showed an improved mixture selectivity of 120 and He permeance of 23.5 GPU, far surpassing the performance of benchmark membranes for helium separation over CH4. The membrane also demonstrated long-term stability as evidenced by the continuous operation over 250 h. Additionally, the membrane exhibited resistance to impurities such as CO2 and C2H6, enduring the asymmetric membranes promising for practical helium extraction from natural gas.

Graphical abstract

Keywords

Helium extraction / membrane / gas separation / thermal rearrangement / natural gas

Cite this article

Download citation ▾
Lu Wang, Zhiqiang Li, Yangdong He, Chenzhi Huang, Shijin Chen, Xianyun Zhou, Xiaosong Fan, Wenjing Xie, Xuerui Wang. In situ thermally rearranged poly(benzoxazole-co-imide) membranes on α-alumina substrates for He/CH4 and He/N2 separation. Front. Chem. Sci. Eng., 2025, 19(10): 94 DOI:10.1007/s11705-025-2552-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nuttall W J , Clarke R H , Glowacki B A . Stop squandering helium. Nature, 2012, 485(7400): 573–575

[2]

Ball P . Helium’s deep mystery. Nature Materials, 2019, 18(2): 96

[3]

Hamedi H , Karimi I A , Gundersen T . A novel cost-effective silica membrane-based process for helium extraction from natural gas. Computers & Chemical Engineering, 2019, 121: 633–638

[4]

Alders M , Winterhalder D , Wessling M . Helium recovery using membrane processes. Separation and Purification Technology, 2017, 189: 433–440

[5]

Wang L , Li Y , Pu L , Yang M , Lu H , Gu X , Wang X . Copolyimide membranes fabricated by nonsolvent-induced phase separation for helium extraction from natural gas. Separation and Purification Technology, 2023, 313: 123455

[6]

Dai Z , Deng J , He X , Scholes C A , Jiang X , Wang B , Guo H , Ma Y , Deng L . Helium separation using membrane technology: recent advances and perspectives. Separation and Purification Technology, 2021, 274: 119044

[7]

Gantzel P K , Merten U . Gas separations with high-flux cellulose acetate membranes. Industrial & Engineering Chemistry Process Design and Development, 1970, 9(2): 331–332

[8]

McHattie J S , Koros W J , Paul D R . Gas transport properties of polysulphones: 3. Comparison of tetramethyl-substituted bisphenols. Polymer, 1992, 33(8): 1701–1711

[9]

Li J F , Huang J , Zhan P , Xing G H , Xie Z H , Chai L H . Experimental study on separating He/CH4 with polyimide hollow fiber membrane. Chemical Engineering of Oil & Gas, 2018, 47: 26–30

[10]

Favvas E P , Heliopoulos N S , Papageorgiou S K , Mitropoulos A C , Kapantaidakis G C , Kanellopoulos N K . Helium and hydrogen selective carbon hollow fiber membranes: the effect of pyrolysis isothermal time. Separation and Purification Technology, 2015, 142: 176–181

[11]

Akbari A , Karimi-Sabet J , Ghoreishi S M . Matrimid® 5218 based mixed matrix membranes containing metal organic frameworks (MOFs) for helium separation. Chemical Engineering and Processing, 2020, 148: 107804

[12]

Zhuang Y , Seong J G , Lee W H , Do Y S , Lee M J , Wang G , Guiver M D , Lee Y M . Mechanically tough, thermally rearranged (TR) random/block poly(benzoxazole-co-imide) gas separation membranes. Macromolecules, 2015, 48(15): 5286–5299

[13]

Liemberger W , Miltner M , Harasek M . Efficient extraction of helium from natural gas by using hydrogen extraction technology. Chemical Engineering Transactions, 2018, 70: 865–870

[14]

Díez B , Cuadrado P , Marcos-Fernández Á , Prádanos P , Tena A , Palacio L , Lozano Á E , Hernández A . Helium recovery by membrane gas separation using poly(o-acyloxyamide)s. Industrial & Engineering Chemistry Research, 2014, 53(32): 12809–12818

[15]

Wang X , Shan M , Liu X , Wang M , Doherty C M , Osadchii D , Kapteijn F . High-performance polybenzimidazole membranes for helium extraction from natural gas. ACS Applied Materials & Interfaces, 2019, 11(22): 20098–20103

[16]

Han S H , Misdan N , Kim S , Doherty C M , Hill A J , Lee Y M . Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors. Macromolecules, 2010, 43(18): 7657–7667

[17]

