PDF
(6297KB)
Abstract
The water-gas shift (WGS) reaction plays a pivotal role in various industrial processes, particularly in hydrogen production and carbon monoxide removal. As global energy demands rise and environmental concerns intensify, the development of efficient and sustainable catalysts for the low-temperature WGS (LT-WGS) reaction has gained significant attention. This review focuses on recent advancements in water-gas-shift catalyst design for low-temperature conditions and emerging renewable energy-driven catalytic processes, such as photocatalysis, electrocatalysis, and plasma catalysis for the WGS reaction, which are less commonly explored in existing reviews. We systematically analyze mechanisms studies of LT-WGS, rational catalyst design strategies, and recent frontier advances in the development of highly efficient catalysts. Furthermore, this review provides actionable insights for refining catalyst architectures, enhancing operational efficiency, elucidating reaction pathways, and pioneering hybrid technologies, all contributing to further advancements in this field.
Graphical abstract
Keywords
water gas shift
/
hydrogen production
/
supported catalysts
/
reaction mechanism
/
innovative reaction processes
Cite this article
Download citation ▾
Jun Li, Xiaonan Wang, Sen Yao, Xiao Zhang.
A review on the low temperature water-gas-shift reaction: reaction mechanism, catalyst design, and novel process development.
Front. Chem. Sci. Eng., 2025, 19(6): 46 DOI:10.1007/s11705-025-2547-0
| [1] |
Gunathilake C , Soliman I , Panthi D , Tandler P , Fatani O , Ghulamullah N A , Marasinghe D , Farhath M , Madhujith T , Conrad K . . A comprehensive review on hydrogen production, storage, and applications. Chemical Society Reviews, 2024, 53(22): 10900–10969
|
| [2] |
Staffell I , Scamman D , Abad A V , Balcombe P , Dodds P E , Ekins P , Shah N , Ward K R . The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 2019, 12(2): 463–491
|
| [3] |
Wei S J , Sacchi R , Tukker A , Suh S , Steubing B . Future environmental impacts of global hydrogen production. Energy & Environmental Science, 2024, 17(6): 2157–2172
|
| [4] |
Odenweller A , Ueckerdt F , Nemet G , Jensterle M , Luderer G . Probabilistic feasibility space of scaling up green hydrogen supply. Nature Energy, 2022, 7(9): 854–865
|
| [5] |
Aravindan M , Kumar M V , Hariharan V S , Narahari T , Kumar A P , Madhesh K , Kumar P G , Prabakaran R . Fuelling the future: a review of non-renewable hydrogen production and storage techniques. Renewable & Sustainable Energy Reviews, 2023, 188: 113791–113814
|
| [6] |
Liu Z , Jackson G S , Eichhorn B W . Tuning the CO-tolerance of Pt-Fe bimetallic nanoparticle electrocatalysts through architectural control. Energy & Environmental Science, 2011, 4(5): 1900–1903
|
| [7] |
Habashy M M , Ong E S , Abdeldayem O M , Al-Sakkari E G , Rene E R . Food waste: a promising source of sustainable biohydrogen fuel. Trends in Biotechnology, 2021, 39(12): 1274–1288
|
| [8] |
Xu X L , Dong Y , Hu Q W , Si N , Zhang C W . Electrochemical hydrogen storage materials: state-of-the-art and future perspectives. Energy & Fuels, 2024, 38(9): 7579–7613
|
| [9] |
Cheng H , Xia J , Wang M , Wang C , Gui R , Cao X , Zhou T , Zheng X , Chu W , Wu H . . Surface anion promotes Pt electrocatalysts with high CO tolerance in fuel-cell performance. Journal of the American Chemical Society, 2022, 144(48): 22018–22025
|
| [10] |
Anetjarvi E , Vakkilainen E , Melin K . Benefits of hybrid production of e-methanol in connection with biomass gasification. Energy, 2023, 276: 127202–127206
|
| [11] |
