State-of-the-art polymeric membranes and polymer derived membranes for simultaneous CO2 and H2S removal from sour natural gas

Luxin Sun , Qixuan Li , Kunying Li , Jiachen Chu , Yongsheng Li , Mengtao Wang , Zan Chen , Xiaohua Ma , Shouliang Yi

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 40

PDF (3311KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 40 DOI: 10.1007/s11705-025-2541-6
REVIEW ARTICLE

State-of-the-art polymeric membranes and polymer derived membranes for simultaneous CO2 and H2S removal from sour natural gas

Author information +
History +
PDF (3311KB)

Abstract

Natural gas is an important resource that ensures the energy supply and reduces CO2 emissions simultaneously. However, many natural gases from well head contain a certain amount of acid gas, which must be removed to meet the pipeline requirement. Among the existing natural gas sweetening process, membrane technology is considered as a cost-effective, less energy intensive method that can remove both CO2 and H2S simultaneously. The membranes with high permeability, high selectivity, and good durability are developing very fast. In this review, we summarized the latest state-of-the-art membranes investigated for H2S/CH4 and CO2/CH4 separation applications, including conventional polymer membranes, polyimides, polymer of intrinsic microporosity, rubber polymers, carbon molecular sieve membranes, hollow fiber membranes, and membrane processes for H2S and CO2 removal from natural gas.

Graphical abstract

Keywords

natural gas purification / H2S removal / CO2 capture / membranes / hollow fiber

Cite this article

Download citation ▾
Luxin Sun, Qixuan Li, Kunying Li, Jiachen Chu, Yongsheng Li, Mengtao Wang, Zan Chen, Xiaohua Ma, Shouliang Yi. State-of-the-art polymeric membranes and polymer derived membranes for simultaneous CO2 and H2S removal from sour natural gas. Front. Chem. Sci. Eng., 2025, 19(5): 40 DOI:10.1007/s11705-025-2541-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Q , Zhu D , Jin Z , Tian H , Zhou B , Jiang P , Meng Q , Wu X , Xu H , Hu T . . Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs. Renewable & Sustainable Energy Reviews, 2023, 171: 113000

[2]

Hanssen S V , Daioglou V , Steinmann Z J N , Doelman J C , Van Vuuren D P , Huijbregts M A J . The climate change mitigation potential of bioenergy with carbon capture and storage. Nature Climate Change, 2020, 10(11): 1023–1029

[3]

Li H , Zhao J , Zhang R , Hou B . The natural gas consumption and mortality nexus: a mediation analysis. Energy, 2022, 248: 123577

[4]

Hafezi R , Akhavan A , Pakseresht S A , Wood D . Global natural gas demand to 2025: a learning scenario development model. Energy, 2021, 224: 120167

[5]

Baker R W , Lokhandwala K . Natural gas processing with membranes: an overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121

[6]

Ma Y , Guo H , Selyanchyn R , Wang B , Deng L , Dai Z , Jiang X . Hydrogen sulfide removal from natural gas using membrane technology: a review. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(36): 20211–20240

[7]

Boschee P . Taking on the technical challenges of sour gas processing. Oil and Gas Facilities, 2014, 3(6): 21–25

[8]

Harasimowicz M , Orluk P , Zakrzewska-Trznadel G , Chmielewski A G . Application of polyimide membranes for biogas purification and enrichment. Journal of Hazardous Materials, 2007, 144(3): 698–702

[9]

Burgers W F J , Northrop P S , Kheshgi H S , Valencia J A . Worldwide development potential for sour gas. Energy Procedia, 2011, 4: 2178–2184

[10]

Aminuddin M S , Bustam M A , Johari K . Latest technological advances and insights into capture and removal of hydrogen sulfide: a critical review. RSC Sustainability, 2024, 2(4): 757–803

[11]

Reiffenstein R J , Hulbert W C , Roth S H . Toxicology of hydrogen sulfide. Annual Review of Pharmacology and Toxicology, 1992, 32(1): 109–134

[12]

Du Z , Liu C , Zhai J , Guo X , Xiong Y , Su W , He G . A review of hydrogen purification technologies for fuel cell vehicles. Catalysts, 2021, 11(3): 393

[13]

Qi M , Liu Y , He T , Yin L , Shu C M , Moon I . System perspective on cleaner technologies for renewable methane production and utilisation towards carbon neutrality: principles, techno-economics, and carbon footprints. Fuel, 2022, 327: 125130

