Exploring the potential of bismuth vanadate nanoparticles in supercapacitor technology

Ritika Soni , P. E. Lokhande , Deepak Kumar , Vishal Kadam , Chaitali Jagtap , Udayabhaskar Rednam , Ritika Singh , Kulwinder Singh , Shailesh Padalkar , Bandar Ali Al-Asbahi

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 41

PDF (3111KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 41 DOI: 10.1007/s11705-025-2542-5
RESEARCH ARTICLE

Exploring the potential of bismuth vanadate nanoparticles in supercapacitor technology

Author information +
History +
PDF (3111KB)

Abstract

Supercapacitors have attracted significant attention as a promising energy storage technology due to their high power density and rapid charge-discharge capabilities. In this study, we synthesized bismuth vanadate (BiVO4) with varying molar ratios using the sol-gel combustion method and evaluated their effectiveness as supercapacitor electrodes. Crystallographic and morphological analyses confirmed the formation of nanoparticles with different phases. The vanadium-rich BiVO4 compound electrode exhibited a maximum specific capacitance of 893 F·g–1 at a current density of 0.5 A·g–1 and demonstrated superior rate capability. Additionally, an all-solid-state asymmetric supercapacitor, fabricated using vanadium-rich BiVO4 and activated carbon along with a gel electrolyte, achieved an energy density of 6.66 Wh·kg–1 at a power density of 600 W·kg–1 and sustained 86% capacitance retention after 10000 cycles. These results highlight the potential of Bi-V compounds in energy storage applications.

Graphical abstract

Keywords

BiVO4 / supercapacitor / energy storage / sol-gel combustion method

Cite this article

Download citation ▾
Ritika Soni, P. E. Lokhande, Deepak Kumar, Vishal Kadam, Chaitali Jagtap, Udayabhaskar Rednam, Ritika Singh, Kulwinder Singh, Shailesh Padalkar, Bandar Ali Al-Asbahi. Exploring the potential of bismuth vanadate nanoparticles in supercapacitor technology. Front. Chem. Sci. Eng., 2025, 19(5): 41 DOI:10.1007/s11705-025-2542-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hayat H P , Dokan F K , Onses M S , Yılmaz E , Duran A , Sahmetlioglu E . Flexible electrodes composed of flower-like MoS2 and MXene for supercapacitor applications. Materials Research Bulletin, 2024, 175: 112747

[2]

YangXHuCChenYSongZMiaoZLvYDuanHLiuMGanL. Tailoring ion-accessible pores of robust nitrogen heteroatomic carbon nanoparticles for high-capacity and long-life Zn-ion storage. Journal of Energy Storage, 2024, 104(Part A): 114509

[3]

Bobade R G , Nakate U T , Roasiah P , Ouladsmane M , Lokhande B J , Ambare R C . Nanoarchitectonics of Bi2CuO4 electrodes for asymmetric Bi2CuO4//AC solid-state device in supercapacitor application. Inorganic Chemistry Communications, 2023, 154: 110998

[4]

Lokhande P E , Pakdel A , Pathan H M , Kumar D , Vo D V N , Al-Gheethi A , Sharma A , Goel S , Singh P P , Lee B K . Prospects of MXenes in energy storage applications. Chemosphere, 2022, 297: 134225

[5]

Bobade R G , Dabke N B , Shaikh S F , Al-Enizi A M , Pandit B , Lokhande B J , Ambare R C . Concentration-dependent SILAR synthesized di-bismuth copper oxide nano-materials electrode in asymmetric supercapacitor. Journal of Materials Science Materials in Electronics, 2024, 35(2): 129

[6]

BobadeR GDabkeN BShaikhS FLokhandeB JManeR SAmbareR C. Facile chemical synthesis of BaO: MgO nanorods for designing distinctive solid-state asymmetric supercapacitor device with activated carbon. Journal of Energy Storage, 2024, 84(Part A): 110776

[7]

Bobade R G , Dabke N B , Shaikh S F , Al-Enizi A M , Pandit B , Lokhande B J , Ambare R C . Influence of deposition potential on electrodeposited bismuth-copper oxide electrodes for asymmetric supercapacitor. Batteries & Supercaps, 2024, 7(6): e202400163