Giuliano A , Freda C , Catizzone E . Techno-economic assessment of bio-syngas production for methanol synthesis: a focus on the water-gas shift and carbon capture sections. Bioengineering, 2020, 7(3): 70–89
|
| [12] |
Fajin J L C , Cordeiro M N D S . Light alcohols reforming towards renewable hydrogen production on multicomponent catalysts. Renewable & Sustainable Energy Reviews, 2021, 138: 110523–110534
|
| [13] |
Ma Y , Dong X , Wang R , Bin D , Wang Y , Xia Y . Combining water reduction and liquid fuel oxidization by nickel hydroxide for flexible hydrogen production. Energy Storage Materials, 2018, 11: 260–266
|
| [14] |
Bae J , Lee S , Kim S , Oh J , Choi S , Bae M , Kang I , Katikaneni S P . Liquid fuel processing for hydrogen production: a review. International Journal of Hydrogen Energy, 2016, 41(44): 19990–20022
|
| [15] |
Wang H , Harkou E , Constantinou A , Al-Salemc S M , Manos G , Tang J . From photocatalysis to photon-phonon co-driven catalysis for methanol reforming to hydrogen and valuable by-products. Chemical Society Reviews, 2025, 54(5): 2188–2207
|
| [16] |
Zhang J Y , Shu M , Niu Y X , Yi L , Yi H H , Zhou Y S , Zhao S Z , Tang X L , Gao F Y . Advances in CO catalytic oxidation on typical noble metal catalysts: mechanism, performance, and optimization. Chemical Engineering Journal, 2024, 495: 153523–153539
|
| [17] |
Newsome D S . The water-gas shift reaction. Catalysis Reviews: Science and Engineering, 1980, 21(2): 275–318
|
| [18] |
Rhodes C , Hutchings G J , Ward A M . Water-gas shift reaction: finding the mechanistic boundary. Catalysis Today, 1995, 23(1): 43–58
|
| [19] |
Ratnasamy C , Wagner J P . Water gas shift catalysis. Catalysis Reviews. Science and Engineering, 2009, 51(3): 325–440
|
| [20] |
Flytzani-Stephanopoulos M . Gold atoms stabilized on various supports catalyze the water-gas shift reaction. Accounts of Chemical Research, 2014, 47(3): 783–792
|
| [21] |
Pal D B , Chand R , Upadhyay S N , Mishra P K . Performance of water gas shift reaction catalysts: a review. Renewable & Sustainable Energy Reviews, 2018, 93: 549–565
|
| [22] |
Chen W H , Chen C Y . Water gas shift reaction for hydrogen production and carbon dioxide capture: a review. Applied Energy, 2020, 258: 114078–114103
|
| [23] |
Arregi A , Amutio M , Lopez G , Bilbao J , Olazar M . Evaluation of thermochemical routes for hydrogen production from biomass: a review. Energy Conversion and Management, 2018, 165: 696–719
|
| [24] |
Naseem K , Qin F , Khalid F , Suo G , Zahra T , Chen Z , Javed Z . Essential parts of hydrogen economy: hydrogen production, storage, transportation and application. Renewable & Sustainable Energy Reviews, 2025, 210: 115196–115214
|
| [25] |
Antzaras A N , Lemonidou A A . Recent advances on materials and processes for intensified production of blue hydrogen. Renewable & Sustainable Energy Reviews, 2022, 155: 111917–111953
|
| [26] |
Burns D T , Piccardi G , Sabbatini L . Some people and places important in the history of analytical chemistry in Italy. Microchimica Acta, 2008, 160: 57–87
|
| [27] |
Baraj E , Ciahotny K , Hlincik T . The water gas shift reaction: catalysts and reaction mechanism. Fuel, 2021, 288: 119817–119833
|
| [28] |
Lee D W , Lee M S , Lee J Y , Kim S , Eom H J , Moon D J , Lee K Y . The review of Cr-free Fe-based catalysts for high-temperature water-gas shift reactions. Catalysis Today, 2013, 210: 2–9
|
| [29] |
Ebrahimi P , Kumar A , Khraisheh M . A review of recent advances in water-gas shift catalysis for hydrogen production. Emergent Materials, 2020, 3(6): 881–917
|
| [30] |
