PDF
(3503KB)
Abstract
Efficient recycling of lithium metasilicate (Li2SiO3) from lithium-containing slag via a pyrometallurgical route demands a comprehensive understanding of its solidification process in the slag reactor. A simulation framework is developed to predict the heterogeneous phase distribution of Li2SiO3, the temperature and velocity fields considering density changes in the solidifying melt, on the apparatus scale. This framework integrates thermodynamic models via calculation of phase diagrams with the enthalpy-porosity technique and the volume of fluid method within a finite volume approach, ensuring thermodynamic consistency and adherence to mass balance. Thus, the formation of Li2SiO3 from the liquid slag composed of Li2O-SiO2 is described in space and temporal fields. Thereby, the interrelationship between the temperature field, enthalpy field, velocity field, and phase distribution of Li2SiO3 is revealed. It is shown that the lower temperature on reactor boundaries prompts the earlier formation of Li2SiO3 in the vicinity of the boundaries, which subsequently induces a downward flow due to the higher density of Li2SiO3. The predicted global mass fraction of Li2SiO3 under non-equilibrium conditions is 11.5 wt % lower than that calculated using the global equilibrium assumption. This demonstrates the global non-equilibrium behavior on the process scale and its consequences on slag solidification.
Graphical abstract
Keywords
solidification
/
thermodynamic modeling
/
volume of fluid
/
finite volume method
/
process simulation
/
Li 2SiO 3 crystallization
Cite this article
Download citation ▾
Haojie Li, Sanchita Chakrabarty, Vishnuvardhan Naidu Tanga, Marco Mancini, Michael Fischlschweiger.
Integrating Calphad and finite volume method for predicting non-equilibrium solidification of lithium metasilicate.
Front. Chem. Sci. Eng., 2025, 19(5): 42 DOI:10.1007/s11705-025-2543-4
| [1] |
Deng Y , Mou J , Wu H , Jiang N , Zheng Q , Lam K H , Xu C , Lin D . A superior Li2SiO3-composited LiNi0.5Mn1.5O4 cathode for high-voltage and high-performance lithium-ion batteries. Electrochimica Acta, 2017, 235: 19–31
|
| [2] |
Khalifa H , El-Safty S A , Reda A , Shenashen M A , Eid A I . Anisotropic alignments of hierarchical Li2SiO3/TiO2@nano-C anode//LiMnPO4@nano-C cathode architectures for full-cell lithium-ion battery. National Science Review, 2020, 7(5): 863–880
|
| [3] |
Jeong W J , Chung D J , Youn D , Kim N G , Kim H . Double-buffer-phase embedded Si/TiSi2/Li2SiO3 nanocomposite lithium storage materials by phase-selective reaction of SiO with metal hydrides. Energy Storage Materials, 2022, 50: 740–750
|
| [4] |
Yang S , Wang Q , Miao J , Zhang J , Zhang D , Chen Y , Yang H . Synthesis of graphene supported Li2SiO3 as a high performance anode material for lithium-ion batteries. Applied Surface Science, 2018, 444: 522–529
|
| [5] |
Hu G , Zhang M , Wu L , Peng Z , Du K , Cao Y . Effects of Li2SiO3 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. Journal of Alloys and Compounds, 2017, 690: 589–597
|
| [6] |
Li Y , Zhang D , Yan Y , Wang Y , Li Z , Tan X , Zhang M . Enhanced electrochemical properties of SiO2-Li2SiO3-coated NCM811 cathodes by reducing surface residual lithium. Journal of Alloys and Compounds, 2022, 923: 166317
|
| [7] |
Peng Z , Yang G , Li F , Zhu Z , Liu Z . Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5 C by Li2SiO3 coating and Si4+ doping. Journal of Alloys and Compounds, 2018, 762: 827–834
|
| [8] |
Qiao Y , Hao R , Shi X , Li Y , Wang Y , Zhang Y , Tang C , Li G , Wang G , Liu J . . Improving the cycling stability of LiNi0.8Co0.1Mn0.1O2 by enhancing the structural integrity via synchronous Li2SiO3 coating. ACS Applied Energy Materials, 2022, 5(4): 4885–4892
|
| [9] |
Zhao E , Liu X , Zhao H , Xiao X , Hu Z . Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization. Chemical Communications, 2015, 51(44): 9093–9096
