Recent progress of green hydrogen production technology

Yingchun Niu , Xi Zeng , Junjun Xia , Liang Wang , Yao Liu , Zhuang Wang , Mengying Li , Kairan Chen , Wenjun Zhong , Quan Xu

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 93

PDF (16708KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 93 DOI: 10.1007/s11705-025-2551-4
REVIEW ARTICLE

Recent progress of green hydrogen production technology

Author information +
History +
PDF (16708KB)

Abstract

Overuse of fossil fuels led to energy crises and pollution. Thus, alternative energy sources are needed. Hydrogen, with its clean and high-density traits, is seen as a future energy carrier. Producing hydrogen from electricity can store renewable energy for a sustainable hydrogen economy. While much research on water electrolysis hydrogen production systems exists, comprehensive reviews of engineering applications are scarce. This review sums up progress and improvement strategies of common water electrolysis technologies (alkaline water electrolysis, proton exchange membrane water electrolysis, solid oxide water electrolysis, and anion exchange membrane water electrolysis, etc.), including component and material research and development. It also reviews these technologies by development and maturity, especially their engineering applications, discussing features and prospects. Bottlenecks of different technologies are compared and analyzed, and future directions are summarized. The aim is to link academic material research with industrial manufacturing.

Graphical abstract

Keywords

water electrolysis hydrogen production applications / alkaline water electrolysis (AWE) / proton exchange membrane water electrolysis (PEMWE) / solid oxide water electrolysis (SOEC) / anion exchange membrane water electrolysis (AEMWE)

Cite this article

Download citation ▾
Yingchun Niu, Xi Zeng, Junjun Xia, Liang Wang, Yao Liu, Zhuang Wang, Mengying Li, Kairan Chen, Wenjun Zhong, Quan Xu. Recent progress of green hydrogen production technology. Front. Chem. Sci. Eng., 2025, 19(10): 93 DOI:10.1007/s11705-025-2551-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang F , Harindintwali J D , Yuan Z , Wang M , Wang F , Li S , Yin Z , Huang L , Fu Y , Li L . . Technologies and perspectives for achieving carbon neutrality. Innovation, 2021, 2(4): 100180

[2]

Nastasi B , Lo Basso G . Hydrogen to link heat and electricity in the transition towards future smart energy systems. Energy, 2016, 110: 5–22

[3]

Kaur M , Pal K . Review on hydrogen storage materials and methods from an electrochemical viewpoint. Journal of Energy Storage, 2019, 23: 234–249

[4]

Ridjan I , Mathiesen B V , Connolly D , Duić N . The feasibility of synthetic fuels in renewable energy systems. Energy, 2013, 57: 76–84

[5]

de Santoli L , Mancini F , Nastasi B , Piergrossi V . Building integrated bioenergy production (BIBP): economic sustainability analysis of Bari airport CHP (combined heat and power) upgrade fueled with bioenergy from short chain. Renew Energy, 2015, 81: 499–508

[6]

Shao Z G , Yi B L . Developing trend and present status of hydrogen energy and fuel cell development. Bulletin of Chinese Academy of Sciences, 2019, 34: 4

[7]

Wang Y H , Wu D Y , Chi J . Status quo and development trend of application technology of hydrogen energy and hydrogen production. Chemical Industry and Engineering Progress, 2001, 20(1): 3

[8]

Liu Y , Li R , Xia J , Shu C , Liu J , Yan S , Jin R , Chen H , Teng L , Si Y . . Recent progress on understanding of micro- and electronic-structures to synergistically enable the activity and stability for oxygen reduction. Nano Research, 2025, 18(3): 94907244

[9]

Qi R , Bu H , Yang X , Song M , Ma J , Gao H . Multifunctional molybdenum-tuning porous nickel-cobalt bimetallic phosphide nanoarrays for efficient water splitting and energy-saving hydrogen production. Journal of Colloid and Interface Science, 2024, 653: 1246–1255

[10]

Wang J , Gao Y , Kong H , Kim J , Choi S , Ciucci F , Hao Y , Yang S , Shao Z , Lim J . Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49(24): 9154–9196

[11]

Khalid F , Dincer I , Rosen M A . Analysis and assessment of an integrated hydrogen energy system. International Journal of Hydrogen Energy, 2016, 41(19): 7960–7967

[12]

Chi J , Yu H M . Water electrolysis based on renewable energy for hydrogenproduction. Chinese Journal of Catalysis, 2018, 39(3): 390–394

[13]

Gao X , Chen Y , Wang Y J , Zhao L , Zhao X , Du J , Wu H , Chen A . Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Letters, 2024, 16(1): 237