Dehimi L , Alioui O , Benguerba Y , Yadav K K , Bhutto J K , Fallatah A M , Shukla T , Alreshidi M A , Balsamo M , Badawi M . . Hydrogen production by the water-gas shift reaction: a comprehensive review on catalysts, kinetics, and reaction mechanism. Fuel Processing Technology, 2025, 267: 108163–108182
|
| [31] |
Smith B R J , Loganathan M , Shantha M S . A review of the water gas shift reaction kinetics. International Journal of Chemical Reactor Engineering, 2010, 8(1): 1–32
|
| [32] |
Chein R Y , Yu C T . Thermodynamic equilibrium analysis of water-gas shift reaction using syngases-effect of CO2 and H2S contents. Energy, 2017, 141: 1004–1018
|
| [33] |
Mendes D , Mendes A , Madeira L M , Iulianelli A , Sousa J M , Basile A . The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors: a review. Asia-Pacific Journal of Chemical Engineering, 2010, 5(1): 111–137
|
| [34] |
de la Osa A R , De Lucas A , Romero A , Valverde J L , Sanchez P . Kinetic models discrimination for the high pressure WGS reaction over a commercial CoMo catalyst. International Journal of Hydrogen Energy, 2011, 36(16): 9673–9684
|
| [35] |
Li G , Fan M , Lu Y , Glarborg P . Kinetic modeling of carbon monoxide oxidation and water gas shift reaction in supercritical water. Journal of Supercritical Fluids, 2021, 171: 105165–105176
|
| [36] |
Sun J , DesJardins J , Buglass J , Liu K . Noble metal water gas shift catalysis: kinetics study and reactor design. International Journal of Hydrogen Energy, 2005, 30(11): 1259–1264
|
| [37] |
Germani G , Schuurman Y . Water-gas shift reaction kinetics over μ-structured Pt/CeO2/Al2O3 catalysts. American Institute of Chemical Engineers, 2006, 52(5): 1806–1813
|
| [38] |
Moazami N , Wyszynski M L , Rahbar K , Tsolakis A , Mahmoudi H . A comprehensive study of kinetics mechanism of Fischer-Tropsch synthesis over cobalt-based catalyst. Chemical Engineering Science, 2017, 171: 32–60
|
| [39] |
Noor T , Qi Y , Chen D . Hydrogen dependence of the reaction mechanism and kinetics of water gas shift reaction on Ni catalyst: experimental and DFT study. Applied Catalysis B: Environmental, 2020, 264: 118430–118439
|
| [40] |
Grenoble D C , Estadt M M , Ollis D F . The chemistry and catalysis of the water gas shift reaction: 1. the kinetics over supported metal-catalysts. Journal of Catalysis, 1981, 67(1): 90–102
|
| [41] |
Khan A , Chen P , Boolchand P , Smirniotis P G . Modified nano-crystalline ferrites for high-temperature WGS membrane reactor applications. Journal of Catalysis, 2008, 253(1): 91–104
|
| [42] |
Boreskov G K . Forms of oxygen bonds on surface of oxidation catalysts. Discussions of the Faraday Society, 1966, 41: 263–276
|
| [43] |
Huang L , Han B , Zhang Q , Fan M , Cheng H . Mechanistic study on water gas shift reaction on the Fe3O4 (111) reconstructed surface. Journal of Physical Chemistry C, 2015, 119(52): 28934–28945
|
| [44] |
Kalamaras C M , Gonzalez I D , Navarro R M , Fierro J L G , Efstathiou A M . Effects of reaction temperature and support composition on the mechanism of water-gas shift reaction over supported-Pt catalysts. Journal of Physical Chemistry C, 2011, 115(23): 11595–11610
|
| [45] |
Davydov A A , Boreskov G K , Iurieva T M , Rubene N A . Associative mechanisms of reaction of carbon-monoxide conversion. Doklady Akademii Nauk SSSR, 1977, 236(6): 1402–1405
|
| [46] |
Sato Y , Terada K , Hasegawa S , Miyao T , Naito S . Mechanistic study of water-gas-shift reaction over TiO2 supported Pt-Re and Pd-Re catalysts. Applied Catalysis A: General, 2005, 296(1): 80–89
|
| [47] |
Gokhale A A , Dumesic J A , Mavrikakis M . On the mechanism of low-temperature water gas shift reaction on copper. Journal of the American Chemical Society, 2008, 130(4): 1402–1414