|
| [10] |
Liu X , Ouyang B , Hao R , Liu P , Fan X , Zhang M , Pan M , Liu W , Liu K . Li2SiO3 modification of C/LiFe0.5Mn0.5PO4 for high performance lithium-ion batteries. ChemElectroChem, 2022, 9(16): e202200609
|
| [11] |
Wang D , Zhang X , Xiao R , Lu X , Li Y , Xu T , Pan D , Hu Y S , Bai Y . Electrochemical performance of Li-rich Li[Li0.2Mn0.56Ni0.17Co0.07]O2 cathode stabilized by metastable Li2SiO3 surface modification for advanced Li-ion batteries. Electrochimica Acta, 2018, 265: 244–253
|
| [12] |
Bai X , Li T , Dang Z , Qi Y X , Lun N , Bai Y J . Ionic conductor of Li2SiO3 as an effective dual-functional modifier to optimize the electrochemical performance of Li4Ti5O12 for high-performance Li-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(2): 1426–1436
|
| [13] |
Kwon Y M , Chae H J , Cho M S , Park Y K , Seo H M , Lee S C , Kim J C . Effect of a Li2SiO3 phase in lithium silicate-based sorbents for CO2 capture at high temperatures. Separation and Purification Technology, 2019, 214: 104–110
|
| [14] |
Ortiz-Landeros J , Gómez-Yáñez C , Pfeiffer H . Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: II—textural analysis and CO2-H2O sorption evaluation. Journal of Solid State Chemistry, 2011, 184(8): 2257–2262
|
| [15] |
Wang J X , Chen K T , Huang S T , Chen C C . Application of Li2SiO3 as a heterogeneous catalyst in the production of biodiesel from soybean oil. Chinese Chemical Letters, 2011, 22(11): 1363–1366
|
| [16] |
Wang M , Zhang S , Yang Z , Li E , Tang B , Zhong C . Sintering behaviors and thermal properties of Li2SiO3-based ceramics for LTCC applications. Ceramics International, 2022, 48(19): 27312–27323
|
| [17] |
Nishikawa Y , Oyaidzu M , Yoshikawa A , Munakata K , Okada M , Nishikawa M , Okuno K . Correlation between tritium release and thermal annealing of irradiation damage in neutron-irradiated Li2SiO3. Journal of Nuclear Materials, 2007, 367–370: 1371–1376
|
| [18] |
DavidMLythS MLindnerRHarringtonG F. Future-Proofing Fuel Cells: Critical Raw Material Governance in Sustainable Energy. Cham: Palgrave Macmillan Cham, 2021, 15–33
|
| [19] |
Wanger T C . The lithium future—resources, recycling, and the environment. Conservation Letters, 2011, 4(3): 202–206
|
| [20] |
Elwert T , Strauss K , Schirmer T , Goldmann D . Phase composition of high lithium slags from the recycling of lithium ion batteries. World of Metallurgy-Erzmetall, 2012, 65(3): 163–171
|
| [21] |
Sommerfeld M , Vonderstein C , Dertmann C , Klimko J , Oráč D , Miškufová A , Havlík T , Friedrich B . A combined pyro- and hydrometallurgical approach to recycle pyrolyzed lithium-ion battery black mass Part 1: production of lithium concentrates in an electric arc furnace. Metals, 2020, 10(8): 1069
|
| [22] |
Li H , Qiu H , Schirmer T , Goldmann D , Fischlschweiger M . Tailoring lithium aluminate phases based on thermodynamics for an increased recycling efficiency of Li-ion batteries. ACS ES&T Engineering, 2022, 2(10): 1883–1895
|
| [23] |
Li H , Ranneberg M , Fischlschweiger M . High-temperature phase behavior of Li2O-MnO with a focus on the liquid-to-solid transition. Journal of the Minerals Metals & Materials Society, 2023, 75(12): 5796–5807
|
| [24] |
Li H , Qiu H , Ranneberg M , Lucas H , Graupner T , Friedrich B , Yagmurlu B , Goldmann D , Bremer J , Fischlschweiger M . Enhancing lithium recycling efficiency in pyrometallurgical processing through thermodynamic-based optimization and design of spent lithium-ion battery slag compositions. ACS Sustainable Resource Management, 2024, 1(6): 1170–1184
|
| [25] |
LukasHFriesS GSundmanB. Computational Thermodynamics: The Calphad Method. New York: Cambridge University Press, 2007, 1–46
|
| [26] |
HillertM. Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis. 2nd ed. New York: Cambridge University Press, 2007, 400–418
|
| [27] |
