Producing “green” methanol from syngas, derived from anaerobic digestion biogas

Huili Zhang , Yibing Kou , Miao Yang , Margot Vander Elst , Jan Baeyens , Yimin Deng

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 92

PDF (3243KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 92 DOI: 10.1007/s11705-025-2549-y
RESEARCH ARTICLE

Producing “green” methanol from syngas, derived from anaerobic digestion biogas

Author information +
History +
PDF (3243KB)

Abstract

An anaerobic digester of sewage sludge or agro-industrial waste produces biogas and ammonia-rich digestate. Three H2-producing processes exist: dry reforming of methane (from biogas), catalytic decomposition of methane (from biogas after CO2 capture), and catalytic decomposition of ammonia (from digestate). Dry reforming of methane offers the best syngas yield at 700 °C and for a 50–50 vol % CH4/CO2 biogas. Catalytic decomposition of methane achieved a H2 yield of 95%. Finally, the digestate was stripped and NH3 was further completely decomposed into H2 and N2, for a complete NH3 conversion at 650 °C. A methanol valorization case study of a wastewater treatment plant of 300000 person equivalents with an anaerobic digester is examined. The methanol production from syngas (H2/CO) and H2 product streams is simulated using Aspen Plus®. This anaerobic digester process will daily generate 4485 m3 CH4, 2415 m3 CO, and 320 kg NH3. The methanol production will be 183 kg·h–1 (1600 t·y–1). The additional H2 from ammonia’s catalytic decomposition (631 m3·d–1) can be valorized with excess biogas in the anaerobic digester-associated combined heat and power unit. Due to a significantly higher ammonia concentration in manure, catalytic decomposition of ammonia will produce more H2 if manure would be co-digested.

Graphical abstract

Keywords

bio-methanol / biogas / catalysis / reforming / syngas / simulation

Cite this article

Download citation ▾
Huili Zhang, Yibing Kou, Miao Yang, Margot Vander Elst, Jan Baeyens, Yimin Deng. Producing “green” methanol from syngas, derived from anaerobic digestion biogas. Front. Chem. Sci. Eng., 2025, 19(10): 92 DOI:10.1007/s11705-025-2549-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang C , Su H , Baeyens J , Tan T . Reviewing the anaerobic digestion of food waste for biogas production. Renewable & Sustainable Energy Reviews, 2014, 38: 383–392

[2]

Yang M , Vander Elst M , Smets I , Zhang H L , Li S , Baeyens J , Deng Y M . Reviewing improved anaerobic digestion by combined pre-treatment of waste-activated sludge (WAS). Sustainability, 2024, 16(15): 19

[3]

JolaosoL AZamanS F. Catalytic ammonia decomposition for hydrogen production: utilization of ammonia in a fuel cell. In: Sustainable Ammonia Production: Green Energy and Technology. Cham: Springer, 2020, 81–105

[4]

Deng Y , Dewil R , Appels L , Van Tulden F , Li S , Yang M , Baeyens J . Hydrogen-enriched natural gas in a decarbonization perspective. Fuel, 2022, 318: 123680

[5]

Shao B , Wang Z Q , Gong X Q , Liu H , Qian F , Hu P , Hu J . Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst. Nature Communications, 2023, 14(1): 996

[6]

Zhao Y X , Zhai R R , Liu S Y , Xu Y , Liu L T . Low carbon economic scheduling of integrated energy system with concentrating solar power and multi-stage hydrogen utilization based on ladder-type carbon trading. International Journal of Green Energy, 2025, 22(4): 722–739

[7]

Deng Y , Li S , Dewil R , Appels L , Yang M , Zhang H , Baeyens J . Water splitting by MnFe2O4/Na2CO3 reversible redox reactions. RSC Advances, 2022, 12(48): 31392–31401

[8]

Eggemann L , Escobar N , Peters R , Burauel P , Stolten D . Life cycle assessment of a small-scale methanol production system: a power-to-fuel strategy for biogas plants. Journal of Cleaner Production, 2020, 271: 122476

[9]

Bayraktar M , Yuksel O , Pamik M . An evaluation of methanol engine utilization regarding economic and upcoming regulatory requirements for a container ship. Sustainable Production and Consumption, 2023, 39: 345–356

[10]

Iaquaniello G , Centi G , Salladini A , Palo E , Perathoner S , Spadaccini L . Waste-to-methanol: process and economics assessment. Bioresource Technology, 2017, 243: 611–619

[11]

Bellotti D , Rivarolo M , Magistri L , Massardo A F . Feasibility study of methanol production plant from hydrogen and captured carbon dioxide. Journal of CO2 Utilization, 2017, 21: 132–138

[12]

Baena-Moreno F M , Pastor-Pérez L , Wang Q , Reina T R . Bio-methane and bio-methanol co-production from biogas: a profitability analysis to explore new sustainable chemical processes. Journal of Cleaner Production, 2020, 265: 121909

[13]

Iaquaniello G , Centi G , Salladini A , Palo E , Perathoner S . Waste to chemicals for a circular economy. Chemistry, 2018, 24(46): 11831–11839

[14]

Borgogna A , Salladini A , Spadacini L , Pitrelli A , Annesini M C , Iaquaniello G . Methanol production from refuse derived fuel: influence of feedstock composition on process yield through gasification analysis. Journal of Cleaner Production, 2019, 235: 1080–1089

[15]

Gautam P . Neha, Upadhyay S N, Dubey S K. Bio-methanol as a renewable fuel from waste biomass: current trends and future perspective. Fuel, 2020, 273: 117783

[16]

Giulia B , Flavio M . Efficient methanol synthesis: perspectives, technologies, and optimization strategies. Progress in Energy and Combustion Science, 2016, 56: 71–105

