Exploring the potential of bismuth vanadate nanoparticles in supercapacitor technology

Ritika Soni, P. E. Lokhande, Deepak Kumar, Vishal Kadam, Chaitali Jagtap, Udayabhaskar Rednam, Ritika Singh, Kulwinder Singh, Shailesh Padalkar, Bandar Ali Al-Asbahi

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 41.

PDF(3111 KB)
PDF(3111 KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 41. DOI: 10.1007/s11705-025-2542-5
RESEARCH ARTICLE

Exploring the potential of bismuth vanadate nanoparticles in supercapacitor technology

Author information +
History +

Abstract

Supercapacitors have attracted significant attention as a promising energy storage technology due to their high power density and rapid charge-discharge capabilities. In this study, we synthesized bismuth vanadate (BiVO4) with varying molar ratios using the sol-gel combustion method and evaluated their effectiveness as supercapacitor electrodes. Crystallographic and morphological analyses confirmed the formation of nanoparticles with different phases. The vanadium-rich BiVO4 compound electrode exhibited a maximum specific capacitance of 893 F·g–1 at a current density of 0.5 A·g–1 and demonstrated superior rate capability. Additionally, an all-solid-state asymmetric supercapacitor, fabricated using vanadium-rich BiVO4 and activated carbon along with a gel electrolyte, achieved an energy density of 6.66 Wh·kg–1 at a power density of 600 W·kg–1 and sustained 86% capacitance retention after 10000 cycles. These results highlight the potential of Bi-V compounds in energy storage applications.

Graphical abstract

Keywords

BiVO4 / supercapacitor / energy storage / sol-gel combustion method

Cite this article

Download citation ▾
Ritika Soni, P. E. Lokhande, Deepak Kumar, Vishal Kadam, Chaitali Jagtap, Udayabhaskar Rednam, Ritika Singh, Kulwinder Singh, Shailesh Padalkar, Bandar Ali Al-Asbahi. Exploring the potential of bismuth vanadate nanoparticles in supercapacitor technology. Front. Chem. Sci. Eng., 2025, 19(5): 41 https://doi.org/10.1007/s11705-025-2542-5

References

[1]
Hayat H P , Dokan F K , Onses M S , Yılmaz E , Duran A , Sahmetlioglu E . Flexible electrodes composed of flower-like MoS2 and MXene for supercapacitor applications. Materials Research Bulletin, 2024, 175: 112747
CrossRef Google scholar
[2]
YangXHuCChenYSongZMiaoZLvYDuanHLiuMGanL. Tailoring ion-accessible pores of robust nitrogen heteroatomic carbon nanoparticles for high-capacity and long-life Zn-ion storage. Journal of Energy Storage, 2024, 104(Part A): 114509
[3]
Bobade R G , Nakate U T , Roasiah P , Ouladsmane M , Lokhande B J , Ambare R C . Nanoarchitectonics of Bi2CuO4 electrodes for asymmetric Bi2CuO4//AC solid-state device in supercapacitor application. Inorganic Chemistry Communications, 2023, 154: 110998
CrossRef Google scholar
[4]
Lokhande P E , Pakdel A , Pathan H M , Kumar D , Vo D V N , Al-Gheethi A , Sharma A , Goel S , Singh P P , Lee B K . Prospects of MXenes in energy storage applications. Chemosphere, 2022, 297: 134225
CrossRef Google scholar
[5]
Bobade R G , Dabke N B , Shaikh S F , Al-Enizi A M , Pandit B , Lokhande B J , Ambare R C . Concentration-dependent SILAR synthesized di-bismuth copper oxide nano-materials electrode in asymmetric supercapacitor. Journal of Materials Science Materials in Electronics, 2024, 35(2): 129
CrossRef Google scholar
[6]
BobadeR GDabkeN BShaikhS FLokhandeB JManeR SAmbareR C. Facile chemical synthesis of BaO: MgO nanorods for designing distinctive solid-state asymmetric supercapacitor device with activated carbon. Journal of Energy Storage, 2024, 84(Part A): 110776
[7]
Bobade R G , Dabke N B , Shaikh S F , Al-Enizi A M , Pandit B , Lokhande B J , Ambare R C . Influence of deposition potential on electrodeposited bismuth-copper oxide electrodes for asymmetric supercapacitor. Batteries & Supercaps, 2024, 7(6): e202400163
CrossRef Google scholar
[8]
Zhao H , Zhao G , Liu F , Xiang T , Zhou J , Li L . Realizing dendrite-free lithium deposition with three-dimensional soft-rigid nanofiber interlayers. Journal of Colloid and Interface Science, 2024, 666: 131–140
CrossRef Google scholar
[9]
Yan R , Wang J , He S , Huang L , Wang B , Zhu M , Hu S . Quasi-solid-state silicon-air batteries with high capacities and wide-temperature adaptabilities. Energy Storage Materials, 2024, 71: 103656
CrossRef Google scholar
[10]
Zhang D , Miao L , Song Z , Zheng X , Lv Y , Gan L , Liu M . Electrolyte additive strategies for safe and high-performance aqueous zinc-ion batteries: a mini-review. Energy & Fuels, 2024, 38(14): 12510–12527
CrossRef Google scholar
[11]
Zhang J , Wang F , Zhou J , Zhang Z , Li J , Chen W . Role of thermal and electric fields in the failure mechanism of metallized film capacitors: insights from molecular chain dynamics within polymer dielectrics. Journal of Physics D: Applied Physics, 2025, 58(8): 085503
CrossRef Google scholar
[12]
Tu C , Zhang Z , Qi X , Wang F , Yang Z . Heteroelectrocatalyst MoS2@CoS2 modified separator for Li-S battery: unveiling superior polysulfides conversion and reaction kinetics. Chemical Engineering Journal, 2024, 499: 155915
CrossRef Google scholar
[13]
Tian Y , Cai Y , Chen Y , Jia M , Hu H , Xie W , Li D , Song H , Guo S , Zhang Z . Accessing the O vacancy with anionic redox chemistry toward superior electrochemical performance in O3 type Na-ion oxide cathode. Advanced Functional Materials, 2024, 34(32): 2316342
CrossRef Google scholar
[14]
Lan L , Zhao H , Jiang Y , Jin C , Zhao G , Li L . A thermomechanically stable nanofiber separator with multiscale MOF networks towards high-efficiency ion transport. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2025,
CrossRef Google scholar
[15]
Pujari S S , Bobade R G , Shaikh S F , Al-Enizi A M , Ambare R C , Lokhande B J . A binderless Ru: α-Fe2O3 binary nanocomposite electrode for supercapacitor applications. Journal of Materials Science Materials in Electronics, 2024, 35(34): 2162
CrossRef Google scholar
[16]
Gaikwad D S , Bobade R G , Suryawanshi V B , Nakate U T , Shaikh S F , Al-Enizi A M , Dabke N B , Lokhande B J , Ambare R C . Electrochemical property of nanosphere-like MgO electrode synthesized via SILAR in asymmetric supercapacitor. Journal of Materials Science Materials in Electronics, 2024, 35(5): 363
CrossRef Google scholar
[17]
Randive S G , Bobade R G , Ambare R C , Lokhande B J . Spray pyrolyzed thorn-like nanostructured nickel oxide electrodes for symmetric supercapacitor device. Journal of Materials Science Materials in Electronics, 2024, 35(8): 577
CrossRef Google scholar
[18]
Chen Y , Song Z , Lv Y , Gan L , Liu M . NH4+-modulated cathodic interfacial spatial charge redistribution for high-performance dual-ion capacitors. Nano-Micro Letters, 2025, 17(1): 117
CrossRef Google scholar
[19]