[14]

National DevelopmentReform CommissionN E A. Medium- and Long-term Plan for the Development of the Hydrogen Energy Industry (2021–2035). 2022

[15]

Ding L , Zeng S , Zhang W , Guo C , Chen X , Peng B , Lv Z , Zhou H , Xu Q . Nitrogen-doped Ti3C2 MXene quantum dots/1D CdS nanorod heterostructure photocatalyst of highly efficient hydrogen evolution. ACS Applied Energy Materials, 2022, 5(9): 11540–11552

[16]

Guan D , Wang B , Zhang J , Shi R , Jiao K , Li L , Wang Y , Xie B , Zhang Q , Yu J . . Hydrogen society: from present to future. Energy & Environmental Science, 2023, 16(11): 4926–4943

[17]

Lin Q L , Qi H X , Huang J J , Zhang B C , Chen Z , Xiao Z K . Alkaline-proton exchange membrane water electrolysis complex hydrogen production leveling cost analysis. Energy Storage Science and Technology, 2023, 12(11): 3572–3580

[18]

Wang N , Song S , Wu W , Deng Z , Tang C . Bridging laboratory electrocatalysts with industrially relevant alkaline water electrolyzers. Advanced Energy Materials, 2024, 14(16): 2303451

[19]

Cheng W J , Zhao L , Xi H , Hong X J , Wang Y D , Niu K , Yang B , Zhu B S , Wu Q . Study on hydrogen energy policy and hydrogen production from electrolyzed water under the “14th Five-Year” plan. Thermal Power Generation, 2022, 51(11): 181–188

[20]

Bai K J , Li P X , Qiao D W . Status and prospect of water electrolysis hydrogen production technology. Modern Chemical Industry, 2023, 43(S01): 63–65

[21]

Duan C , Huang J , Sullivan N , O’hayre R . Proton-conducting oxides for energy conversion and storage. Applied Physics Reviews, 2020, 7(1): 011314

[22]

Naqvi S A H , Taner T , Ozkaymak M , Ali H M . Hydrogen production through alkaline electrolyzers: a techno-economic and enviro-economic analysis. Chemical Engineering & Technology, 2023, 46(3): 474–481

[23]

Zhou B , Gao R , Zou J J , Yang H . Surface design strategy of catalysts for water electrolysis. Small, 2022, 18(27): 2202336

[24]

Cassol G S , Shang C , An A K , Khanzada N K , Ciucci F , Manzotti A , Westerhoff P , Song Y , Ling L . Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system. Nature Communications, 2024, 15(1): 2617

[25]

Salehmin M N I , Husaini T , Goh J , Sulong A B . High-pressure PEM water electrolyser: a review on challenges and mitigation strategies towards green and low-cost hydrogen production. Energy Conversion and Management, 2022, 268: 115985

[26]

Hu K , Fang J , Ai X , Huang D , Zhong Z , Yang X , Wang L . Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling. Applied Energy, 2022, 312: 118788

[27]

Olbrich W , Kadyk T , Sauter U , Eikerling M , Gostick J . Structure and conductivity of ionomer in PEM fuel cell catalyst layers: a model-based analysis. Scientific Reports, 2023, 13(1): 14127

[28]

Wan L , Xu Z , Xu Q , Pang M , Lin D , Liu J , Wang B . Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis. Energy & Environmental Science, 2023, 16(4): 1384–1430

[29]

Henkensmeier D , Najibah M , Harms C , Žitka J , Hnát J , Bouzek K . Overview: state-of-the art commercial membranes for anion exchange membrane water electrolysis. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 024001

[30]

Santoro C , Lavacchi A , Mustarelli P , Noto V D , Elbaz L , Dekel D R , Jaouen F . What is next in anion-exchange membrane water electrolyzers? Bottlenecks, benefits, and future. ChemSusChem, 2022, 15(8): e202200027

[31]

Mulk W U , Aziz A R A , Ismael M A , Ghoto A A , Ali S A , Younas M , Gallucci F . Electrochemical hydrogen production through anion exchange membrane water electrolysis (AEMWE): recent progress and associated challenges in hydrogen production. International Journal of Hydrogen Energy, 2024, 94: 1174–1211

[32]

Li D , Motz A R , Bae C , Fujimoto C , Yang G , Zhang F Y , Ayers K E , Kim Y S . Durability of anion exchange membrane water electrolyzers. Energy & Environmental Science, 2021, 14(6): 3393–3419

[33]

Ito H , Kawaguchi N , Someya S , Munakata T . Pressurized operation of anion exchange membrane water electrolysis. Electrochim Acta, 2019, 297: 188–196