[8]

Zhao H , Zhao G , Liu F , Xiang T , Zhou J , Li L . Realizing dendrite-free lithium deposition with three-dimensional soft-rigid nanofiber interlayers. Journal of Colloid and Interface Science, 2024, 666: 131–140

[9]

Yan R , Wang J , He S , Huang L , Wang B , Zhu M , Hu S . Quasi-solid-state silicon-air batteries with high capacities and wide-temperature adaptabilities. Energy Storage Materials, 2024, 71: 103656

[10]

Zhang D , Miao L , Song Z , Zheng X , Lv Y , Gan L , Liu M . Electrolyte additive strategies for safe and high-performance aqueous zinc-ion batteries: a mini-review. Energy & Fuels, 2024, 38(14): 12510–12527

[11]

Zhang J , Wang F , Zhou J , Zhang Z , Li J , Chen W . Role of thermal and electric fields in the failure mechanism of metallized film capacitors: insights from molecular chain dynamics within polymer dielectrics. Journal of Physics D: Applied Physics, 2025, 58(8): 085503

[12]

Tu C , Zhang Z , Qi X , Wang F , Yang Z . Heteroelectrocatalyst MoS2@CoS2 modified separator for Li-S battery: unveiling superior polysulfides conversion and reaction kinetics. Chemical Engineering Journal, 2024, 499: 155915

[13]

Tian Y , Cai Y , Chen Y , Jia M , Hu H , Xie W , Li D , Song H , Guo S , Zhang Z . Accessing the O vacancy with anionic redox chemistry toward superior electrochemical performance in O3 type Na-ion oxide cathode. Advanced Functional Materials, 2024, 34(32): 2316342

[14]

Lan L , Zhao H , Jiang Y , Jin C , Zhao G , Li L . A thermomechanically stable nanofiber separator with multiscale MOF networks towards high-efficiency ion transport. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2025,

[15]

Pujari S S , Bobade R G , Shaikh S F , Al-Enizi A M , Ambare R C , Lokhande B J . A binderless Ru: α-Fe2O3 binary nanocomposite electrode for supercapacitor applications. Journal of Materials Science Materials in Electronics, 2024, 35(34): 2162

[16]

Gaikwad D S , Bobade R G , Suryawanshi V B , Nakate U T , Shaikh S F , Al-Enizi A M , Dabke N B , Lokhande B J , Ambare R C . Electrochemical property of nanosphere-like MgO electrode synthesized via SILAR in asymmetric supercapacitor. Journal of Materials Science Materials in Electronics, 2024, 35(5): 363

[17]

Randive S G , Bobade R G , Ambare R C , Lokhande B J . Spray pyrolyzed thorn-like nanostructured nickel oxide electrodes for symmetric supercapacitor device. Journal of Materials Science Materials in Electronics, 2024, 35(8): 577

[18]

Chen Y , Song Z , Lv Y , Gan L , Liu M . NH4+-modulated cathodic interfacial spatial charge redistribution for high-performance dual-ion capacitors. Nano-Micro Letters, 2025, 17(1): 117

[19]

Li X , Xiong S , Li G , Xiao S , Zhang C , Ma Y . Effect of microstructure on electrochemical performance of electrode materials for microsupercapacitor. Materials Letters, 2023, 346: 134481

[20]

Gao L , Cao M , Zhang C , Li J , Zhu X , Guo X , Toktarbay Z . Zinc selenide/cobalt selenide in nitrogen-doped carbon frameworks as anode materials for high-performance sodium-ion hybrid capacitors. Advanced Composites and Hybrid Materials, 2024, 7(5): 144

[21]

Jiang L , Shi H , Han M , Zhang Y , Liang J , Chen J , Geng S , Tong L , Sheng L . Rearrangement of pore structure-enabled micropore-dominant N,O co-doped carbon for ultrafast charge/discharge rate supercapacitors at commercial-scale mass loading. ACS Sustainable Chemistry & Engineering, 2024, 12(51): 18422–18433

[22]

Cai D , Yang Z , Tong R , Huang H , Zhang C , Xia Y . Binder-free MOF-based and MOF-derived nanoarrays for flexible electrochemical energy storage: progress and perspectives. Small, 2024, 20(12): 2305778

[23]

LokhandeP EChavanU SBhosaleSKalamADeokarS. New-Generation Materials for Flexible Supercapacitors. In: Flexible Supercapacitor Nanoarchitectonics. New Jersey: Wiley, 2021, 277–313

[24]

Kadam V S , Jagtap C V , Lokhande P E , Bulakhe R U , Kang S W , Yadav A A , Pathan H M . One-step deposition of nanostructured Ni(OH)2/rGO for supercapacitor applications. Journal of Materials Science Materials in Electronics, 2023, 34(13): 1083

[25]

Lokhande P , Chavan U . Cyclic voltammetry behavior modeling of fabricated nanostructured Ni(OH)2 electrode using artificial neural network for supercapacitor application. In: Proceedings of the Institution of Mechanical Engineers. Maharashtra: Journal of Mechanical Engineering Science, 2020, 234(13): 2563–2568

[26]

Sengottaiyan C , Kalam N A , Jayavel R , Shrestha R G , Subramani T , Sankar S , Hill J P , Shrestha L K , Ariga K . BiVO4/RGO hybrid nanostructure for high performance electrochemical supercapacitor. Journal of Solid State Chemistry, 2019, 269: 409–418

[27]

Dutta S , Pal S , De S . Hydrothermally synthesized BiVO4-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode with excellent cycle stability. New Journal of Chemistry, 2018, 42(12): 10161–10166

[28]

Wen Z B , Yu F , You T , Zhu L , Zhang L , Wu Y P . A core-shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors. Materials Research Bulletin, 2016, 74: 241–247

[29]

Chen W , Fan Z , Gu L , Bao X , Wang C . Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chemical Communications, 2010, 46(22): 3905

[30]

Niu L , Li Z , Xu Y , Sun J , Hong W , Liu X , Wang J , Yang S . Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Applied Materials & Interfaces, 2013, 5(16): 8044–8052

[31]

Ammar A U , Bakan-Misirlioglu F , Aleinawi M H , Franzo G , Condorelli G G , Yesilbag F N T , Yesilbag Y O , Mirabella S , Erdem E . All-in-one supercapacitors with high performance enabled by Mn/Cu doped ZnO and MXene. Materials Research Bulletin, 2023, 165: 112334

[32]

Zhang Y , Li L , Su H , Huang W , Dong X . Binary metal oxide: advanced energy storage materials in supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(1): 43–59

[33]

Zhang Y , Ma M , Yang J , Su H , Huang W , Dong X . Selective synthesis of hierarchical mesoporous spinel NiCo2O4 for high-performance supercapacitors. Nanoscale, 2014, 6(8): 4303

[34]

Salunkhe R R , Kaneti Y V , Yamauchi Y . Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano, 2017, 11(6): 5293–5308

[35]

Su J , Guo L , Bao N , Grimes C A . Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Letters, 2011, 11(5): 1928–1933

[36]

Malathi A , Madhavan J , Ashokkumar M , Arunachalam P . A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Applied Catalysis A-General, 2018, 555: 47–74

[37]

Khan Z , Bhattu S , Haram S , Khushalani D . SWCNT/BiVO4 composites as anode materials for supercapacitor application. RSC Advances, 2014, 4(33): 17378–17381

[38]

Sleight A W , Chen H , Ferretti A , Cox D E . Crystal growth and structure of BiVO4. Materials Research Bulletin, 1979, 14(12): 1571–1581

[39]

Packiaraj R , Venkatesh K S , Devendran P , Bahadur S A , Nallamuthu N . Structural, morphological and electrochemical studies of nanostructured BiVO4 for supercapacitor application. Materials Science in Semiconductor Processing, 2020, 115: 105122

[40]

Pardeshi O M , Gite A B , Jain G H , Palve B M , Patil A V . Sol gel auto-combustion synthesis of bismuth vanadate (BiVO4) nanoparticles and its supercapacitor applications. Journal of Materials Science Materials in Electronics, 2023, 34(26): 1817

[41]

Subbiah M , Ansalin Gnana Sowndarya A , Sundaramurthy A , Venkatachalam S , Saravanan N , Pitchaimuthu S , Srinivasan N . Tailoring hierarchical BiVO4 sub-micron particles for enhanced cyclability in asymmetric supercapacitor. Journal of Energy Storage, 2023, 71: 108137