[14]

Khan U , Ogbaga C C , Abiodun O A O , Adeleke A A , Ikubanni P P , Okoye P U , Okolie J A . Assessing absorption-based CO2 capture: research progress and techno-economic assessment overview. Carbon Capture Science & Technology, 2023, 8: 100125

[15]

Scholes C A , Stevens G W , Kentish S E . Membrane gas separation applications in natural gas processing. Fuel, 2012, 96: 15–28

[16]

Rezakazemi M , Heydari I , Zhang Z . Hybrid systems: combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas. Journal of CO2 Utilization, 2017, 18: 362–369

[17]

Liu C , Greer D W , O’Leary B W . Advanced Materials and Membranes for Gas Separations: UOP Approach. Nanotechnology: Delivering on the Promise, 2016, 2: 119–135

[18]

Bernardo P , Tasselli F , Clarizia G . Gas separation hollow fiber membranes: processing conditions for manipulating morphology and performance. Chemical Engineering Transactions, 2013, 32: 1999–2004

[19]

AndersonC L. Case Study: Membrane CO2 Removal From Natural Gas. Regional Symposium on Membrane Science & Technology, 2004.

[20]

Alcheikhhamdon Y , Hoorfar M . Natural gas purification from acid gases using membranes: a review of the history, features, techno-commercial challenges, and process intensification of commercial membranes. Chemical Engineering and Processing, 2017, 120: 105–113

[21]

Bettenhausen C . Evonik boosts gas separation membrane capacity. Chemical and Engineering News, 2021, 99(33): 14

[22]

Hasan R , Scholes C A , Stevens G W , Kentish S E . Effect of hydrocarbons on the separation of carbon dioxide from methane through a polyimide gas separation membrane. Industrial & Engineering Chemistry Research, 2009, 48(11): 5415–5419

[23]

Galizia M , Chi W S , Smith Z P , Merkel T C , Baker R W , Freeman B D . 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules, 2017, 50(20): 7809–7843

[24]

Brunetti A , Scura F , Barbieri G , Drioli E . Membrane technologies for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 115–125

[25]

George G , Bhoria N , AlHallaq S , Abdala A , Mittal V . Polymer membranes for acid gas removal from natural gas. Separation and Purification Technology, 2016, 158: 333–356

[26]

Chen X , Liu G , Jin W . Natural gas purification by asymmetric membranes: an overview. Green Energy & Environment, 2021, 6(2): 176–192

[27]

Sanders D F , Smith Z P , Guo R , Robeson L M , McGrath J E , Paul D R , Freeman B D . Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer, 2013, 54(18): 4729–4761

[28]

Sun L , Xu Z , Huang L , Wang H , Zhang H , Li J , Wang Y , Ma X . Significantly enhanced gas separation properties of membranes by debromination and thermal rearrangement simultaneously. Journal of Membrane Science, 2024, 698: 122619

[29]

Weng Y , Li N , Xu Z , Huang J , Huang L , Wang H , Li J , Wang Y , Ma X . Super high gas separation performance membranes derived from a brominated alternative PIM by thermal induced crosslinking and carbonization at low temperature. Separation and Purification Technology, 2023, 314: 123548

[30]

Robeson L M . Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185

[31]

BakerR W. Membrane Technology and Applications. 2nd ed. Hoboken: John Wiley & Sons, 2004

[32]

Wijmans J G , Baker R W . The solution-diffusion model: a review. Journal of Membrane Science, 1995, 107(1–2): 1–21

[33]

Barrer R M . Diffusivities in glassy polymers for the dual mode sorption model. Journal of Membrane Science, 1984, 18: 25–35

[34]

CrankJ. The Mathematic of Diffusion. Oxford: Oxford at the Clarendon Press, 1975

[35]

YampolskiiYPinnauIFreemanB. Materials Science of Membranes for Gas and Vapor Separation. Hoboken: John Wiley & Sons, 2006

[36]

Bondi A . van der Waals volumes and radii. Journal of Physical Chemistry, 1964, 68(3): 441–451

[37]

Freeman B D . Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 1999, 32(2): 375–380

[38]

Robeson L M . The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400

[39]