|
| [48] |
Yao S , Zhang X , Zhou W , Gao R , Xu W , Ye Y , Lin L , Wen X , Liu P , Chen B . . Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science, 2017, 357(6349): 389–393
|
| [49] |
Zhang X , Zhang M , Deng Y , Xu M , Artiglia L , Wen W , Gao R , Chen B , Yao S , Zhang X . . A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature, 2021, 589(7842): 396–401
|
| [50] |
Zhang Z S , Fu Q , Xu K , Wang W W , Fu X P , Zheng X S , Wu K , Ma C , Si R , Jia C J . . Intrinsically active surface in a Pt/γ-Mo2N catalyst for the water-gas shift reaction: molybdenum nitride or molybdenum oxide. Journal of the American Chemical Society, 2020, 142(31): 13362–13371
|
| [51] |
Tian H , He Y , Zhao Q , Li J , Shao X , Zhang Z , Huang X , Lu C , Wang K , Jiang Q . . Avoiding Sabatier’s conflict in bifunctional heterogeneous catalysts for the WGS reaction. Chem, 2021, 7(5): 1271–1283
|
| [52] |
Zhu M , Wachs I E . Resolving the reaction mechanism for H2 formation from high-temperature water-gas shift by chromium-iron oxide catalysts. ACS Catalysis, 2016, 6(5): 2827–2830
|
| [53] |
Aranifard S , Ammal S C , Heyden A . On the importance of the associative carboxyl mechanism for the water-gas shift reaction at Pt/CeO2 interface sites. Journal of Physical Chemistry C, 2014, 118(12): 6314–6323
|
| [54] |
Tserpe E , Waugh K C . A microkinetic analysis of the reverse water gas shift reaction. Studies in Surface Science and Catalysis, 1997, 109: 401–416
|
| [55] |
Kalamaras C M , Dionysiou D D , Efstathiou A M . Mechanistic studies of the water-gas shift reaction over Pt/CexZr1–xO2 catalysts: the effect of Pt particle size and Zr dopant. ACS Catalysis, 2012, 2(12): 2729–2742
|
| [56] |
Tao F , Salmeron M . Surface restructuring and predictive design of heterogeneous catalysts. Science, 2024, 386(6724): eadq0102
|
| [57] |
Tikhov S F , Minyukova T P , Reshetnikov S I , Valeev K R , Vernikovskaya N V , Salanov A N , Cherepanova S V , Sadykov V A . Particularities of low-temperature WGSR over ceramometal and oxide catalysts: effect of catalyst particle size. Chemical Engineering Journal, 2019, 374: 405–411
|
| [58] |
Fu X P , Zhao H , Jia C J . Ceria-based supported metal catalysts for the low-temperature water-gas shift reaction. Chemical Communications, 2024, 60(98): 14537–14556
|
| [59] |
Plata J J , Graciani J , Evans J , Rodriguez J A , Fernandez Sanz J . Cu deposited on CeOx-modified TiO2 (110): synergistic effects at the metal-oxide interface and the mechanism of the WGS reaction. ACS Catalysis, 2016, 6(7): 4608–4615
|
| [60] |
Szenti I , Efremova A , Kiss J , Sápi A , Ovári L , Halasi G , Haselmann U , Zhang Z L , Morales-Vidal J , Baán K . . Pt/MnO interface induced defects for high reverse water gas shift activity. Angewandte Chemie International Edition, 2024, 63(8): e202317374
|
| [61] |
Zhang S , Shan J J , Zhu Y , Frenkel A I , Patlolla A , Huang W , Yoon S J , Wang L , Yoshida H , Takeda S . . WGS catalysis and in situ studies of CoO1–x, PtCon/Co3O4, and PtmCom′/CoO1–x nanorod catalysts. Journal of the American Chemical Society, 2013, 135(22): 8283–8293
|
| [62] |
Chen Y , Lin J , Li L , Qiao B , Liu J , Su Y , Wang X . Identifying size effects of Pt as single atoms and nanoparticles supported on FeOx for the water-gas shift reaction. ACS Catalysis, 2018, 8(2): 859–868
|
| [63] |
Abdel-Mageed A M , Kučerová G , Bansmann J , Behm R J . Active Au species during the low-temperature water gas shift reaction on Au/CeO2: a time-resolved operando XAS and DRIFTS study. ACS Catalysis, 2017, 7(10): 6471–6484
|
| [64] |
Fu Q , Saltsburg H , Flytzani-Stephanopoulos M . Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 2003, 301(5635): 935–938