Pelton A D . A general “geometric” thermodynamic model for multicomponent solutions. Calphad, 2001, 25(2): 319–328
|
| [28] |
Pelton A D , Degterov S A , Eriksson G , Robelin C , Dessureault Y . The modified quasichemical model I: binary solutions. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 2000, 31(4): 651–659
|
| [29] |
Pelton A D , Chartrand P . The modified quasi-chemical model: Part II. Multicomponent solutions. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science, 2001, 32(6): 1355–1360
|
| [30] |
Olson G B , Liu Z K . Genomic materials design: CALculation of PHAse dynamics. Calphad, 2023, 82: 102590
|
| [31] |
Wu M , Wang S , Huang H , Shu D , Sun B . Calphad aided eutectic high-entropy alloy design. Materials Letters, 2020, 262: 127175
|
| [32] |
de Abreu D A , Löffler M , Kriegel M J , Fabrichnaya O . Experimental investigation and thermodynamic modeling of the Li2O-Al2O3 system. Journal of Phase Equilibria and Diffusion, 2024, 45(1): 36–55
|
| [33] |
Chakrabarty S , De Abreu D A , Alhafez I A , Fabrichnaya O , Merkert N , Schnickmann A , Schirmer T , Fittschen U E A , Fischlschweiger M . Kinetics of γ-LiAlO2 formation out of Li2O-Al2O3 melt: a molecular dynamics-informed non-equilibrium thermodynamic study. Solids, 2024, 5(4): 561–579
|
| [34] |
Chakrabarty S , Li H , Schirmer T , Hampel S , Fittschen U E A , Fischlschweiger M . Non-equilibrium thermodynamic modelling of cooling path dependent phase evolution of Li2SiO3 from Li2O-SiO2 melt by considering mixed kinetic phenomena and time-dependent concentration fields. Scripta Materialia, 2024, 242: 115922
|
| [35] |
Chakrabarty S , Li H , Fischlschweiger M . Control of interface migration in nonequilibrium crystallization of Li2SiO3 from Li2O-SiO2 melt by spatiotemporal temperature and concentration fields. ACS Omega, 2024, 9(19): 21557–21568
|
| [36] |
WendtJ F. Computational Fluid Dynamics. 3rd ed. Berlin: Springer, 2009, 275–301
|
| [37] |
Hirt C W , Nichols B D . Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201–225
|
| [38] |
Gopala V R , Van Wachem B G M . Volume of fluid methods for immiscible-fluid and free-surface flows. Chemical Engineering Journal, 2008, 141(1-3): 204–221
|
| [39] |
Voller V R , Swaminathan C R , Thomas B G . Fixed grid techniques for phase change problems: a review. International Journal for Numerical Methods in Engineering, 1990, 30(4): 875–898
|
| [40] |
Voller V R , Prakash C . A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709–1719
|
| [41] |
Muhammad M D , Badr O , Yeung H . Validation of a CFD melting and solidification model for phase change in vertical cylinders. Numerical Heat Transfer Part A, 2015, 68(5): 501–511
|
| [42] |
Dallaire J , Gosselin L . Numerical modeling of solid-liquid phase change in a closed 2D cavity with density change, elastic wall and natural convection. International Journal of Heat and Mass Transfer, 2017, 114: 903–914
|
| [43] |
Samar A H , Napitupulu F H , Sitorus T B . Numerical study on melting process of phase change material as thermal energy storage. IOP Conference Series. Materials Science and Engineering, 2020, 725(1): 012051
|
| [44] |
MahdiM SMahoodH BHasanA FKhadomA A. Solidification enhancement of phase change material implemented in latent heat thermal energy storage. In: Proceedings of 2nd International Conference on Materials Engineering & Science. Baghdad: AIP Publishing, 2019, 020039
|
| [45] |
Martínez A , Carmona M , Cortés C , Arauzo I . Experimentally based testing of the enthalpy-porosity method for the numerical simulation of phase change of paraffin-type PCMs. Journal of Energy Storage, 2023, 69: 107876
|
| [46] |
Younsi Z , Naji H . A numerical investigation of melting phase change process via the enthalpy-porosity approach: application to hydrated salts. International Communications in Heat and Mass Transfer, 2017, 86: 12–24
|
| [47] |