Comesaña-Gándara B , Chen J , Bezzu C G , Carta M , Rose I , Ferrari M C , Esposito E , Fuoco A , Jansen J C , McKeown N B . Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12(9): 2733–2740

[40]

Yi S , Ghanem B , Liu Y , Pinnau I , Koros W J . Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation. Science Advances, 2019, 5(5): eaaw5459

[41]

Hayek A , Shalabi Y A , Alsamah A . Sour mixed-gas upper bounds of glassy polymeric membranes. Separation and Purification Technology, 2021, 277: 119535

[42]

Kraftschik B , Koros W J , Johnson J R , Karvan O . Dense film polyimide membranes for aggressive sour gas feed separations. Journal of Membrane Science, 2013, 428: 608–619

[43]

Liu Y , Liu Z , Liu G , Qiu W , Bhuwania N , Chinn D , Koros W J . Surprising plasticization benefits in natural gas upgrading using polyimide membranes. Journal of Membrane Science, 2020, 593: 117430

[44]

Dong G , Li H , Chen V . Plasticization mechanisms and effects of thermal annealing of Matrimid hollow fiber membranes for CO2 removal. Journal of Membrane Science, 2011, 369(1–2): 206–220

[45]

Bos A , Pünt I G M , Wessling M , Strathmann H . CO2-induced plasticization phenomena in glassy polymers. Journal of Membrane Science, 1999, 155(1): 67–78

[46]

Minelli M , Oradei S , Fiorini M , Sarti G C . CO2 plasticization effect on glassy polymeric membranes. Polymer, 2019, 163: 29–35

[47]

Low B T , Chung T S , Chen H , Jean Y C , Pramoda K P . Tuning the free volume cavities of polyimide membranes via the construction of pseudo-interpenetrating networks for enhanced gas separation performance. Macromolecules, 2009, 42(18): 7042–7054

[48]

Kratochvil A M , Koros W J . Decarboxylation-induced cross-linking of a polyimide for enhanced CO2 plasticization resistance. Macromolecules, 2008, 41(21): 7920–7927

[49]

Qiu W L , Chen C C , Xu L R , Cui L L , Paul D R , Koros W J . Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation. Macromolecules, 2011, 44(15): 6046–6056

[50]

Rowe B W , Robeson L M , Freeman B D , Paul D R . Influence of temperature on the upper bound: theoretical considerations and comparison with experimental results. Journal of Membrane Science, 2010, 360(1–2): 58–69

[51]

OdianG. Principles of Polymerization. 4th ed. Hoboken: John Wiley & Sons, 2004

[52]

Klemm D , Heublein B , Fink H P , Bohn A . Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 2005, 44(22): 3358–3393

[53]

Bashir Z , Lock S S M , Hira N E , Ilyas S U , Lim L G , Lock I S M , Yiin C L , Darban M A . A review on recent advances of cellulose acetate membranes for gas separation. RSC Advances, 2024, 14(27): 19560–19580

[54]

Puleo A C , Paul D R , Kelley S S . The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate. Journal of Membrane Science, 1989, 47(3): 301–332

[55]

Schell W J , Wensley C G , Chen M S K , Venugopal K G , Miller B D , Stuart J A . Recent advances in cellulosic membranes for gas separation and pervaporation. Gas Separation & Purification, 1989, 3(4): 162–169

[56]

Chatterjee G , Houde A A , Stern S A . Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity. Journal of Membrane Science, 1997, 135(1): 99–106

[57]

Achoundong C S K , Bhuwania N , Burgess S K , Karvan O , Johnson J R , Koros W J . Silane modification of cellulose acetate dense films as materials for acid gas removal. Macromolecules, 2013, 46(14): 5584–5594

[58]

Peters T A , Ansaloni L , Tena A , Karvan O , Visser T , Chinn D , Bhuwania N . Performance and stability of cellulose triacetate membranes in humid high H2S natural gas feed streams. Journal of Membrane Science, 2024, 693: 122324

[59]

AldhawiZ A. BinSharfan I I, Abdulhamid M A. Chapter 1 Polyimide-based membranes for gas separation applications. In: Polymer Membranes: Increasing Energy Efficiency. Boston: De Gruyter, 2024: 1–44

[60]

MaX HYangS Y. Polyimide Gas Separation Membranes. In: Advanced Polyimide Materials. Amsterdam: Elsevier, 2018: 257–322

[61]

Wang Y , Alaslai N , Ghanem B , Ma X , Hu X , Balcik M , Liu Q , Abdulhamid M A , Han Y , Eddaoudi M . . Hydroxyl-functionalized polymers of intrinsic microporosity and dual-functionalized blends for high-performance membrane-based gas separations. Advanced Materials, 2024, 36(51): 2406076

[62]

Guo W , Sun L , Chu J , Liu L , Li J , Ma X . Huge improved gas separation performance of carbon molecular sieve membrane by forming a double crosslinked polyimide precursor. Journal of Membrane Science, 2024, 711: 123218

[63]

Chen J , Cai M , Han Z , Chen Z , Sun L , Liu H , Zhang S , Cui T , Min Y . Ultra-high selectivity carbon molecular sieve membrane derived from PI/SPANI blends for efficient gas separation. Separation and Purification Technology, 2025, 354: 128797

[64]

Ye C , Luo C , Ji W , Weng Y , Li J , Yi S , Ma X . Significantly enhanced gas separation properties of microporous membranes by precisely tailoring their ultra-microporosity through bromination/debromination. Chemical Engineering Journal, 2023, 451: 138513

[65]

Zhao W , Li K , Ma Y , Gao Y , Zhang J , Zhou L , Wang W , Wang J , Ma Y , Guo M . . Simultaneously enhanced gas separation and anti-aging performance of intrinsic microporous polyimide by dibromo substitution. Journal of Membrane Science, 2023, 687: 122081

[66]

Zhao W , Zhang J , Liu C , Ma Y , Li K , Guo M , Jiao L , Ma X , Yang L , Yang S . . Fine-tuning gas separation performance of intrinsic microporous polyimide by the regulation of atomic-level halogen substitution. Journal of Membrane Science, 2024, 692: 122317

[67]

Ma X H , Abdulhamid M , Miao X H , Pinnau I . Facile synthesis of a hydroxyl-functionalized Tröger’s base diamine: a new building block for high-performance polyimide gas separation membranes. Macromolecules, 2017, 50(24): 9569–9576

[68]

Ma X H , Abdulhamid M A , Pinnau I . Design and synthesis of polyimides based on carbocyclic Pseudo-Tröger’s base-derived dianhydrides for membrane gas separation applications. Macromolecules, 2017, 50(15): 5850–5857

[69]

Zhang S , Xu Z , Weng Y , Cai M , Wang Y , Zhu W , Min Y , Ma X . Remarkable gas separation performance of a thermally rearranged membrane derived from an alkynyl self-crosslinkable precursor. Journal of Membrane Science, 2023, 672: 121464

[70]

White L S , Blinka T A , Kloczewski H A , Wang I F . Properties of a polyimide gas separation membrane in natural gas streams. Journal of Membrane Science, 1995, 103(1–2): 73–82

[71]

Tanaka K , Kita H , Okamoto K , Nakamura A , Kusuki Y . Gas permeability and permselectivity in polyimides based on 3,3′,4,4′-biphenyltetracarboxylic dianhydride. Journal of Membrane Science, 1989, 47(1–2): 203–215

[72]

Tanaka K , Okano M , Toshino H , Kita H , Okamoto K I . Effect of methyl substituents on permeability and permselectivity of gases in polyimides prepared from methyl-substituted phenylenediamines. Journal of Polymer Science. Part B, Polymer Physics, 1992, 30(8): 907–914

[73]

Vaughn J T , Koros W J , Johnson J R , Karvan O . Effect of thermal annealing on a novel polyamide-imide polymer membrane for aggressive acid gas separations. Journal of Membrane Science, 2012, 401–402: 163–174

[74]

Vaughn J T , Koros W J . Analysis of feed stream acid gas concentration effects on the transport properties and separation performance of polymeric membranes for natural gas sweetening: a comparison between a glassy and rubbery polymer. Journal of Membrane Science, 2014, 465: 107–116

[75]

Yahaya G O , Qahtani M S , Ammar A Y , Bahamdan A A , Ameen A W , Alhajry R H , Sultan M M B , Hamad F . Aromatic block co-polyimide membranes for sour gas feed separations. Chemical Engineering Journal, 2016, 304: 1020–1030

[76]

Yahaya G O , Hayek A , Alsamah A , Shalabi Y A , Ben Sultan M M , Alhajry R H . Copolyimide membranes with improved H2S/CH4 selectivity for high-pressure sour mixed-gas separation. Separation and Purification Technology, 2021, 272: 118897

[77]

Yahaya G O , Mokhtari I , Alghannam A A , Choi S H , Maab H , Bahamdan A A . Cardo-type random co-polyimide membranes for high pressure pure and mixed sour gas feed separations. Journal of Membrane Science, 2018, 550: 526–535

[78]

Alghannam A A , Yahaya G O , Hayek A , Mokhtari I , Saleem Q , Sewdan D A , Bahamdan A A . High pressure pure- and mixed sour gas transport properties of Cardo-type block co-polyimide membranes. Journal of Membrane Science, 2018, 553: 32–42

[79]

Hayek A , Yahaya G O , Alsamah A , Panda S K . Fluorinated copolyimide membranes for sour mixed-gas upgrading. Journal of Applied Polymer Science, 2019, 137(5): 48336

[80]

Ghanem B S , McKeown N B , Budd P M , Selbie J D , Fritsch D . High-performance membranes from polyimides with intrinsic microporosity. Advanced Materials, 2008, 20(14): 2766–2771

[81]

Lee M , Bezzu C G , Carta M , Bernardo P , Clarizia G , Jansen J C , McKeown N B . Enhancing the gas permeability of Tröger’s base derived polyimides of intrinsic microporosity. Macromolecules, 2016, 49(11): 4147–4154

[82]

Hayek A , Yahaya G O , Alsamah A , Alghannam A A , Jutaily S A , Mokhtari I . Pure- and sour mixed-gas transport properties of 4,4′-methylenebis(2,6-diethylaniline)-based copolyimide membranes. Polymer, 2019, 166: 184–195

[83]

Hayek A , Alsamah A , Qasem E A , Alaslai N , Alhajry R H , Yahaya G O . Effect of pendent bulky groups on pure- and sour mixed-gas permeation properties of triphenylamine-based polyimides. Separation and Purification Technology, 2019, 227: 115713

[84]

Hayek A , Alsamah A , Yahaya G O , Qasem E A , Alhajry R H . Post-synthetic modification of CARDO-based materials: application in sour natural gas separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(44): 23354–23367

[85]

Hayek A , Alsamah A , Saleem Q , Alhajry R H , Alsuwailem A A , Jassim F I . Modified CARDO-based copolyimides with improved sour mixed-gas permeation properties. ACS Applied Polymer Materials, 2022, 4(12): 9257–9271

[86]

Liu Z , Liu Y , Qiu W , Koros W J . Molecularly engineered 6FDA-based polyimide membranes for sour natural gas separation. Angewandte Chemie International Edition, 2020, 59(35): 14877–14883

[87]

Kraftschik B , Koros W J . Cross-linkable polyimide membranes for improved plasticization resistance and permselectivity in sour gas separations. Macromolecules, 2013, 46(17): 6908–6921

[88]

Budd P M , Ghanem B S , Makhseed S , McKeown N B , Msayib K J , Tattershall C E . Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chemical Communications, 2004, (2): 230–231

[89]

Rose I , Bezzu C G , Carta M , Comesana-Gandara B , Lasseuguette E , Ferrari M C , Bernardo P , Clarizia G , Fuoco A , Jansen J C . . Polymer ultrapermeability from the inefficient packing of 2D chains. Nature Materials, 2017, 16(9): 932–937

[90]

Carta M , Malpass-Evans R , Croad M , Rogan Y , Jansen J C , Bernardo P , Bazzarelli F , McKeown N B . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307

[91]

Lai H W H , Benedetti F M , Ahn J M , Robinson A M , Wang Y , Pinnau I , Smith Z P , Xia Y . Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations. Science, 2022, 375(6587): 1390–1392

[92]

Chen L , Han X , Chen G , Sun R , Li W , Lin Z , Pang J , Jiang Z . A structure-property study for the effect of methyl substituents on the gas separation of spirodifluoranthene-based polymers of intrinsic microporosity. Journal of Membrane Science, 2023, 683: 121817

[93]

Chen L , Li W , Chen G , Lin Z , Pang J , Jiang Z . In situ hydrolyzed microporous polymer membranes for additional free volume to facilitate CO2 permeation. Journal of Membrane Science, 2025, 713: 123379

[94]

