Toward sustainable hydrogen and carbon economies through plasma-based recycling

Guoxing Chen , Anke Weidenkaff

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 91

PDF (1698KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 91 DOI: 10.1007/s11705-025-2544-3
VIEWS & COMMENTS

Toward sustainable hydrogen and carbon economies through plasma-based recycling

Author information +
History +
PDF (1698KB)

Abstract

The transition to sustainable hydrogen and carbon economies is essential for addressing critical global issues such as climate change, resource depletion, and waste management. A vital strategy for low-carbon sustainability in the energy and chemical sectors is the chemical conversion of greenhouse gas into fuels and platform chemicals. Effective waste management, including waste-to-energy conversion and recycling, plays a crucial role in reducing emissions and promoting a circular economy. A key aspect of this transition is the development of innovative technologies that can transform waste into valuable resources while minimizing environmental impacts. Plasma-based recycling presents a promising solution, offering remarkable versatility for applications like waste upcycling and greenhouse gas conversion. These processes play a crucial role in advancing the development of sustainable carbon and hydrogen economies.

Graphical abstract

Cite this article

Download citation ▾
Guoxing Chen, Anke Weidenkaff. Toward sustainable hydrogen and carbon economies through plasma-based recycling. Front. Chem. Sci. Eng., 2025, 19(10): 91 DOI:10.1007/s11705-025-2544-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang N , Otor H O , Rivera-Castro G , Hicks J C . Plasma catalysis for hydrogen production: a bright future for decarbonization. ACS Catalysis, 2024, 14(9): 6749–6798

[2]

Chen G , Snyders R , Britun N . CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. Journal of CO2 Utilization, 2021, 49: 101557

[3]

Sikarwar V S , Hrabovský M , Van Oost G , Pohořelý M , Jeremiáš M . Progress in waste utilization via thermal plasma. Progress in Energy and Combustion Science, 2020, 81: 100873

[4]

Kusano R , Kusano Y . Applications of plasma technologies in recycling processes. Materials, 2024, 17(7): 1687

[5]

Longo V , Centi G , Perathoner S , Genovese C . CO2 utilisation with plasma technologies. Current Opinion in Green and Sustainable Chemistry, 2024, 46: 100893

[6]

Ray D , Ye P , Yu J C , Song C . Recent progress in plasma-catalytic conversion of CO2 to chemicals and fuels. Catalysis Today, 2023, 423: 113973

[7]

Girard-Sahun F , Biondo O , Trenchev G , van Rooij G , Bogaerts A . Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream. Chemical Engineering Journal, 2022, 442: 136268

[8]

O’Modhrain C , Gorbanev Y , Bogaerts A . Post-plasma carbon bed design for CO2 conversion: Does size and insulation matter. Journal of Energy Chemistry, 2025, 104: 312–323

[9]

Van Rooij G J , Akse H N , Bongers W A , van de Sanden M C M . Plasma for electrification of chemical industry: a case study on CO2 reduction. Plasma Physics and Controlled Fusion, 2018, 60(1): 014019

[10]

Rouwenhorst K H R , Lefferts L . Plasma-based conversions with in situ product removal. Plasma Processes and Polymers, 2024, 21(1): 2200244

[11]

Chen G , Buck F , Kistner I , Widenmeyer M , Schiestel T , Schulz A , Walker M , Weidenkaff A . A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699

[12]

Antunes R , Wiegers K , Hecimovic A , Kiefer C K , Buchberger S , Meindl A , Schiestel T , Schulz A , Walker M , Fantz U . Proof of concept for O2 removal with multiple LCCF membranes accommodated in theeffluent of a CO2 plasma torch. ACS Sustainable Chemistry & Engineering, 2023, 11(44): 15984–15993

[13]

Chen G , Widenmeyer M , Yu X , Han N , Tan X , Homm G , Liu S , Weidenkaff A . Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. Journal of the American Ceramic Society, 2024, 107(3): 1490–1504

[14]

Zhang C , Sunarso J , Liu S . Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005

[15]

Osman A I , Nasr M , Aniagor C O , Farghali M , Huang M M , Chin B L F , Sun Z , Lock S S M , López-Maldonado E A , Yiin C L . . Synergistic technologies for a circular economy: upcycling waste plastics and biomass. Frontiers of Chemical Science and Engineering, 2024, 19(1): 1–35

[16]

Zheng K , Wu Y , Hu Z , Wang S , Jiao X , Zhu J , Sun Y , Xie Y . Progress and perspective for conversion of plastic wastes into valuable chemicals. Chemical Society Reviews, 2023, 52(1): 8–29

[17]

Yu X , Rao Z , Chen G , Yang Y , Yoon S , Liu L , Huang Z , Widenmeyer M , Guo H , Homm G . . Plasma-enabled process with single-atom catalysts for sustainable plastic waste transformation. Angewandte Chemie International Edition, 2024, 63(50): e202404196

[18]

Munir M T , Mardon I , Al-Zuhair S , Shawabkeh A , Saqib N U . Plasma gasification of municipal solid waste for waste-to-value processing. Renewable & Sustainable Energy Reviews, 2019, 116: 109461

[19]

Shah H H , Amin M , Iqbal A , Nadeem I , Kalin M , Soomar A M , Galal A M . A review on gasification and pyrolysis of waste plastics. Frontiers in Chemistry, 2023, 10: 1608

[20]

Hecimovic A , Mayer M T , de Haart L G J , Gupta S , Kiefer C K , Navarrete A , Schulz A , Fantz U . Benchmarking microwave-induced CO2 plasma splitting against electrochemical CO2 reduction for a comparison of promising technologies. Journal of CO2 Utilization, 2024, 83: 102825

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1698KB)

487

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/