Richter O , Turnow J , Kornev N , Hassel E . Numerical simulation of casting processes: coupled mould filling and solidification using VOF and enthalpy-porosity method. Heat and Mass Transfer, 2017, 53(6): 1957–1969
|
| [48] |
Konar B , Van Ende M A , Jung I H . Critical evaluation and thermodynamic optimization of the Li-O and Li2O-SiO2 systems. Journal of the European Ceramic Society, 2017, 37(5): 2189–2207
|
| [49] |
Hesse K F . Refinement of the crystal structure of lithium polysilicate. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1977, 33(3): 901–902
|
| [50] |
MoukalledFManganiLDarwishM. The Finite Volume Method in Computational Fluid Dynamics. Cham: Springer International Publishing, 2016, 103–135
|
| [51] |
Glück Nardi V , Greß T , Tonn B , Volk W . Modelling of intermetallic layers formation during solid-liquid joining of dissimilar metallic materials. Materials Science and Engineering, 2020, 861(1): 012058
|
| [52] |
Ansys Fluent, Academic Research Fluent, Version 2022 R1, 2022
|
| [53] |
Roy P , Anand N K , Donzis D . A parallel multigrid finite-volume solver on a collocated grid for incompressible Navier-Stokes equations. Numerical Heat Transfer Part B, 2015, 67(5): 376–409
|
| [54] |
Shukla S K , Shukla P , Ghosh P . Evaluation of numerical schemes using different simulation methods for the continuous phase modeling of cyclone separators. Advanced Powder Technology, 2011, 22(2): 209–219
|
| [55] |
Shyy W , Thakur S , Wright J . Second-order upwind and central difference schemes for recirculating flow computation. AIAA Journal, 1992, 30(4): 923–932
|
| [56] |
TahirF. Transient analysis of air bubble rise in stagnant water column using CFD. In: Proceedings of ICTEA. Doha: IEEE, 2018
|
| [57] |
Drake R , Manoranjan V S . A method of dynamic mesh adaptation. International Journal for Numerical Methods in Engineering, 1996, 39(6): 939–949
|
| [58] |
Butland A T D , Maddison R J . The specific heat of graphite: an evaluation of measurements. Journal of Nuclear Materials, 1973, 49(1): 45–56
|
| [59] |
Jiao J , Grorud B , Sindland C , Safarian J , Tang K , Sellevoll K , Tangstad M . The use of eutectic Fe-Si-B alloy as a phase change material in thermal energy storage systems. Materials, 2019, 12(14): 2312
|
| [60] |
Sajid M , Bai C , Aamir M , You Z , Yan Z , Lv X . Understanding the structure and structural effects on the properties of blast furnace slag (BFS). ISIJ International, 2019, 59(7): 1153–1166
|
| [61] |
HayashiMIshiiHSusaMFukuyamaHNagataK. Hierarchy of thermal conductivities for alkali silicates in terms of ionicity of oxygen. In: Proceedings of Internal Conference on Molten Slags, Fluxes, and Salts. Stockholm: Division of Metallurgy, KTH, Sweden, 2000
|
| [62] |
Wang M , Zhong C , Yang Z , Yang H , Cao L , Qin T , Zhang S . Thermal and microwave dielectric properties of Li-Si-based ceramics. Ceramics International, 2021, 47(12): 17693–17701
|
| [63] |
Bale C W , Bélisle E , Chartrand P , Decterov S A , Eriksson G , Gheribi A E , Hack K , Jung I H , Kang Y B , Melançon J . . FactSage thermochemical software and databases, 2010–2016. Calphad, 2016, 54: 35–53
|
| [64] |
Chakrabarty S , Li H , Fischlschweiger M . Calphad-informed thermodynamic non-equilibrium simulation of non-isothermal solid-state reactions of magnesium aluminate spinel based on the thermodynamic extremal principle. Materialia, 2023, 28: 101723
|
| [65] |
Svoboda J , Gamsjäger E , Fischer F D , Fratzl P . Application of the thermodynamic extremal principle to the diffusional phase transformations. Acta Materialia, 2004, 52(4): 959–967
|
| [66] |
Abart R , Svoboda J , Jeřabek P , Povoden-Karadeniz E , Habler G . Interlayer growth kinetics of a binary solid-solution based on the thermodynamic extremal principle: application to the formation of spinel at periclase-corundum contacts. American Journal of Science, 2016, 316(4): 309–328
|
RIGHTS & PERMISSIONS
The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn