Integrating Calphad and finite volume method for predicting non-equilibrium solidification of lithium metasilicate

Haojie Li, Sanchita Chakrabarty, Vishnuvardhan Naidu Tanga, Marco Mancini, Michael Fischlschweiger

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 42.

PDF(3503 KB)
PDF(3503 KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 42. DOI: 10.1007/s11705-025-2543-4
RESEARCH ARTICLE

Integrating Calphad and finite volume method for predicting non-equilibrium solidification of lithium metasilicate

Author information +
History +

Abstract

Efficient recycling of lithium metasilicate (Li2SiO3) from lithium-containing slag via a pyrometallurgical route demands a comprehensive understanding of its solidification process in the slag reactor. A simulation framework is developed to predict the heterogeneous phase distribution of Li2SiO3, the temperature and velocity fields considering density changes in the solidifying melt, on the apparatus scale. This framework integrates thermodynamic models via calculation of phase diagrams with the enthalpy-porosity technique and the volume of fluid method within a finite volume approach, ensuring thermodynamic consistency and adherence to mass balance. Thus, the formation of Li2SiO3 from the liquid slag composed of Li2O-SiO2 is described in space and temporal fields. Thereby, the interrelationship between the temperature field, enthalpy field, velocity field, and phase distribution of Li2SiO3 is revealed. It is shown that the lower temperature on reactor boundaries prompts the earlier formation of Li2SiO3 in the vicinity of the boundaries, which subsequently induces a downward flow due to the higher density of Li2SiO3. The predicted global mass fraction of Li2SiO3 under non-equilibrium conditions is 11.5 wt % lower than that calculated using the global equilibrium assumption. This demonstrates the global non-equilibrium behavior on the process scale and its consequences on slag solidification.

Graphical abstract

Keywords

solidification / thermodynamic modeling / volume of fluid / finite volume method / process simulation / Li2SiO3 crystallization

Cite this article

Download citation ▾
Haojie Li, Sanchita Chakrabarty, Vishnuvardhan Naidu Tanga, Marco Mancini, Michael Fischlschweiger. Integrating Calphad and finite volume method for predicting non-equilibrium solidification of lithium metasilicate. Front. Chem. Sci. Eng., 2025, 19(5): 42 https://doi.org/10.1007/s11705-025-2543-4

References

[1]
Deng Y , Mou J , Wu H , Jiang N , Zheng Q , Lam K H , Xu C , Lin D . A superior Li2SiO3-composited LiNi0.5Mn1.5O4 cathode for high-voltage and high-performance lithium-ion batteries. Electrochimica Acta, 2017, 235: 19–31
CrossRef Google scholar
[2]
Khalifa H , El-Safty S A , Reda A , Shenashen M A , Eid A I . Anisotropic alignments of hierarchical Li2SiO3/TiO2@nano-C anode//LiMnPO4@nano-C cathode architectures for full-cell lithium-ion battery. National Science Review, 2020, 7(5): 863–880
CrossRef Google scholar
[3]
Jeong W J , Chung D J , Youn D , Kim N G , Kim H . Double-buffer-phase embedded Si/TiSi2/Li2SiO3 nanocomposite lithium storage materials by phase-selective reaction of SiO with metal hydrides. Energy Storage Materials, 2022, 50: 740–750
CrossRef Google scholar
[4]
Yang S , Wang Q , Miao J , Zhang J , Zhang D , Chen Y , Yang H . Synthesis of graphene supported Li2SiO3 as a high performance anode material for lithium-ion batteries. Applied Surface Science, 2018, 444: 522–529
CrossRef Google scholar
[5]
Hu G , Zhang M , Wu L , Peng Z , Du K , Cao Y . Effects of Li2SiO3 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. Journal of Alloys and Compounds, 2017, 690: 589–597
CrossRef Google scholar
[6]
Li Y , Zhang D , Yan Y , Wang Y , Li Z , Tan X , Zhang M . Enhanced electrochemical properties of SiO2-Li2SiO3-coated NCM811 cathodes by reducing surface residual lithium. Journal of Alloys and Compounds, 2022, 923: 166317
CrossRef Google scholar
[7]
Peng Z , Yang G , Li F , Zhu Z , Liu Z . Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5 C by Li2SiO3 coating and Si4+ doping. Journal of Alloys and Compounds, 2018, 762: 827–834
CrossRef Google scholar
[8]
Qiao Y , Hao R , Shi X , Li Y , Wang Y , Zhang Y , Tang C , Li G , Wang G , Liu J . . Improving the cycling stability of LiNi0.8Co0.1Mn0.1O2 by enhancing the structural integrity via synchronous Li2SiO3 coating. ACS Applied Energy Materials, 2022, 5(4): 4885–4892
CrossRef Google scholar
[9]
Zhao E , Liu X , Zhao H , Xiao X , Hu Z . Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization. Chemical Communications, 2015, 51(44): 9093–9096
CrossRef Google scholar
[10]
Liu X , Ouyang B , Hao R , Liu P , Fan X , Zhang M , Pan M , Liu W , Liu K . Li2SiO3 modification of C/LiFe0.5Mn0.5PO4 for high performance lithium-ion batteries. ChemElectroChem, 2022, 9(16): e202200609
CrossRef Google scholar
[11]
Wang D , Zhang X , Xiao R , Lu X , Li Y , Xu T , Pan D , Hu Y S , Bai Y . Electrochemical performance of Li-rich Li[Li0.2Mn0.56Ni0.17Co0.07]O2 cathode stabilized by metastable Li2SiO3 surface modification for advanced Li-ion batteries. Electrochimica Acta, 2018, 265: 244–253
CrossRef Google scholar
[12]
Bai X , Li T , Dang Z , Qi Y X , Lun N , Bai Y J . Ionic conductor of Li2SiO3 as an effective dual-functional modifier to optimize the electrochemical performance of Li4Ti5O12 for high-performance Li-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(2): 1426–1436
CrossRef Google scholar
[13]
Kwon Y M , Chae H J , Cho M S , Park Y K , Seo H M , Lee S C , Kim J C . Effect of a Li2SiO3 phase in lithium silicate-based sorbents for CO2 capture at high temperatures. Separation and Purification Technology, 2019, 214: 104–110
CrossRef Google scholar
[14]
Ortiz-Landeros J , Gómez-Yáñez C , Pfeiffer H . Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: II—textural analysis and CO2-H2O sorption evaluation. Journal of Solid State Chemistry, 2011, 184(8): 2257–2262
CrossRef Google scholar
[15]
Wang J X , Chen K T , Huang S T , Chen C C . Application of Li2SiO3 as a heterogeneous catalyst in the production of biodiesel from soybean oil. Chinese Chemical Letters, 2011, 22(11): 1363–1366
CrossRef Google scholar
[16]
Wang M , Zhang S , Yang Z , Li E , Tang B , Zhong C . Sintering behaviors and thermal properties of Li2SiO3-based ceramics for LTCC applications. Ceramics International, 2022, 48(19): 27312–27323
CrossRef Google scholar
[17]
Nishikawa Y , Oyaidzu M , Yoshikawa A , Munakata K , Okada M , Nishikawa M , Okuno K . Correlation between tritium release and thermal annealing of irradiation damage in neutron-irradiated Li2SiO3. Journal of Nuclear Materials, 2007, 367–370: 1371–1376
CrossRef Google scholar
[18]
DavidMLythS MLindnerRHarringtonG F. Future-Proofing Fuel Cells: Critical Raw Material Governance in Sustainable Energy. Cham: Palgrave Macmillan Cham, 2021, 15–33
[19]
Wanger T C . The lithium future—resources, recycling, and the environment. Conservation Letters, 2011, 4(3): 202–206
CrossRef Google scholar
[20]
Elwert T , Strauss K , Schirmer T , Goldmann D . Phase composition of high lithium slags from the recycling of lithium ion batteries. World of Metallurgy-Erzmetall, 2012, 65(3): 163–171
[21]
Sommerfeld M , Vonderstein C , Dertmann C , Klimko J , Oráč D , Miškufová A , Havlík T , Friedrich B . A combined pyro- and hydrometallurgical approach to recycle pyrolyzed lithium-ion battery black mass Part 1: production of lithium concentrates in an electric arc furnace. Metals, 2020, 10(8): 1069
CrossRef Google scholar
[22]
Li H , Qiu H , Schirmer T , Goldmann D , Fischlschweiger M . Tailoring lithium aluminate phases based on thermodynamics for an increased recycling efficiency of Li-ion batteries. ACS ES&T Engineering, 2022, 2(10): 1883–1895
[23]
Li H , Ranneberg M , Fischlschweiger M . High-temperature phase behavior of Li2O-MnO with a focus on the liquid-to-solid transition. Journal of the Minerals Metals & Materials Society, 2023, 75(12): 5796–5807
CrossRef Google scholar
[24]
Li H , Qiu H , Ranneberg M , Lucas H , Graupner T , Friedrich B , Yagmurlu B , Goldmann D , Bremer J , Fischlschweiger M . Enhancing lithium recycling efficiency in pyrometallurgical processing through thermodynamic-based optimization and design of spent lithium-ion battery slag compositions. ACS Sustainable Resource Management, 2024, 1(6): 1170–1184
[25]
LukasHFriesS GSundmanB. Computational Thermodynamics: The Calphad Method. New York: Cambridge University Press, 2007, 1–46
[26]
HillertM. Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis. 2nd ed. New York: Cambridge University Press, 2007, 400–418
[27]
Pelton A D . A general “geometric” thermodynamic model for multicomponent solutions. Calphad, 2001, 25(2): 319–328
CrossRef Google scholar
[28]
Pelton A D , Degterov S A , Eriksson G , Robelin C , Dessureault Y . The modified quasichemical model I: binary solutions. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 2000, 31(4): 651–659
CrossRef Google scholar
[29]
Pelton A D , Chartrand P . The modified quasi-chemical model: Part II. Multicomponent solutions. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science, 2001, 32(6): 1355–1360
CrossRef Google scholar
[30]
Olson G B , Liu Z K . Genomic materials design: CALculation of PHAse dynamics. Calphad, 2023, 82: 102590
CrossRef Google scholar
[31]
Wu M , Wang S , Huang H , Shu D , Sun B . Calphad aided eutectic high-entropy alloy design. Materials Letters, 2020, 262: 127175
CrossRef Google scholar
[32]
de Abreu D A , Löffler M , Kriegel M J , Fabrichnaya O . Experimental investigation and thermodynamic modeling of the Li2O-Al2O3 system. Journal of Phase Equilibria and Diffusion, 2024, 45(1): 36–55
CrossRef Google scholar
[33]
Chakrabarty S , De Abreu D A , Alhafez I A , Fabrichnaya O , Merkert N , Schnickmann A , Schirmer T , Fittschen U E A , Fischlschweiger M . Kinetics of γ-LiAlO2 formation out of Li2O-Al2O3 melt: a molecular dynamics-informed non-equilibrium thermodynamic study. Solids, 2024, 5(4): 561–579
CrossRef Google scholar
[34]
Chakrabarty S , Li H , Schirmer T , Hampel S , Fittschen U E A , Fischlschweiger M . Non-equilibrium thermodynamic modelling of cooling path dependent phase evolution of Li2SiO3 from Li2O-SiO2 melt by considering mixed kinetic phenomena and time-dependent concentration fields. Scripta Materialia, 2024, 242: 115922
CrossRef Google scholar