Li X , Xiong S , Li G , Xiao S , Zhang C , Ma Y . Effect of microstructure on electrochemical performance of electrode materials for microsupercapacitor. Materials Letters, 2023, 346: 134481
CrossRef Google scholar
[20]
Gao L , Cao M , Zhang C , Li J , Zhu X , Guo X , Toktarbay Z . Zinc selenide/cobalt selenide in nitrogen-doped carbon frameworks as anode materials for high-performance sodium-ion hybrid capacitors. Advanced Composites and Hybrid Materials, 2024, 7(5): 144
CrossRef Google scholar
[21]
Jiang L , Shi H , Han M , Zhang Y , Liang J , Chen J , Geng S , Tong L , Sheng L . Rearrangement of pore structure-enabled micropore-dominant N,O co-doped carbon for ultrafast charge/discharge rate supercapacitors at commercial-scale mass loading. ACS Sustainable Chemistry & Engineering, 2024, 12(51): 18422–18433
CrossRef Google scholar
[22]
Cai D , Yang Z , Tong R , Huang H , Zhang C , Xia Y . Binder-free MOF-based and MOF-derived nanoarrays for flexible electrochemical energy storage: progress and perspectives. Small, 2024, 20(12): 2305778
CrossRef Google scholar
[23]
LokhandeP EChavanU SBhosaleSKalamADeokarS. New-Generation Materials for Flexible Supercapacitors. In: Flexible Supercapacitor Nanoarchitectonics. New Jersey: Wiley, 2021, 277–313
[24]
Kadam V S , Jagtap C V , Lokhande P E , Bulakhe R U , Kang S W , Yadav A A , Pathan H M . One-step deposition of nanostructured Ni(OH)2/rGO for supercapacitor applications. Journal of Materials Science Materials in Electronics, 2023, 34(13): 1083
CrossRef Google scholar
[25]
Lokhande P , Chavan U . Cyclic voltammetry behavior modeling of fabricated nanostructured Ni(OH)2 electrode using artificial neural network for supercapacitor application. In: Proceedings of the Institution of Mechanical Engineers. Maharashtra: Journal of Mechanical Engineering Science, 2020, 234(13): 2563–2568
CrossRef Google scholar
[26]
Sengottaiyan C , Kalam N A , Jayavel R , Shrestha R G , Subramani T , Sankar S , Hill J P , Shrestha L K , Ariga K . BiVO4/RGO hybrid nanostructure for high performance electrochemical supercapacitor. Journal of Solid State Chemistry, 2019, 269: 409–418
CrossRef Google scholar
[27]
Dutta S , Pal S , De S . Hydrothermally synthesized BiVO4-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode with excellent cycle stability. New Journal of Chemistry, 2018, 42(12): 10161–10166
CrossRef Google scholar
[28]
Wen Z B , Yu F , You T , Zhu L , Zhang L , Wu Y P . A core-shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors. Materials Research Bulletin, 2016, 74: 241–247
CrossRef Google scholar
[29]
Chen W , Fan Z , Gu L , Bao X , Wang C . Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chemical Communications, 2010, 46(22): 3905
CrossRef Google scholar
[30]
Niu L , Li Z , Xu Y , Sun J , Hong W , Liu X , Wang J , Yang S . Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Applied Materials & Interfaces, 2013, 5(16): 8044–8052
CrossRef Google scholar
[31]
Ammar A U , Bakan-Misirlioglu F , Aleinawi M H , Franzo G , Condorelli G G , Yesilbag F N T , Yesilbag Y O , Mirabella S , Erdem E . All-in-one supercapacitors with high performance enabled by Mn/Cu doped ZnO and MXene. Materials Research Bulletin, 2023, 165: 112334
CrossRef Google scholar
[32]
Zhang Y , Li L , Su H , Huang W , Dong X . Binary metal oxide: advanced energy storage materials in supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(1): 43–59
CrossRef Google scholar
[33]
Zhang Y , Ma M , Yang J , Su H , Huang W , Dong X . Selective synthesis of hierarchical mesoporous spinel NiCo2O4 for high-performance supercapacitors. Nanoscale, 2014, 6(8): 4303
CrossRef Google scholar
[34]
Salunkhe R R , Kaneti Y V , Yamauchi Y . Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano, 2017, 11(6): 5293–5308
CrossRef Google scholar
[35]
Su J , Guo L , Bao N , Grimes C A . Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Letters, 2011, 11(5): 1928–1933
CrossRef Google scholar
[36]
Malathi A , Madhavan J , Ashokkumar M , Arunachalam P . A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Applied Catalysis A-General, 2018, 555: 47–74
CrossRef Google scholar
[37]
Khan Z , Bhattu S , Haram S , Khushalani D . SWCNT/BiVO4 composites as anode materials for supercapacitor application. RSC Advances, 2014, 4(33): 17378–17381
CrossRef Google scholar
[38]
Sleight A W , Chen H , Ferretti A , Cox D E . Crystal growth and structure of BiVO4. Materials Research Bulletin, 1979, 14(12): 1571–1581
CrossRef Google scholar
[39]
Packiaraj R , Venkatesh K S , Devendran P , Bahadur S A , Nallamuthu N . Structural, morphological and electrochemical studies of nanostructured BiVO4 for supercapacitor application. Materials Science in Semiconductor Processing, 2020, 115: 105122
CrossRef Google scholar
[40]