[17]

Sheldon D . Methanol production: a technical history. Johnson Matthey Technology Review, 2017, 61(3): 172–182

[18]

SepahiSRahimpourM R. Chapter 5 Methanol Production from Syngas. In: Advances in Synthesis Gas: Methods, Technologies and Applications. Amsterdam: Elsevier, 2023, 111–146

[19]

Liu G , Hagelin-Weaver H , Welt B . A concise review of catalytic synthesis of methanol from synthesis gas. Waste, 2023, 1(1): 228–248

[20]

Van-Dal É S , Bouallou C . Design and simulation of a methanol production plant from CO2 hydrogenation. Journal of Cleaner Production, 2013, 57: 38–45

[21]

Mucci S, Mitsos A, Bongartz D. Cost-optimal power-to-methanol: flexible operation or intermediate storage? Journal of Energy Storage, 2023, 72: 108614

[22]

Bisotti F , Fedeli M , Prifti K , Galeazzi A , Dell’Angelo A , Manenti F . Impact of kinetic models on methanol synthesis reactor predictions: in silico assessment and comparison with industrial data. Industrial & Engineering Chemistry Research, 2022, 61(5): 2206–2226

[23]

PalmaVMeloniERuoccoCMartinoMRiccaA. Chapter 2 State of the Art of Conventional Reactors for Methanol Production. In: Methanol. Amsterdam: Elsevier, 2018, 29–51

[24]

Bisotti F, Fedeli M, Prifti K, Galeazzi A, Dell’Angelo A, Barbieri M, Pirola C, Bozzano G, Manenti F. Century of technology trends in methanol synthesis: any need for kinetics refitting? Industrial & Engineering Chemistry Research, 2021, 60(44): 16032–16053

[25]

Villa P , Forzatti P , Buzzi-Ferraris G , Garone G , Pasquon I . Synthesis of alcohols from carbon oxides and hydrogen. 1. Kinetics of the low-pressure methanol synthesis. Industrial & Engineering Chemistry Process Design and Development, 1985, 24(1): 12–19

[26]

Klier K , Chatikavanij V , Herman R G , Simmons G W . Catalytic synthesis of methanol from COH2: IV. The effects of carbon dioxide. Journal of Catalysis, 1982, 74(2): 343–360

[27]

McNeil M A , Schack C J , Rinker R G . Methanol synthesis from hydrogen, carbon monoxide, and carbon dioxide over a CuO/ZnO/Al2O3 catalyst: II. Development of a phenomenological rate expression. Applied Catalysis, 1989, 50(1): 265–285

[28]

Ma H F , Ying W Y , Fang D Y . Study on methanol synthesis from coal-based syngas. Journal of Coal Science and Engineering, 2009, 15(1): 98–103

[29]

Takagawa M , Ohsugi M . Study on reaction rates for methanol synthesis from carbon monoxide, carbon dioxide, and hydrogen. Journal of Catalysis, 1987, 107(1): 161–172

[30]

Graaf G H , Stamhuis E J , Beenackers A A C M . Kinetics of low-pressure methanol synthesis. Chemical Engineering Science, 1988, 43(12): 3185–3195

[31]

Seidel C , Jörke A , Vollbrecht B , Seidel-Morgenstern A , Kienle A . Kinetic modeling of methanol synthesis from renewable resources. Chemical Engineering Science, 2018, 175: 130–138

[32]

Park N , Park M J , Lee Y J , Ha K S , Jun K W . Kinetic modeling of methanol synthesis over commercial catalysts based on three-site adsorption. Fuel Processing Technology, 2014, 125: 139–147

[33]

Lim H W , Park M J , Kang S H , Chae H J , Bae J W , Jun K W . Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: influence of carbon dioxide during hydrogenation. Industrial & Engineering Chemistry Research, 2009, 48(23): 10448–10455

[34]

Skrzypek J , Lachowska M , Moroz H . Kinetics of methanol synthesis over commercial copper/zinc oxide/alumina catalysts. Chemical Engineering Science, 1991, 46(11): 2809–2813

[35]

Askgaard T S , Norskov J K , Ovesen C V , Stoltze P . A kinetic model of methanol synthesis. Journal of Catalysis, 1995, 156(2): 229–242

[36]

Kubota T , Hayakawa I , Mabuse H , Mori K , Ushikoshi K , Watanabe T , Saito M . Kinetic study of methanol synthesis from carbon dioxide and hydrogen. Applied Organometallic Chemistry, 2001, 15(2): 121–126

[37]

Bussche K M V , Froment G F . A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. Journal of Catalysis, 1996, 161(1): 1–10

[38]

Tripodi A , Compagnoni M , Martinazzo R , Ramis G , Rossetti I . Process simulation for the design and scale up of heterogeneous catalytic process: kinetic modelling issues. Catalysts, 2017, 7(5): 159

[39]

Kiss A A , Pragt J J , Vos H J , Bargeman G , de Groot M T . Novel efficient process for methanol synthesis by CO2 hydrogenation. Chemical Engineering Journal, 2016, 284: 260–269

[40]

Graaf G H , Scholtens H , Stamhuis E J , Beenackers A A C M . Intra-particle diffusion limitations in low-pressure methanol synthesis. Chemical Engineering Science, 1990, 45(4): 773–783

[41]

Deng Y , Baeyens J , Elst Margot V , Liu H . Renewable electricity and “green” feedstock-based chemicals will foster industrial sustainability. Innovation Energy, 2024, 1(2): 100016

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3243KB)

Supplementary files

FCE-25006-OF-ZH_suppl_1

654

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/