Wang L , Li Y , Zhang P , Chen X , Nian P , Wei Y , Lu H , Gu X , Wang X . Thermally rearranged poly(benzoxazole-co-imide) composite membranes on α-Al2O3 support for helium extraction from natural gas. Journal of Membrane Science, 2022, 657: 120614

[18]

Jo H J , Soo C Y , Dong G , Do Y S , Wang H H , Lee M J , Quay J R , Murphy M K , Lee Y M . Thermally rearranged poly(benzoxazole-co-imide) membranes with superior mechanical strength for gas separation obtained by tuning chain rigidity. Macromolecules, 2015, 48(7): 2194–2202

[19]

Gumma S , Talu O . Gibbs dividing surface and helium adsorption. Adsorption, 2003, 9(1): 17–28

[20]

Hamm J B S , Ambrosi A , Pollo L D , Marcilio N R , Tessaro I C . Thin polymer layer-covered porous alumina tubular membranes prepared via a dip-coating/phase-inversion process. Materials Chemistry and Physics, 2021, 265: 124511

[21]

Peinemann K V , Abetz V , Simon P F . Asymmetric superstructure formed in a block copolymer via phase separation. Nature Materials, 2007, 6(12): 992–996

[22]

Haase M F , Jeon H , Hough N , Kim J H , Stebe K J , Lee D . Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation. Nature Communications, 2017, 8(1): 1234

[23]

Zhang F , Fan J B , Wang S . Interfacial polymerization: from chemistry to functional materials. Angewandte Chemie International Edition, 2020, 59(49): 21840–21856

[24]

Raaijmakers M J T , Benes N E . Current trends in interfacial polymerization chemistry. Progress in Polymer Science, 2016, 63: 86–142

[25]

Yu H J , An H , Shin J H , Brunetti A , Lee J S . A new dip-coating approach for plasticization-resistant polyimide hollow fiber membranes: in situ thermal imidization and cross-linking of polyamic acid. Chemical Engineering Journal, 2023, 473: 145378–145378

[26]

Kaur H , Bulasara V K , Gupta R K . Influence of pH and temperature of dip-coating solution on the properties of cellulose acetate-ceramic composite membrane for ultrafiltration. Carbohydrate Polymers, 2018, 195: 613–621

[27]

Choi S H , Sultan M M B , Alsuwailem A A , Zuabi S M . Preparation and characterization of multilayer thin-film composite hollow fiber membranes for helium extraction from its mixtures. Separation and Purification Technology, 2019, 222: 152–161

[28]

Li Y , Shen J , Guan K , Liu G , Zhou H , Jin W . PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation. Journal of Membrane Science, 2016, 510: 338–347

[29]

Liu S , Liu G , Wei W , Xiangli F , Jin W . Ceramic supported PDMS and PEGDA composite membranes for CO2 separation. Chinese Journal of Chemical Engineering, 2013, 21(4): 348–356

[30]

Wu A X , Drayton J A , Rodriguez K M , Qian Q , Lin S , Smith Z P . Influence of aliphatic and aromatic fluorine groups on gas permeability and morphology of fluorinated polyimide films. Macromolecules, 2020, 53(13): 5085–5095

[31]

Zhou T , Shi M , Chen L , Gong C , Zhang P , Xie J , Wang X , Gu X . Fluorine-free synthesis of all-silica STT zeolite membranes for H2/CH4 separation. Chemical Engineering Journal, 2022, 433: 133567

[32]

Aguilar-Lugo C , Álvarez C , Lee Y M , de la Campa J G , Lozano Á E . Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from ortho-substituted precursor copolyimides. Macromolecules, 2018, 51: 1605–1619

[33]

Yeong Y F , Wang H , Pramoda K P , Chung T S . Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties. Journal of Membrane Science, 2012, 397–398: 51–65

[34]

Bawn C E H . Crystals, liquids and glasses. Nature, 1968, 220(5164): 309–309

[35]

Bondi A . van der Waals volumes and radii. Journal of Physical Chemistry, 1964, 68(3): 441–451

[36]

Wu A X , Lin S , Mizrahi Rodriguez K , Benedetti F M , Joo T , Grosz A F , Storme K R , Roy N , Syar D , Smith Z P . Revisiting group contribution theory for estimating fractional free volume of microporous polymer membranes. Journal of Membrane Science, 2021, 636: 119526

[37]

Gan F , Dong J , Zheng S , Zhao X , Zhang Q . Constructing gas molecule transport channels in thermally rearranged multiblock poly(benzoxazole-co-imide) membranes for effective CO2/CH4 separation. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9669–9679

[38]

Park H B , Jung C H , Lee Y M , Hill A J , Pas S J , Mudie S T , Van Wagner E , Freeman B D , Cookson D J . Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318(5848): 254–258

[39]

Scholes C A , Ribeiro C P , Kentish S E , Freeman B D . Thermal rearranged poly(benzoxazole-co-imide) membranes for CO2 separation. Journal of Membrane Science, 2014, 450: 72–80

[40]

Kong J , Liu J , Jia P , Qi N , Chen Z , Xu S , Li N . Synergistic effect of thermal crosslinking and thermal rearrangement on free volume and gas separation properties of 6FDA based polyimide membranes studied by positron annihilation. Journal of Membrane Science, 2022, 645: 120163

[41]

Biswal B P , Bhaskar A , Banerjee R , Kharul U K . Selective interfacial synthesis of metal-organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation. Nanoscale, 2015, 7(16): 7291–7298

[42]

Pang J , Yang W , Cai X , He F , Qiao C , Yao J , Zhang C . Study on the thermal imidization process of the PI fibers containing BIA monomers. Polymer, 2024, 301: 127064

[43]

Zhuang Y , Liu X , Gu Y . Molecular packing and properties of poly(benzoxazole-benzimidazole-imide) copolymers. Polymer Chemistry, 2012, 3(6): 1517

[44]

Scholes C A , Ghosh U . Helium separation through polymeric membranes: selectivity targets. Journal of Membrane Science, 2016, 520: 221–230

[45]

Branken D J , Krieg H M , le Roux J P , Lachmann G . Separation of NF3 and CF4 using amorphous glassy perfluoropolymer Teflon AF and Hyflon AD60 membranes. Journal of Membrane Science, 2014, 462: 75–87

[46]

Han Y , Ding F , Hao C , Lv S , Wang X . The oil-gas separation characteristics of ceramic/Teflon AF2400 composite membrane. Separation and Purification Technology, 2012, 88: 19–23

[47]

Liu S , Ma L C , Chen C H , Chen C , Lin Y S . Highly gas permeable, ultrathin Teflon AF2400/γ-alumina composite hollow fiber membranes for dissolved gas analysis. Journal of Membrane Science, 2017, 540: 243–250

[48]

Ma L C , Chen C , Chen C H , Tung K L , Lin J Y S . Gas transport properties of teflon AF2400/ceramic composite hollow fiber membranes in dissolved-gas-in-oil extraction. Industrial & Engineering Chemistry Research, 2020, 59(12): 5392–5401

[49]

Jansen J C , Friess K , Drioli E . Organic vapour transport in glassy perfluoropolymer membranes: a simple semi-quantitative approach to analyze clustering phenomena by time lag measurements. Journal of Membrane Science, 2011, 367(1-2): 141–151

[50]

Kumbharkar S C , Kharul U K . Investigation of gas permeation properties of systematically modified polybenzimidazoles by N-substitution. Journal of Membrane Science, 2010, 357(1-2): 134–142

[51]

Kumbharkar S C , Kharul U K . New N-substituted ABPBI: synthesis and evaluation of gas permeation properties. Journal of Membrane Science, 2010, 360(1-2): 418–425

[52]

Choi S H , Qahtani M S , Qasem E A . Multilayer thin-film composite membranes for helium enrichment. Journal of Membrane Science, 2018, 553: 180–188

[53]

Smith Z P , Tiwari R R , Dose M E , Gleason K L , Murphy T M , Sanders D F , Gunawan G , Robeson L M , Paul D R , Freeman B D . Influence of diffusivity and sorption on helium and hydrogen separations in hydrocarbon, silicon, and fluorocarbon-based polymers. Macromolecules, 2014, 47(9): 3170–3184

[54]

Zhang P , Gong C , Zhou T , Du P , Song J , Shi M , Wang X , Gu X . Helium extraction from natural gas using DD3R zeolite membranes. Chinese Journal of Chemical Engineering, 2021, 49: 122–129

[55]

Gong C , Peng X , Zhu M , Zhou T , You L , Ren S , Wang X , Gu X . Synthesis and performance of STT zeolite membranes for He/N2 and He/CH4 separation. Separation and Purification Technology, 2022, 301: 121927

[56]

Kim J H , Koros W J , Paul D R . Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part I. Transport properties. Polymer, 2006, 47(9): 3094–3103

[57]

Huang Y , Wang X , Paul D . Physical aging of thin glassy polymer films: free volume interpretation. Journal of Membrane Science, 2006, 277(1-2): 219–229

[58]

Sunarso J , Hashim S S , Lin Y S , Liu S M . Membranes for helium recovery: an overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176: 335–383

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2257KB)

Supplementary files

FCE-25009-OF-WL_suppl_1

432

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/