[34]

Lahrichi A , El Issmaeli Y , Kalanur S S , Pollet B G . Advancements, strategies, and prospects of solid oxide electrolysis cells (SOECs): towards enhanced performance and large-scale sustainable hydrogen production. Journal of Energy Chemistry, 2024, 94: 688–715

[35]

Jang D , Kim J , Kim D , Han W B , Kang S . Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Conversion and Management, 2022, 258: 115499

[36]

Guo L M , Wan X , Liu Q T , Shang J , Yu R , Shui J . Critical role of carbon support in metal nanoaggregate facilitating Fe-N-C catalyst for PEM fuel cell application. Journal of Energy Chemistry, 2024, 97: 669–676

[37]

Emam A S , Hamdan M O , Abu-Nabah B A , Elnajja E . A review on recent trends, challenges, and innovations in alkaline water electrolysis. International Journal of Hydrogen Energy, 2024, 64: 599–625

[38]

Liu L , Wang J , Ren Z , Wang F , Wang T , Guo H . Ultrathin reinforced composite separator for alkaline water electrolysis: comprehensive performance evaluation. International Journal of Hydrogen Energy, 2023, 48(62): 23885–23893

[39]

Vermeiren P , Moreels J P , Claes A , Beckers H . Electrode diaphragm electrode assembly for alkaline water electrolysers. International Journal of Hydrogen Energy, 2009, 34(23): 9305–9315

[40]

Kuleshov N V , Kuleshov V N , Dovbysh S A , Grigoriev S A , Kurochkin S V , Millet P . Development and performances of a 0.5 kW high-pressure alkaline water electrolyser. International Journal of Hydrogen Energy, 2019, 44(56): 29441–29449

[41]

Rosa V M , Santos M B F , Da Silva E P . New materials for water electrolysis diaphragms. International Journal of Hydrogen Energy, 1995, 20(9): 697–700

[42]

Kerres J , Eigenberger G , Reichle S , Schramm V , Hetzel K , Schnurnberger W , Seybold I . Advanced alkaline electrolysis with porous polymeric diaphragms. Desalination, 1996, 104(1): 47–57

[43]

Lee J W , Lee J H , Lee C , Cho H S , Kim M , Kim S K , Joo J H , Cho W C , Kim C H . Cellulose nanocrystals-blended zirconia/polysulfone composite separator for alkaline electrolyzer at low electrolyte contents. Chemical Engineering Journal, 2022, 428: 131149

[44]

Lee J W , Lee C , Lee J H , Kim S K , Cho H S , Kim M , Cho W C , Joo J H , Kim C H . Cerium oxide-polysulfone composite separator for an advanced alkaline electrolyzer. Polymers, 2020, 12(12): 2821

[45]

Xu L , Li W , You Y , Zhang S , Zhao Y . Polysulfone and zirconia composite separators for alkaline water electrolysis. Frontiers of Chemical Science and Engineering, 2013, 7(2): 154–161

[46]

Hu X , Hu B , Niu C , Yao J , Liu M , Tao H , Huang Y , Kang S , Geng K , Li N . An operationally broadened alkaline water electrolyser enabled by highly stable poly(oxindole biphenylene) ion-solvating membranes. Nature Energy, 2024, 9(4): 401–410

[47]

Faid A Y , Xie L , Barnett A O , Selang F , Kirk D , Sunde S . Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis. International Journal of Hydrogen Energy, 2020, 45(53): 28272–28284

[48]

Gao Y , Zhou X , Zhang M , Lyu L , Li Z . Polyphenylene sulfide-based membranes: recent progress and future perspectives. Membranes, 2022, 12(10): 924

[49]

Wang Y , Huo X , Peng M , Zhang M , Liu X , Zhang J , Li W . Superhydrophilic polyphenylene sulfide membrane with enhanced ion transfer for alkaline water electrolysis. International Journal of Hydrogen Energy, 2024, 65: 872–880

[50]

Bolton W . Nyquist Diagrams. 2nd ed. London: Newnes, 2004, 282–289

[51]

Wan L , Xu Z , Wang B . Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis. Chemical Engineering Journal, 2021, 426: 131340

[52]

Hu B , Liu M , Chen Q , Zhou X , Li H , He M , Li Z , Zhang R , Huang Y , Sherazi T A . . Porous polybenzimidazole membranes doped with KOH for alkaline water electrolysis. Journal of Membrane Science, 2024, 694: 122388

[53]

Ferrara A , Polverino P , Pianese C . Analytical calculation of electrolyte water content of a proton exchange membrane fuel cell for on-board modelling applications. Journal of Power Sources, 2018, 390: 197–207