Pardeshi O M , Gite A B , Jain G H , Palve B M , Patil A V . Sol gel auto-combustion synthesis of bismuth vanadate (BiVO4) nanoparticles and its supercapacitor applications. Journal of Materials Science Materials in Electronics, 2023, 34(26): 1817
CrossRef Google scholar
[41]
Subbiah M , Ansalin Gnana Sowndarya A , Sundaramurthy A , Venkatachalam S , Saravanan N , Pitchaimuthu S , Srinivasan N . Tailoring hierarchical BiVO4 sub-micron particles for enhanced cyclability in asymmetric supercapacitor. Journal of Energy Storage, 2023, 71: 108137
CrossRef Google scholar
[42]
Bommineedi L K , Pandit B , Sankapal B R . Spongy nano surface architecture of chemically grown BiVO4: high-capacitance retentive electrochemical supercapacitor. International Journal of Hydrogen Energy, 2021, 46(50): 25586–25595
CrossRef Google scholar
[43]
Jagtap C , Kadam V , Kamble B , Lokhande P E , Pakdel A , Kumar D , Udayabhaskar R , Vedpathak A , Chaure N B , Pathan H M . Synergistic growth of cobalt hydroxide on reduced graphene oxide/nickel foam for supercapacitor application. Journal of Energy Storage, 2024, 83: 110666
CrossRef Google scholar
[44]
Williamson G K , Smallman R E . III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philosophical Magazine, 1956, 1(1): 34–46
CrossRef Google scholar
[45]
Mali S S , Park G R , Kim H , Kim H H , Patil J V , Hong C K . Synthesis of nanoporous Mo: BiVO4 thin film photoanodes using the ultrasonic spray technique for visible-light water splitting. Nanoscale Advances, 2019, 1(2): 799–806
CrossRef Google scholar
[46]
Kamble G S , Ling Y C . Solvothermal synthesis of facet-dependent BiVO4 photocatalyst with enhanced visible-light-driven photocatalytic degradation of organic pollutant: assessment of toxicity by zebrafish embryo. Scientific Reports, 2020, 10(1): 12993
CrossRef Google scholar
[47]
Tian Y , Wu H , Hanif A , Niu Y , Yin Y , Gu Y , Chen Z , Gu Q , Ng Y H , Shang J . . N-doped graphitic carbon encapsulating cobalt nanoparticles derived from novel metal-organic frameworks for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2023, 34(8): 108056
CrossRef Google scholar
[48]
Shi T , Song Z , Lv Y , Zhu D , Miao L , Gan L , Liu M . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559
CrossRef Google scholar
[49]
Qin Y , Jha S , Hu C , Song Z , Miao L , Chen Y , Liu P , Lv Y , Gan L , Liu M . Hydrogen-bonded micelle assembly directed conjugated microporous polymers for nanospherical carbon frameworks towards dual-ion capacitors. Journal of Colloid and Interface Science, 2024, 675: 1091–1099
CrossRef Google scholar
[50]
Shao J , Zhou X , Liu Q , Zou R , Li W , Yang J , Hu J . Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO2@MnO2 core/shell nanostructures for supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(11): 6168–6176
CrossRef Google scholar
[51]
Lokhande P E , Jagtap C , Kadam V , Udayabhaskar R , Kumar D , Ali Al-Asbahi B , Anil Kumar Y . 2D MXene incorporated nickel hydroxide composite for supercapacitor application. Journal of Materials Science Materials in Electronics, 2024, 35(10): 697
CrossRef Google scholar
[52]
Lokhande P E , Jagtap C , Kadam V , Udayabhaskar R , Shaikh S F . Microwave-assisted synthesis of gadolinium/cerium oxide nanocomposite for high-performance supercapacitor. Journal of Materials Science Materials in Electronics, 2024, 35(8): 615
CrossRef Google scholar
[53]
Arora Y , Shah A P , Battu S , Maliakkal C B , Haram S , Bhattacharya A , Khushalani D . Nanostructured MoS2/BiVO4 composites for energy storage applications. Scientific Reports, 2016, 6(1): 36294
CrossRef Google scholar
[54]
Dhanasekaran T , Yesuraj J , Narayanan V , Kim K . Gradient oxygen vacancies in BiVO4 olive-seeds nanostructure for electrochemical supercapacitor applications. Materials Chemistry and Physics, 2021, 269: 124737
CrossRef Google scholar
[55]
Annie Canisius D , Joselene Suzan Jennifer P , Joe Raja Ruban M , Varghese D , Gladys Joysi M , Muthupandi S , Madhavan J , Victor Antony Raj M . Duality application analysis of bismuth vanadate (BiVO4) as non-enzymatic glucose sensor and supercapacitor. Inorganic Chemistry Communications, 2025, 171: 113591
CrossRef Google scholar
[56]
Bommineedi L K , Deshmukh T B , Mendhe A C , Rondiya S R , Sankapal B R . Pseudo bismuth vanadate anchored EDLC-MWCNTs: supercapacitive electrode to a symmetric solid-state device. Carbon Trends, 2025, 19: 100475
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors extend their thanks to the Researchers Supporting Project Number (RSP2025R348), King Saud University, Riyadh, Saudi Arabia. The author PEL thankful to ANID for the FONDECYT fellowship (#3230388). The author RU thanks under ANID, CHILE for the financial support the FONDECYT #11220335.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(3111 KB)

Accesses

Citations

Detail

Sections
Recommended

/