[35]
Chakrabarty S , Li H , Fischlschweiger M . Control of interface migration in nonequilibrium crystallization of Li2SiO3 from Li2O-SiO2 melt by spatiotemporal temperature and concentration fields. ACS Omega, 2024, 9(19): 21557–21568
CrossRef Google scholar
[36]
WendtJ F. Computational Fluid Dynamics. 3rd ed. Berlin: Springer, 2009, 275–301
[37]
Hirt C W , Nichols B D . Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201–225
CrossRef Google scholar
[38]
Gopala V R , Van Wachem B G M . Volume of fluid methods for immiscible-fluid and free-surface flows. Chemical Engineering Journal, 2008, 141(1-3): 204–221
CrossRef Google scholar
[39]
Voller V R , Swaminathan C R , Thomas B G . Fixed grid techniques for phase change problems: a review. International Journal for Numerical Methods in Engineering, 1990, 30(4): 875–898
CrossRef Google scholar
[40]
Voller V R , Prakash C . A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709–1719
CrossRef Google scholar
[41]
Muhammad M D , Badr O , Yeung H . Validation of a CFD melting and solidification model for phase change in vertical cylinders. Numerical Heat Transfer Part A, 2015, 68(5): 501–511
CrossRef Google scholar
[42]
Dallaire J , Gosselin L . Numerical modeling of solid-liquid phase change in a closed 2D cavity with density change, elastic wall and natural convection. International Journal of Heat and Mass Transfer, 2017, 114: 903–914
CrossRef Google scholar
[43]
Samar A H , Napitupulu F H , Sitorus T B . Numerical study on melting process of phase change material as thermal energy storage. IOP Conference Series. Materials Science and Engineering, 2020, 725(1): 012051
CrossRef Google scholar
[44]
MahdiM SMahoodH BHasanA FKhadomA A. Solidification enhancement of phase change material implemented in latent heat thermal energy storage. In: Proceedings of 2nd International Conference on Materials Engineering & Science. Baghdad: AIP Publishing, 2019, 020039
[45]
Martínez A , Carmona M , Cortés C , Arauzo I . Experimentally based testing of the enthalpy-porosity method for the numerical simulation of phase change of paraffin-type PCMs. Journal of Energy Storage, 2023, 69: 107876
CrossRef Google scholar
[46]
Younsi Z , Naji H . A numerical investigation of melting phase change process via the enthalpy-porosity approach: application to hydrated salts. International Communications in Heat and Mass Transfer, 2017, 86: 12–24
CrossRef Google scholar
[47]
Richter O , Turnow J , Kornev N , Hassel E . Numerical simulation of casting processes: coupled mould filling and solidification using VOF and enthalpy-porosity method. Heat and Mass Transfer, 2017, 53(6): 1957–1969
CrossRef Google scholar
[48]
Konar B , Van Ende M A , Jung I H . Critical evaluation and thermodynamic optimization of the Li-O and Li2O-SiO2 systems. Journal of the European Ceramic Society, 2017, 37(5): 2189–2207
CrossRef Google scholar
[49]
Hesse K F . Refinement of the crystal structure of lithium polysilicate. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1977, 33(3): 901–902
CrossRef Google scholar
[50]
MoukalledFManganiLDarwishM. The Finite Volume Method in Computational Fluid Dynamics. Cham: Springer International Publishing, 2016, 103–135
[51]
Glück Nardi V , Greß T , Tonn B , Volk W . Modelling of intermetallic layers formation during solid-liquid joining of dissimilar metallic materials. Materials Science and Engineering, 2020, 861(1): 012058
CrossRef Google scholar
[52]
Ansys Fluent, Academic Research Fluent, Version 2022 R1, 2022
[53]
Roy P , Anand N K , Donzis D . A parallel multigrid finite-volume solver on a collocated grid for incompressible Navier-Stokes equations. Numerical Heat Transfer Part B, 2015, 67(5): 376–409
CrossRef Google scholar
[54]
Shukla S K , Shukla P , Ghosh P . Evaluation of numerical schemes using different simulation methods for the continuous phase modeling of cyclone separators. Advanced Powder Technology, 2011, 22(2): 209–219