[54]

Alawajji R A , Kannarpady G K , Biris A S . Fabrication of transparent superhydrophobic polytetrafluoroethylene coating. Applied Surface Science, 2018, 444: 208–215

[55]

Mo S , Du L , Huang Z , Chen J , Zhou Y , Wu P , Meng L , Wang N , Xing L , Zhao M . . Recent advances on PEM fuel cells: from key materials to membrane electrode assembly. Electrochemical Energy Reviews, 2023, 6: 28

[56]

Vincent I , Bessarabov D . Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renewable and Sustainable Energy Reviews, 2018, 81: 1690–1704

[57]

Ramani V , Swier S , Shaw M T , Weiss R A , Kunz H R , Fenton J M . Membranes and MEAs based on sulfonated poly(ether ketone ketone) and heteropolyacids for polymer electrolyte fuel cells. Journal of The Electrochemical Society, 2008, 155: B532

[58]

Strong A , Britton B , Edwards D , Peckham T J , Lee H F , Huang W Y , Holdcroft S . Alcohol-soluble, sulfonated poly(arylene ether)s: investigation of hydrocarbon ionomers for proton exchange membrane fuel cell catalyst layers. Journal of The Electrochemical Society, 2015, 162: F513

[59]

Skalski T J G , Adamski M , Britton B , Schibli E M , Peckham T J , Weissbach T , Moshisuki T , Lyonnard S , Frisken B J , Holdcroft S . Sulfophenylated terphenylene copolymer membranes and Ionomers. Chemistry Sustainability Energy Materials, 2018, 11(23): 4033–4043

[60]

Balogun E , Adamski M , Holdcroft S . Communication: non-fluorous, hydrocarbon PEMFCs, and generating > 1 W cm−2 power. Journal of The Electrochemical Society, 2020, 167: 084502

[61]

Hwang M , Nixon K , Sun R , Willis C , Elabd Y A . Sulfonated pentablock terpolymers as membranes and ionomers in hydrogen fuel cells. Journal of Membrane Science, 2021, 633: 119330

[62]

Nguyen H T T , Lombeck F , Schwarz C , Heizmann P A , Adamski M , Lee H F , Britton B , Holdcroft S , Vierrath S , Breitwieser M . Hydrocarbon-based pemionTM proton exchange membrane fuel cells with state-of-the-art performance. Sustainable Energy Fuels, 2021, 5: 3687–3699

[63]

Li T , Shen J , Chen G , Guo S , Xie G . Performance comparison of proton exchange membrane fuel cells with Nafion and aquivion perfluorosulfonic acids with different equivalent weights as the electrode binders. ACS Omega, 2020, 5(28): 17628–17636

[64]

Nguyen H , Klose C , Metzler L , Vierrath S , Breitwieser M . Fully hydrocarbon membrane electrode assemblies for proton exchange membrane fuel cells and electrolyzers: an engineering perspective. Advanced Energy Materials, 2022, 12(12): 2103559

[65]

Ren P , Pei P , Li Y , Wu Z , Chen D , Huang S . Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Progress in Energy and Combustion Science, 2020, 80: 100859

[66]

Kongkanand A , Mathias M F . The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. The Journal of Physical Chemistry Letters, 2016, 7(7): 1127–1137

[67]

Qiu D , Peng L , Lai X , Ni M , Lehnert W . Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell. Renewable and Sustainable Energy Reviews, 2019, 113: 109289

[68]

Afshari E , Khodabakhsh S , Jahantigh N , Toghyani S . Performance assessment of gas crossover phenomenon and water transport mechanism in high pressure PEM electrolyzer. International Journal of Hydrogen Energy, 2021, 46(19): 11029–11040

[69]

Trinke P , Bensmann B , Hanke-Rauschenbach R . Current density effect on hydrogen permeation in PEM water electrolyzers. International Journal of Hydrogen Energy, 2017, 42(21): 14355–14366

[70]

Haug P , Koj M , Turek T . Influence of process conditions on gas purity in alkaline water electrolysis. International Journal of Hydrogen Energy, 2017, 42(15): 9406–9418

[71]

Fan H , Yang Q Q , Fang S R , Xu Y N , Lv Y , Lin H Y , Lin M Y , Liu J K , Wu Y X , Yuan H Y . . Operando stable palladium hydride nanoclusters anchored on tungsten carbides mediate reverse hydrogen spillover for hydrogen evolution. Angewandte Chemie-International Edition, 2024, 63(51): e202412080

[72]