|
| [65] |
Lin J , Wang A , Qiao B , Liu X , Yang X , Wang X , Liang J , Li J , Liu J , Zhang T . Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. Journal of the American Chemical Society, 2013, 135(41): 15314–15317
|
| [66] |
Sun L , Cao L , Su Y , Wang C , Lin J , Wang X . Ru1/FeOx single-atom catalyst with dual active sites for water gas shift reaction without methanation. Applied Catalysis B: Environment and Energy, 2022, 318: 121841–121853
|
| [67] |
Li Y , Kottwitz M , Vincent J L , Enright M J , Liu Z , Zhang L , Huang J , Senanayake S D , Yang W C D , Crozier P A . . Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction. Nature Communications, 2021, 12(1): 914–923
|
| [68] |
Yuan K , Sun X C , Yin H J , Zhou L , Liu H C , Yan C H , Zhang Y W . Boosting the water gas shift reaction on Pt/CeO2-based nanocatalysts by compositional modification: support doping versus bimetallic alloying. Journal of Energy Chemistry, 2022, 67: 241–249
|
| [69] |
Liu N , Xu M , Yang Y , Zhang S , Zhang J , Wang W , Zheng L , Hong S , Au Wei M . δ−-Ov-Ti3+ interfacial site: catalytic active center toward low-temperature water gas shift reaction. ACS Catalysis, 2019, 9(4): 2707–2717
|
| [70] |
Shen X , Li Z , Xu J , Li W , Tao Y , Ran J , Yang Z , Sun K , Yao S , Wu Z . . Upgrading the low temperature water gas shift reaction by integrating plasma with a CuOx/CeO2 catalyst. Journal of Catalysis, 2023, 421: 324–331
|
| [71] |
Ilieva L , Ivanov I , Sobczak J W , Lisowski W , Karashanova D , Kaszkur Z , Petrova P , Tabakova T . Effect of support preparation method on water-gas shift activity of copper-based catalysts. International Journal of Hydrogen Energy, 2022, 47(97): 41268–41278
|
| [72] |
Yan H , Qin X T , Yin Y , Teng Y F , Jin Z , Jia C J . Promoted Cu-Fe3O4 catalysts for low-temperature water gas shift reaction: optimization of Cu content. Applied Catalysis B: Environmental, 2018, 226: 182–193
|
| [73] |
Ning J , Zhou Y , Chen A , Li Y , Miao S , Shen W . Dispersion of copper on ceria for the low-temperature water-gas shift reaction. Catalysis Today, 2020, 357: 460–467
|
| [74] |
Shui Z , Jiang G , Zhao M , Yang Z , Li G , Hao Z . Recent advances in atomically dispersed metal catalysts for low-temperature water-gas shift reaction. Current Opinion in Chemical Engineering, 2023, 41: 100929–100940
|
| [75] |
Ammal S C , Heyden A . Titania-supported single-atom platinum catalyst for water-gas shift reaction. Chemieingenieurtechnik, 2017, 89(10): 1343–1349
|
| [76] |
Sun X , Lin J , Zhou Y , Li L , Su Y , Wang X , Zhang T . FeOx supported single-atom Pd bifunctional catalyst for water gas shift reaction. American Institute of Chemical Engineers, 2017, 63(9): 4022–4031
|
| [77] |
Guan H , Lin J , Qiao B , Miao S , Wang A Q , Wang X , Zhang T . Enhanced performance of Rh1/TiO2 catalyst without methanation in water-gas shift reaction. American Institute of Chemical Engineers, 2017, 63(6): 2081–2088
|
| [78] |
Shui Z , Zhang F , Yang H , Zhao M , Zhao Z , Li G , Wei Z , Jiang G , Zhang Z , Hao Z . Tailoring the electronic metal-support interaction of single-atom platinum catalysts for boosting water-gas shift reaction. Advanced Functional Materials, 2025, 35(8): 2415774
|
| [79] |
Cui Z , Song S , Liu H , Zhang Y , Gao F , Ding T , Tian Y , Fan X , Li X . Synergistic effect of Cu+ single atoms and Cu nanoparticles supported on alumina boosting water-gas shift reaction. Applied Catalysis B: Environment and Energy, 2022, 313: 121468–121475
|
| [80] |