Sun L , Xu W , Zhang H , Chu J , Wang M , Song K , Wu W , Li J , Wang Y , Wang Y . . In-situ formation of three-dimensional network intrinsic microporous ladder polymer membranes with ultra-high gas separation performance and anti-trade-off effect. Angewandte Chemie International Edition, 2025, 64: e202420742

[95]

Yu C , Wang Y , Xia Y , Luo S , Ma X , Yin B H , Wang X . Polymers of intrinsic microporosity with internal dihedral lock for efficient gas separation. Advanced Membranes, 2024, 4: 100097

[96]

MasudaTIsobeEHamanoT. Synthesis of poly[1-(trimethylsilyl)-1-propyne] with extremely high molecular weight by using tantalum pentachloride-triphenylbismuth (1:1) catalyst. Macromolecules. 1986, 19(9): 2448–2450.

[97]

Merkel T . Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperatures. Journal of Membrane Science, 2001, 191(1–2): 85–94

[98]

Malykh O V , Golub A Y , Teplyakov V V . Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases. Advances in Colloid and Interface Science, 2011, 164(1–2): 89–99

[99]

Yi S L , Ma X H , Pinnau I , Koros W J . A high-performance hydroxyl-functionalized polymer of intrinsic microporosity for an environmentally attractive membrane-based approach to decontamination of sour natural gas. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(45): 22794–22806

[100]

Mizrahi Rodriguez K , Dean P A , Guo S , Roy N , Swager T M , Smith Z P . Elucidating the role of micropore-generating backbone motifs and amine functionality on membrane separation performance in complex mixtures. Journal of Membrane Science, 2024, 696: 122464

[101]

Dean P A , Mizrahi Rodriguez K , Guo S , Roy N , Swager T M , Smith Z P . Elucidating the role of micropore-generating backbone motifs and amine functionality on H2S, CO2, CH4, and N2 sorption. Journal of Membrane Science, 2024, 696: 122465

[102]

Dean P A , Wu Y , Guo S , Swager T M , Smith Z P . Tertiary-amine-functional poly(arylene ether)s for acid-gas separations. JACS Au, 2024, 4(10): 3848–3856

[103]

Park H B , Jung C H , Lee Y M , Hill A J , Pas S J , Mudie S T , Van Wagner E , Freeman B D , Cookson D J . Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318(5848): 254–258

[104]

Yerzhankyzy A , Ghanem B S , Wang Y , Alaslai N , Pinnau I . Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide. Journal of Membrane Science, 2020, 595: 117512

[105]

Zhuang Y B , Seong J G , Lee W H , Do Y S , Lee M J , Wang G , Guiver M D , Lee Y M . Mechanically tough, thermally rearranged (TR) random/block poly(benzoxazole-co-imide) gas separation membranes. Macromolecules, 2015, 48(15): 5286–5299

[106]

Calle M , Jo H J , Doherty C M , Hill A J , Lee Y M . Cross-linked thermally rearranged poly(benzoxazole-co-imide) membranes prepared fromortho-hydroxycopolyimides containing pendant carboxyl groups and gas separation properties. Macromolecules, 2015, 48(8): 2603–2613

[107]

Cai M , Chen J , Liu H , Sun L , Wu J , Cui T , Zhang S , Ma X , Min Y . Unveiling the mystery: how TR precursors lead to exceptional gas separation performance in CMSMs. Journal of Membrane Science, 2025, 713: 123287

[108]

Cai M , Chen J , Liu H , Sun L , Wu J , Han Z , Chen Z , Cui T , Zhang S , Ma X . . Remarkably enhanced molecular sieving effect of carbon molecular sieve membrane by enhancing the concentration of thermally rearranged precursors. Separation and Purification Technology, 2024, 341: 126945

[109]

Cai M , Liu H , Chen J , Sun L , Wu J , Chen Z , Han Z , Cui T , Zhang S , Min Y . . Breaking the permeability-selectivity trade-off: advanced carbon molecular sieve membranes derived from thermally rearranged mixed-matrix membrane precursors. Separation and Purification Technology, 2024, 335: 126163

[110]

Sun L , Chu J , Zuo H , Wang M , Wu C , Riaz A , Liu L , Guo W , Li J , Ma X . The influence of debromination and TR on the microstructure and properties of CMSMs. Separation and Purification Technology, 2025, 352: 128167