Xie Z B , Chen H , Wang X Y , Wu Y A , Wang Z , Jana S , Zou Y , Zhao X , Liang X , Zou X . Honeycomb-structured IrOx foam platelets as the building block of anode catalyst layer in PEM water electrolyzer. Angewandte Chemie-International Edition, 2025, 64(3): e202415032

[73]

Shi W , Shen T , Xing C , Sun K , Yan Q , Niu W , Yang X , Li J , Wei C , Wang R . . Ultrastable supported oxygen evolution electrocatalyst formed by ripening-induced embedding. Science, 2025, 387(6735): 791–796

[74]

Feng W , Chang B , Ren Y , Kong D , Tao H B , Zhi L , Khan M A , Aleisa R , Rueping M , Zhang H . Proton exchange membrane water splitting: advances in electrode structure and mass-charge transport optimization. Advanced Materials, 2025, e2416012

[75]

Merle G , Wessling M , Nijmeijer K . Anion exchange membranes for alkaline fuel cells: a review. Journal of Membrane Science, 2011, 377(1–2): 1–35

[76]

Fischer L , Hartmann S S , Maljusch A , Däschlein C , Prymak O , Ulbricht M . The influence of anion-exchange membrane nanostructure onto ion transport: adjusting membrane performance through fabrication conditions. Journal of Membrane Science, 2023, 669: 121306

[77]

Yang G , Hao J , Cheng J , Zhang N , He G , Zhang F , Hao C . Hydroxide ion transfer in anion exchange membrane: a density functional theory study. International Journal of Hydrogen Energy, 2016, 41(16): 6877–6884

[78]

Chen C , Tse Y L S , Lindberg G E , Knight C , Voth G A . Hydroxide solvation and transport in anion exchange membranes. Journal of the American Chemical Society, 2016, 138(3): 991–1000

[79]

Li C , Baek J B . The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy, 2021, 87: 106162

[80]

Zhang X , Cao Y , Zhang M , Wang Y , Tang H , Li N . Olefin metathesis-crosslinked, bulky imidazolium-based anion exchange membranes with excellent base stability and mechanical properties. Journal of Membrane Science, 2020, 598: 117793

[81]

Amel A , Gavish N , Zhu L , Dekel D R , Hickner M A , Ein-Eli Y . Bicarbonate and chloride anion transport in anion exchange membranes. Journal of Membrane Science, 2016, 514: 125–134

[82]

Mohanty A D , Bae C . Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells. Journal of Materials Chemistry A: Mater Energy Sustain, 2014, 2(41): 17314–17320

[83]

Lee W H , Kim Y S , Bae C . Robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes. ACS Macro Letters, 2015, 4(8): 814–818

[84]

Gottesfeld S , Dekel D R , Page M , Bae C , Yan Y , Zelenay P , Kim Y S . Anion exchange membrane fuel cells: current status and remaining challenges. Journal of Power Sources, 2018, 375: 170–184

[85]

Xue J , Zhang J , Liu X , Huang T , Jiang H , Yin Y , Qin Y , Guiver M D . Toward alkaline-stable anion exchange membranes in fuel cells: cycloaliphatic quaternary ammonium-based anion conductors. Electrochemical Energy Reviews, 2022, 5(2): 348–400

[86]

Sun X , Shen W , Liu H , Xi P , Jaroniec M , Zheng Y , Qiao S Z . Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis. Nature Communications, 2024, 15(1): 10351

[87]

Diao S K , Zhao X , Yu Z T , Chen M X , Liu Y , Li S L , Yang T R , Liu J G . Alkaline water electrolyzer key material research progress. Journal of the Chinese Ceramic Society, 2024, 52(6): 1841–1860

[88]

Wang Y , Han Y , Zhao R , Han J , Wang L . Efficient flower-like ZnSe/Cu0.08Zn0.92S photocatalyst for hydrogen production application. Frontiers of Chemical Science and Engineering, 2023, 17(9): 1301–1310

[89]

Xie W F , Li Z H , Shao M F , Wei M . Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting. Frontiers of Chemical Science and Engineering, 2018, 12(3): 537–554

[90]

Qin Y , Guo C , Ou Z , Xu C , Lan Q , Jin R , Liu Y , Niu Y , Xu Q , Si Y . . Regulating single-atom Mn sites by precisely axial pyridinic-nitrogen coordination to stabilize the oxygen reduction. Journal of Energy Chemistry, 2023, 80: 542–552

[91]

Guo L L , Chi J Q , Zhu J W , Cui T , Lai J , Wang L . Dual-doping NiMoO4 with multi-channel structure enable urea-assisted energy-saving H2 production at large current density in alkaline seawater. Applied Catalysis B, 2023, 320: 121977

[92]