Yang M , Li S , Wang Y , Herron J A , Xu Y , Allard L F , Lee S , Huang J , Mavrikakis M , Flytzani-Stephanopoulos M . Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science, 2014, 346(6216): 1498–1501
|
| [81] |
Yang M , Liu J , Lee S , Zugic B , Huang J , Allard L F , Flytzani-Stephanopoulos M . A common single-site Pt(II)-O(OH)x-species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. Journal of the American Chemical Society, 2015, 137(10): 3470–3473
|
| [82] |
Levy R B , Boudart M . Platinum-like behavior of tungsten carbide in surface catalysis. Science, 1973, 181(4099): 547–549
|
| [83] |
Patt J , Moon D J , Phillips C , Thompson L . Molybdenum carbide catalysts for water-gas shift. Catalysis Letters, 2000, 65(4): 193–195
|
| [84] |
Moon D J , Ryu J W . Molybdenum carbide water-gas shift catalyst for fuel cell-powered vehicles applications. Catalysis Letters, 2004, 92(1/2): 17–24
|
| [85] |
Nagai M , Matsuda K . Low-temperature water-gas shift reaction over cobalt-molybdenum carbide catalyst. Journal of Catalysis, 2006, 238(2): 489–496
|
| [86] |
Nagai M , Zahidul A M , Matsuda K . Nano-structured nickel-molybdenum carbide catalyst for low-temperature water-gas shift reaction. Applied Catalysis A: General, 2006, 313(2): 137–145
|
| [87] |
Sabnis K D , Cui Y , Akatay M C , Shekhar M , Lee W S , Miller J T , Delgass W N , Ribeiro F H . Water-gas shift catalysis over transition metals supported on molybdenum carbide. Journal of Catalysis, 2015, 331: 162–171
|
| [88] |
Sabnis K D , Akatay M C , Cui Y , Sollberger F G , Stach E A , Miller J T , Delgass W N , Ribeiro F H . Probing the active sites for water-gas shift over Pt/molybdenum carbide using multi-walled carbon nanotubes. Journal of Catalysis, 2015, 330: 442–451
|
| [89] |
Thompson L T , Schaidle J , Schweitzer N . High activity carbide supported catalysts for water gas shift. Journal of the American Chemical Society, 2011, 133(8): 2378–2381
|
| [90] |
Zugic B , Zhang S , Bell D C , Tao F , Flytzani-Stephanopoulos M . Probing the low-temperature water-gas shift activity of alkali-promoted platinum catalysts stabilized on carbon supports. Journal of the American Chemical Society, 2014, 136(8): 3238–3245
|
| [91] |
Dongil A B , Pastor-Perez L , Escalona N , Sepulveda-Escribano A . Carbon nanotube-supported Ni-CeO2 catalysts. Effect of the support on the catalytic performance in the low-temperature WGS reaction. Carbon, 2016, 101: 296–304
|
| [92] |
Yan H , Yang C , Shao W P , Cai L H , Wang W W , Jin Z , Jia C J . Construction of stabilized bulk-nano interfaces for highly promoted inverse CeO2/Cu catalyst. Nature Communications, 2019, 10: 3470–3480
|
| [93] |
Fu Q , Deng W L , Saltsburg H , Flytzani-Stephanopoulos M . Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction. Applied Catalysis B: Environmental, 2005, 56: 57–68
|
| [94] |
Yuan K , Guo Y , Lin Q L , Huang L , Ren J T , Liu H C , Yan C H , Zhang Y W . Size effect-tuned water gas shift reaction activity and pathway on ceria supported platinum catalysts. Journal of Catalysis, 2021, 394: 121–130
|
| [95] |
Yang M , Allard L F , Flytzani-Stephanopoulos M . Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. Journal of the American Chemical Society, 2013, 135(10): 3768–3771
|
| [96] |
Chen T , Chen J , Wu J , Song W , Hu S , Feng X , Chen Z , Yuan E , Ji W , Au C T . Atomic-layer-deposition derived Pt subnano clusters on the (110) facet of hexagonal Al2O3 plates: efficient for formic acid decomposition and water gas shift. ACS Catalysis, 2023, 13(2): 887–901
|
| [97] |
Li Z , Cui Y , Wu Z , Milligan C , Zhou L , Mitchell G , Xu B , Shi E , Miller J T , Ribeiro F H . . Reactive metal-support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nature Catalysis, 2018, 1(5): 349–355