CrossRef Google scholar
[55]
Shyy W , Thakur S , Wright J . Second-order upwind and central difference schemes for recirculating flow computation. AIAA Journal, 1992, 30(4): 923–932
CrossRef Google scholar
[56]
TahirF. Transient analysis of air bubble rise in stagnant water column using CFD. In: Proceedings of ICTEA. Doha: IEEE, 2018
[57]
Drake R , Manoranjan V S . A method of dynamic mesh adaptation. International Journal for Numerical Methods in Engineering, 1996, 39(6): 939–949
CrossRef Google scholar
[58]
Butland A T D , Maddison R J . The specific heat of graphite: an evaluation of measurements. Journal of Nuclear Materials, 1973, 49(1): 45–56
CrossRef Google scholar
[59]
Jiao J , Grorud B , Sindland C , Safarian J , Tang K , Sellevoll K , Tangstad M . The use of eutectic Fe-Si-B alloy as a phase change material in thermal energy storage systems. Materials, 2019, 12(14): 2312
CrossRef Google scholar
[60]
Sajid M , Bai C , Aamir M , You Z , Yan Z , Lv X . Understanding the structure and structural effects on the properties of blast furnace slag (BFS). ISIJ International, 2019, 59(7): 1153–1166
CrossRef Google scholar
[61]
HayashiMIshiiHSusaMFukuyamaHNagataK. Hierarchy of thermal conductivities for alkali silicates in terms of ionicity of oxygen. In: Proceedings of Internal Conference on Molten Slags, Fluxes, and Salts. Stockholm: Division of Metallurgy, KTH, Sweden, 2000
[62]
Wang M , Zhong C , Yang Z , Yang H , Cao L , Qin T , Zhang S . Thermal and microwave dielectric properties of Li-Si-based ceramics. Ceramics International, 2021, 47(12): 17693–17701
CrossRef Google scholar
[63]
Bale C W , Bélisle E , Chartrand P , Decterov S A , Eriksson G , Gheribi A E , Hack K , Jung I H , Kang Y B , Melançon J . . FactSage thermochemical software and databases, 2010–2016. Calphad, 2016, 54: 35–53
CrossRef Google scholar
[64]
Chakrabarty S , Li H , Fischlschweiger M . Calphad-informed thermodynamic non-equilibrium simulation of non-isothermal solid-state reactions of magnesium aluminate spinel based on the thermodynamic extremal principle. Materialia, 2023, 28: 101723
CrossRef Google scholar
[65]
Svoboda J , Gamsjäger E , Fischer F D , Fratzl P . Application of the thermodynamic extremal principle to the diffusional phase transformations. Acta Materialia, 2004, 52(4): 959–967
CrossRef Google scholar
[66]
Abart R , Svoboda J , Jeřabek P , Povoden-Karadeniz E , Habler G . Interlayer growth kinetics of a binary solid-solution based on the thermodynamic extremal principle: application to the formation of spinel at periclase-corundum contacts. American Journal of Science, 2016, 316(4): 309–328
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The project on which this publication is based was funded by the German Federal Ministry of Education and Research within the Competence Cluster Recycling & Green Battery (greenBatt) under the grant number 03XP0336A. The authors are responsible for the contents of this publication.

Funding Note

Open access funding enabled and organized by Projekt DEAL.

Open Access

This article is licensed undera Creative CommonsAttribution 4.0 International License, whichpermitsuse, sharing.adaptation, distribution and reproduction in any medium or fomat, as longas you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence, and indicate if changeswere made. The images or other third party material in this article areincluded in the article’s Creative Commons licence, unless indicatedotherwise in a credit line to the material. If material is not included in thearticle’s Creative Commons licence and your intended use is not permittedby statutory regulation or exceeds the permitted use, you will need to obtainpermission directly from the copyright holder. To view a copy of thislicence, visit https://creativecommons.org/licenses/by/4.0.

RIGHTS & PERMISSIONS

2025 The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(3503 KB)

Accesses

Citations

Detail

Sections
Recommended

/