Li J , Zhou W H , Xu L L , Yang Y , Qu H , Guo T , Xu B , Zhang S , Zeng H . Revealing the weak Fermi level pinning effect of 2D semiconductor/2D metal contact: a case of monolayer In2Ge2Te6 and its Janus structure In2Ge2Te3Se3. Materials Today Physics, 2022, 26: 100749

[93]

Li J , Hu Y , Huang X , Zhu Y , Wang D . Bimetallic phosphide heterostructure coupled with ultrathin carbon layer boosting overall alkaline water and seawater splitting. Small, 2023, 19(20): 2206533

[94]

Friebel D , Louie M W , Bajdich M , Sanwald K E , Cai Y , Wise A M , Cheng M J , Sokaras D , Weng T C , Alonso-Mori R . . Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. Journal of the American Chemical Society, 2015, 137(3): 1305–1313

[95]

Louie M W , Bell A T . An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. Journal of the American Chemical Society, 2013, 135(33): 12329–12337

[96]

Chen J Y C , Dang L , Liang H , Bi W , Gerken J B , Jin S , Alp E E , Stahl S S . Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mössbauer spectroscopy. Journal of the American Chemical Society, 2015, 137(48): 15090–15093

[97]

Görlin M , Ferreira de Araújo J , Schmies H , Bernsmeier D , Dresp S , Gliech M , Jusys Z , Chernev P , Kraehnert R , Dau H . . Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. Journal of the American Chemical Society, 2017, 139(5): 2070–2082

[98]

Jiang J , Sun F F , Zhou S , Hu W , Zhang H , Dong J , Jiang Z , Zhao J , Li J , Yan W . . Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nature Communications, 2018, 9: 2885

[99]

Liang C W , Zou P C , Nairan A , Zhang Y , Liu J , Liu K , Hu S , Kang F , Fan H J , Yang C . Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy & Environmental Science, 2020, 13(1): 86–95

[100]

Xu Z , Liu Y , Cheng X , Shang Y , Wang Y , Wang J , Li W , He G . A catalyst-coated diaphragm assembly to improve the performance and energy efficiency of alkaline water electrolysers. Communications Engineering, 2025, 4(1): 9

[101]

Liu S , Zhang Z , Dastafkan K , Shen Y , Zhao C , Wang M . Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater. Nature Communications, 2025, 16(1): 773

[102]

Xu C , Guo C , Liu J , Hu B , Dai J , Wang M , Jin R , Luo Z , Li H , Chen C . Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanoparticles coupled with single Fe-N4 sites. Energy Storage Mater, 2022, 51: 149–158

[103]

Boppella R , Tan J , Yun J , Manorama S V , Moon J . Anion-mediated transition metal electrocatalysts for efficient water electrolysis: recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427: 213552

[104]

Hunter B M , Gray H B , Müller A M . Earth-abundant heterogeneous water oxidation catalysts. Chem Rev, 2016, 116(22): 14120–14136

[105]

Herbaut M , Siaj M , Claverie J P . Nanomaterials-based water splitting: how far are we from a sustainable solution. ACS Applied Nano Materials, 2021, 4(2): 907–910

[106]

Shimada H , Yamaguchi T , Kishimoto H , Sumi H , Yamaguchi Y , Nomura K , Fujishiro Y . Nanocomposite electrodes for high current density over 3 A·cm–2 in solid oxide electrolysis cells. Nature Communications, 2019, 10(1): 5432

[107]

Song W , Li M , Wang C , Lu X . Electronic modulation and interface engineering of electrospun nanomaterials-based electrocatalysts toward water splitting. Carbon Energy, 2021, 3(1): 101–128

[108]

Minke C , Suermann M , Bensmann B , Hanke-Rauschenbach R . Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis. International Journal of Hydrogen Energy, 2021, 46(46): 23581–23590

[109]

Lin B , Zhou Y , Xu B , Zhu C , Tang W , Niu Y , Di J , Song P , Zhou J , Luo X . . 2D PtS nanorectangles/g-C3N4 nanosheets with a metal sulfide-support interaction effect for high-efficiency photocatalytic H2 evolution. Materials Horizons, 2021, 8(2): 612–618

[110]

Dong S , Zhang C Y , Yue Z Y , Zhang F , Zhao H , Cheng Q , Wang G , Xu J , Chen C , Zou Z . . Overall design of anode with gradient ordered structure with low iridium loading for proton exchange membrane water electrolysis. Nano Letters, 2022, 22(23): 9434–9440

[111]

Wang D , Lin F , Luo H , Zhou J , Zhang W , Li L , Wei Y , Zhang Q , Gu L , Wang Y . . Ir-O-Mn embedded in porous nanosheets enhances charge transfer in low-iridium PEM electrolyzers. Nature Communications, 2025, 16(1): 181

[112]

Chong L A , Wen J G , Song E R , Yang Z , Bloom I D , Ding W . Synergistic CoIr/Ru composite electrocatalysts impart efficient and durable oxygen evolution catalysis in acid. Advanced Energy Materials, 2023, 13(37): 2302306

[113]

Zhang T , Liu Q , Bao H , Wang M , Wang N , Zhang B , Fan H J . Atomically thin high-entropy oxides via naked metal ion self-assembly for proton exchange membrane electrolysis. Nature Communications, 2025, 16(1): 1037

[114]

Li L , Zhang G , Xu J , He H , Wang B , Yang Z , Yang S . Optimizing the electronic structure of ruthenium oxide by neodymium doping for enhanced acidic oxygen evolution catalysis. Advanced Functional Materials, 2023, 33(10): 2213304

[115]

Qin Q , Wu G , Chen S , Doherty W , Xie K , Wu Y . Perovskite titanate cathode decorated by grown iron nanocatalyst with enhanced electrocatalytic activity for high-temperature steam electrolysis. Electrochim Acta, 2014, 127: 215–227

[116]

Amaya-Dueñas D M , Riegraf M , Nenning A , Opitz A K , Costa R , Friedrich K A . Operational aspects of a perovskite chromite-based fuel electrode in solid oxide electrolysis cells (SOEC). ACS Applied Energy Materials, 2022, 5(7): 8143–8156

[117]

Hou X , Jiang Y , Wei K , Jiang C , Jen T C , Liu X , Ma J , Irvine J T S . Syngas production from CO2 and H2O via solid-oxide electrolyzer cells: fundamentals, materials, degradation, operating conditions, and applications. Chemical Reviews, 2024, 124(8): 5119–5166

[118]

Hjalmarsson P , Sun X , Liu Y L , Chen M . Durability of high performance Ni-yttria stabilized zirconia supported solid oxide electrolysis cells at high current density. Journal of Power Sources, 2014, 262: 316–322

[119]

Léon A , Micero A , Ludwig B , Brisse A . Effect of scaling-up on the performance and degradation of long-term operated electrolyte supported solid oxide cell, stack and module in electrolysis mode. Journal of Power Sources, 2021, 510: 230346

[120]

Fallah Vostakola M , Ozcan H , El-Emam R , Horri B A . Recent advances in high-temperature steam electrolysis with solid oxide electrolysers for green hydrogen production. Energies, 2023, 16(8): 3327

[121]

Sun Z L , Tan X , Gao J H , Hu X H , Ding G J , Xu X L . Development status of key materials for hydrogen production in solid oxide electrolytic cell. Modern Chemical Industry, 2024, 44(12): 83–88

[122]

Zou G , Feng W C , Song Y F , Wang G X . Recent advances in anode materials of solid oxide electrolysis cells. Journal of Electrochemistry, 2023, 29(2): 2215006

[123]

Gondolini A , Mercadelli E , Sanson A . Single step anode-supported solid oxide electrolyzer cell. Journal of the European Ceramic Society, 2015, 35(16): 4617–4621

[124]

Laguna-Bercero M A . Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. Journal of Power Sources, 2012, 203: 4–16

[125]

Lei L , Zhang J , Yuan Z , Liu J , Ni M , Chen F . Progress report on proton conducting solid oxide electrolysis cells. Advanced Functional Materials, 2019, 29(37): 1903805

[126]

Leonard K , Okuyama Y , Takamura Y , Lee Y S , Miyazaki K , Ivanova M E , Meulenberg W A , Matsumoto H . Efficient intermediate-temperature steam electrolysis with Y: SrZrO3-SrCeO3 and Y:BaZrO3-BaCeO3 proton conducting perovskites. Journal of Materials Chemistry A: Mater Energy Sustain, 2018, 6(39): 19113–19124

[127]

Wu R , Xu J , Zhao C L , Su X Z , Zhang X L , Zheng Y R , Yang F Y , Zheng X S , Zhu J F , Luo J . . Dopant triggered atomic configuration activates water splitting to hydrogen. Nature Communications, 2023, 14: 2306

[128]

Li D , Park E J , Zhu W , Shi Q , Zhou Y , Tian H , Lin Y , Serov A , Zulevi B , Baca E D . . Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nature Energy, 2020, 5(5): 378–385

[129]

Yang Y , De La Torre B , Stewart K , Lair L , Phan N L , Das R , Gonzalez D , Lo R C . The scheduling of alkaline water electrolysis for hydrogen production using hybrid energy sources. Energy Conversion and Management, 2022, 257: 115408