|
| [98] |
Sun L , Xu J , Liu X , Qiao B , Li L , Ren Y , Wan Q , Lin J , Lin S , Wang X . . High-efficiency water gas shift reaction catalysis on α-MoC promoted by single-atom Ir species. ACS Catalysis, 2021, 11(10): 5942–5950
|
| [99] |
Fu X P , Wu C P , Wang W W , Jin Z , Liu J C , Ma C , Jia C J . Boosting reactivity of water-gas shift reaction by synergistic function over CeO2–x/CoO1–x/Co dual interfacial structures. Nature Communications, 2023, 14(1): 6851–6862
|
| [100] |
Cui X , Su H Y , Chen R , Yu L , Dong J , Ma C , Wang S , Li J , Yang F , Xiao J . . Room-temperature electrochemical water-gas shift reaction for high purity hydrogen production. Nature Communications, 2019, 10: 86–94
|
| [101] |
Zhao L , Qi Y , Song L , Ning S , Ouyang S , Xu H , Ye J . Solar-driven water-gas shift reaction over CuOx/Al2O3 with 1.1% of light-to-energy storage. Angewandte Chemie International Edition, 2019, 58(23): 7708–7712
|
| [102] |
Shen X , Craven M , Xu J , Wang Y , Li Z , Wang W , Yao S , Wu Z , Jiang N , Zhou X . Unveiling the mechanism of plasma-catalytic low-temperature water-gas shift reaction over Cu/γ-Al2O3 catalysts. JACS Au, 2024, 4(8): 3228–3237
|
| [103] |
Wang S , Zhou C , Shu G , Cao Y , Fan L , Song L , Ma K , Yue H . Insights into the effects of Pt and PtOx site for electrocatalytic water gas shift reaction via altering supports and calcinated temperatures. International Journal of Hydrogen Energy, 2023, 48(64): 24730–24741
|
| [104] |
Wei H , Liu H , Yu L , Zhang M , Zhang Y , Fan J , Cui X , Deng D . Alloying Pd with Cu boosts hydrogen production via room-temperature electrochemical water-gas shift reaction. Nano Energy, 2022, 102: 107704–107711
|
| [105] |
Wang S , Zhou C , Cao Y , Song L , Zheng L , Ma K , Yue H . Pt-O-Cu anchored on Fe2O3 boosting electrochemical water-gas shift reaction for highly efficient H2 generation. Journal of Catalysis, 2023, 417: 98–108
|
| [106] |
Li Y , Li R , Li Z , Xu Y , Yuan H , Ouyang S , Zhang T . Recent advances in photothermal COx conversion. Solar RRL, 2022, 6(10): 2200493–2200503
|
| [107] |
Tong Y , Song L , Ning S , Ouyang S , Ye J . Photocarriers-enhanced photothermocatalysis of water-gas shift reaction under H2-rich and low-temperature condition over CeO2/Cu1.5Mn1.5O4 catalyst. Applied Catalysis B: Environmental, 2021, 298: 120551–120561
|
| [108] |
Zhao J , Bai Y , Li Z , Liu J , Wang W , Wang P , Yang B , Shi R , Waterhouse G I N , Wen X D . . Plasmonic Cu nanoparticles for the low-temperature photo-driven water-gas shift reaction. Angewandte Chemie International Edition, 2023, 62: e202219299
|
| [109] |
Chen H , Mu Y , Xu S , Xu S , Hardacre C , Fan X . Recent advances in non-thermal plasma (NTP) catalysis towards C1 chemistry. Chinese Journal of Chemical Engineering, 2020, 28(8): 2010–2021
|
| [110] |
Whitehead J C . Plasma-catalysis: the known knowns, the known unknowns and the unknown unknowns. Journal of Physics D: Applied Physics, 2016, 49(24): 243001–243025
|
| [111] |
Stere C E , Anderson J A , Chansai S , Delgado J J , Goguet A , Graham W G , Hardacre C , Taylor S F R , Tu X , Wang Z . . Non-thermal plasma activation of gold-based catalysts for low-temperature water-gas shift catalysis. Angewandte Chemie International Edition, 2017, 56(20): 5579–5583
|
| [112] |
Xu S , Chansai S , Stere C , Inceesungvorn B , Goguet A , Wangkawong K , Taylor S F R , Al-Janabi N , Hardacre C , Martin P A . . Sustaining metal-organic frameworks for water-gas shift catalysis by non-thermal plasma. Nature Catalysis, 2019, 2(2): 142–148
|
RIGHTS & PERMISSIONS
Higher Education Press