[42]

Bommineedi L K , Pandit B , Sankapal B R . Spongy nano surface architecture of chemically grown BiVO4: high-capacitance retentive electrochemical supercapacitor. International Journal of Hydrogen Energy, 2021, 46(50): 25586–25595

[43]

Jagtap C , Kadam V , Kamble B , Lokhande P E , Pakdel A , Kumar D , Udayabhaskar R , Vedpathak A , Chaure N B , Pathan H M . Synergistic growth of cobalt hydroxide on reduced graphene oxide/nickel foam for supercapacitor application. Journal of Energy Storage, 2024, 83: 110666

[44]

Williamson G K , Smallman R E . III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philosophical Magazine, 1956, 1(1): 34–46

[45]

Mali S S , Park G R , Kim H , Kim H H , Patil J V , Hong C K . Synthesis of nanoporous Mo: BiVO4 thin film photoanodes using the ultrasonic spray technique for visible-light water splitting. Nanoscale Advances, 2019, 1(2): 799–806

[46]

Kamble G S , Ling Y C . Solvothermal synthesis of facet-dependent BiVO4 photocatalyst with enhanced visible-light-driven photocatalytic degradation of organic pollutant: assessment of toxicity by zebrafish embryo. Scientific Reports, 2020, 10(1): 12993

[47]

Tian Y , Wu H , Hanif A , Niu Y , Yin Y , Gu Y , Chen Z , Gu Q , Ng Y H , Shang J . . N-doped graphitic carbon encapsulating cobalt nanoparticles derived from novel metal-organic frameworks for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2023, 34(8): 108056

[48]

Shi T , Song Z , Lv Y , Zhu D , Miao L , Gan L , Liu M . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559

[49]

Qin Y , Jha S , Hu C , Song Z , Miao L , Chen Y , Liu P , Lv Y , Gan L , Liu M . Hydrogen-bonded micelle assembly directed conjugated microporous polymers for nanospherical carbon frameworks towards dual-ion capacitors. Journal of Colloid and Interface Science, 2024, 675: 1091–1099

[50]

Shao J , Zhou X , Liu Q , Zou R , Li W , Yang J , Hu J . Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO2@MnO2 core/shell nanostructures for supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(11): 6168–6176

[51]

Lokhande P E , Jagtap C , Kadam V , Udayabhaskar R , Kumar D , Ali Al-Asbahi B , Anil Kumar Y . 2D MXene incorporated nickel hydroxide composite for supercapacitor application. Journal of Materials Science Materials in Electronics, 2024, 35(10): 697

[52]

Lokhande P E , Jagtap C , Kadam V , Udayabhaskar R , Shaikh S F . Microwave-assisted synthesis of gadolinium/cerium oxide nanocomposite for high-performance supercapacitor. Journal of Materials Science Materials in Electronics, 2024, 35(8): 615

[53]

Arora Y , Shah A P , Battu S , Maliakkal C B , Haram S , Bhattacharya A , Khushalani D . Nanostructured MoS2/BiVO4 composites for energy storage applications. Scientific Reports, 2016, 6(1): 36294

[54]

Dhanasekaran T , Yesuraj J , Narayanan V , Kim K . Gradient oxygen vacancies in BiVO4 olive-seeds nanostructure for electrochemical supercapacitor applications. Materials Chemistry and Physics, 2021, 269: 124737

[55]

Annie Canisius D , Joselene Suzan Jennifer P , Joe Raja Ruban M , Varghese D , Gladys Joysi M , Muthupandi S , Madhavan J , Victor Antony Raj M . Duality application analysis of bismuth vanadate (BiVO4) as non-enzymatic glucose sensor and supercapacitor. Inorganic Chemistry Communications, 2025, 171: 113591

[56]

Bommineedi L K , Deshmukh T B , Mendhe A C , Rondiya S R , Sankapal B R . Pseudo bismuth vanadate anchored EDLC-MWCNTs: supercapacitive electrode to a symmetric solid-state device. Carbon Trends, 2025, 19: 100475

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3111KB)

963

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/