[130]

Greg F N , Ibrahim D , Calin Z . Hydrogen Production from Nuclear Energy. London: Springer, 2013, 371–386

[131]

Xie H , Zhao Z , Liu T , Wu Y , Lan C , Jiang W , Zhu L , Wang Y , Yang D , Shao Z . A membrane-based seawater electrolyser for hydrogen generation. Nature, 2022, 612(7941): 673–678

[132]

Shi K , Wan H , Wang K , Fang F , Li S , Wang Y , Lei L , Zhuang L , Xu Z . Self-sustaining alkaline seawater electrolysis via forward osmosis membranes. Green Energy & Environment, 2024, 10(3): 518–527

[133]

Kuang Y , Kenney M J , Meng Y , Hung W H , Liu Y , Huang J E , Prasanna R , Li Y , Li P , Wang L . . Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629

[134]

Ye L , Xie K . High-temperature electrocatalysis and key materials in solid oxide electrolysis cells. Journal of Energy Chemistry, 2021, 54: 736–745

[135]

Pesce A , Hornés A , Núñez M , Morata A , Torrell M , Tarancón A . 3D printing the next generation of enhanced solid oxide fuel and electrolysis cells. Journal of Materials Chemistry A: Mater Energy Sustain, 2020, 8(33): 16926–16932

[136]

Nechache A , Cassir M , Ringuedé A . Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: a review. Journal of Power Sources, 2014, 258: 164–181

[137]

Wua X , Scott K . CuxCo3−xO4 (0 ≤ x < 1) nanoparticles for oxygen evolution in high performance alkaline exchange membranewater electrolysers. Journal of Materials Chemistry, 2011, 21: 12344–12351

[138]

Xiao L , Zhang S , Pan J , Yang C , He M , Zhuang L , Lu J . First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy & Environmental Science,, 2012, 5: 7869–7871

[139]

Ghorui U K , Sivaguru G , Teja U B , Aswathi M , Ramakrishna S , Ghosh S , Dalapati G K , Chakrabortty S . Anion-exchange membrane water electrolyzers for green hydrogen generation: advancement and challenges for industrial application. ACS Applied Energy Materials, 2024, 7(18): 7649–7676

[140]

He Z , Qi M R . Current status and prospects of hydrogen production by PEM electrolysis. Chemical Engineering Design Communications, 2024, 50(11): 129–133

[141]

Xu P . Commercial operation of China Huadian’s first domestic single-stack megawatt-scale PEM electrolytic water-to-hydrogen plant. China Electricity News, 2024,

[142]

Wirkert F J , Roth J , Jagalski S , Neuhaus P , Rost U , Brodmann M . A modular design approach for PEM electrolyser systems with homogeneous operation conditions and highly efficient heat management. International Journal of Hydrogen Energy, 2020, 45(2): 1226–1235

[143]

Ratib M K , Muttaqi K M , Islam M R , Sutanto D , Agalgaonkar A P . Large-scale production of green hydrogen from solar energy in Australia: operation and control of a multi-unit PEM electrolyser system. International Journal of Hydrogen Energy, 2025, 98: 873–886

[144]

Ito H , Maeda T , Nakano A , Takenaka H . Properties of Nafion membranes under PEM water electrolysis conditions. International Journal of Hydrogen Energy, 2011, 36(17): 10527–10540

[145]

Balaji R , Senthil N , Vasudevan S , Ravichandran S , Mohan S , Sozhan G , Madhu S , Kennedy J , Pushpavanam S , Pushpavanam M . Development and performance evaluation of proton exchange membrane (PEM) based hydrogen generator for portable applications. International Journal of Hydrogen Energy, 2011, 36(2): 1399–1403

[146]

Guida D , Minutillo M . Design methodology for a PEM fuel cell power system in a more electrical aircraft. Applied Energy, 2017, 192: 446–456

[147]

Barbir F . PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy, 2005, 78(5): 661–669

[148]

Ni M , Leung M K H , Leung D Y C . Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). International Journal of Hydrogen Energy, 2008, 33(9): 2337–2354

[149]

Cai Q , Adjiman C S , Brandon N P . Optimal control strategies for hydrogen production when coupling solid oxide electrolysers with intermittent renewable energies. Journal of Power Sources, 2014, 268: 212–224

[150]

Du Y Q , Ling H , Zhao L Y , Jiang H , Kong J , Liu P , Zhou T . The development of solid oxide electrolysis cells: critical materials, technologies, and prospects. Journal of Power Sources, 2024, 607: 234608

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (16708KB)

1124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/