[111]

Scholes C A , Dong G , Kim J S , Jo H J , Lee J , Lee Y M . Permeation and separation of SO2, H2S and CO2 through thermally rearranged (TR) polymeric membranes. Separation and Purification Technology, 2017, 179: 449–454

[112]

Ghasemnejad-Afshar E , Amjad-Iranagh S , Zarif M , Modarress H . Effect of side branch on gas separation performance of triptycene based PIM membrane: a molecular simulation study. Polymer Testing, 2020, 83: 106339

[113]

Hayek A , Alsamah A , Alaslai N , Maab H , Qasem E A , Alhajry R H , Alyami N M . Unprecedented sour mixed-gas permeation properties of fluorinated polyazole-based membranes. ACS Applied Polymer Materials, 2020, 2(6): 2199–2210

[114]

Lawrence J A III , Harrigan D J , Maroon C R , Sharber S A , Long B K , Sundell B J . Promoting acid gas separations via strategic alkoxysilyl substitution of vinyl-added poly(norbornene)s. Journal of Membrane Science, 2020, 616: 118569

[115]

Merkel T C , Toy L G . Comparison of hydrogen sulfide transport properties in fluorinated and nonfluorinated polymers. Macromolecules, 2006, 39(22): 7591–7600

[116]

Signorini V , Giacinti Baschetti M , Pizzi D , Merlo L . Permeation of ternary mixture containing H2S, CO2 and CH4 in Aquivion® perfluorosulfonic acid (PFSA) ionomer membranes. Membranes, 2022, 12(11): 1034

[117]

Sadeghi M , Talakesh M M , Arabi Shamsabadi A , Soroush M . Novel application of a polyurethane membrane for efficient separation of hydrogen sulfide from binary and ternary gas mixtures. ChemistrySelect, 2018, 3(11): 3302–3308

[118]

Mohammadi T , Moghadam M T , Saeidi M , Mahdyarfar M . Acid gas permeation behavior through poly(ester urethane urea) membrane. Industrial & Engineering Chemistry Research, 2008, 47(19): 7361–7367

[119]

Harrigan D J , Lawrence J A III , Reid H W , Rivers J B , O’Brien J T , Sharber S A , Sundell B J . Tunable sour gas separations: simultaneous H2S and CO2 removal from natural gas via crosslinked telechelic poly(ethylene glycol) membranes. Journal of Membrane Science, 2020, 602: 117947

[120]

Harrigan D J , Yang J , Sundell B J , Lawrence J A III , O’Brien J T , Ostraat M L . Sour gas transport in poly(ether-b-amide) membranes for natural gas separations. Journal of Membrane Science, 2020, 595: 117497

[121]

Wong D A , Haddad E E , Lin S , Sharber S A , Yang J , Lawrence J A III , Harrigan D J , Wright P T , Liu Y , Sundell B J . Rational design of melamine-crosslinked poly(ethylene glycol) membranes for sour gas purification. Journal of Membrane Science, 2024, 709: 123082

[122]

Zhang P , Ma X , Tu Z , Zhang X , Hu X , Wu Y . Constructing ether-rich and carboxylate hydrogen bonding sites in protic ionic liquids for efficient and simultaneous membrane separation of H2S and CO2 from CH4. Green Energy & Environment, 2024, 10(3): 560–572

[123]

Zhang C , Koros W J . Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties. Advanced Materials, 2017, 29(33): 1701631

[124]

Sanyal O , Hays S S , Leon N E , Guta Y A , Itta A K , Lively R P , Koros W J . A Self-consistent model for sorption and transport in polyimide-derived carbon molecular sieve gas separation membranes. Angewandte Chemie International Edition, 2020, 59(46): 20343–20347

[125]

Hazazi K , Wang Y , Ghanem B , Hu X , Puspasari T , Chen C , Han Y , Pinnau I . Precise molecular sieving of ethylene from ethane using triptycene-derived submicroporous carbon membranes. Nature Materials, 2023, 22(10): 1218–1226

[126]

Shiflett M B , Foley H C . Ultrasonic deposition of high-selectivity nanoporous carbon membranes. Science, 1999, 285(5435): 1902–1905

[127]

Hu L , Bui V T , Krishnamurthy A , Fan S , Guo W , Pal S , Chen X , Zhang G , Ding Y , Singh R P . . Tailoring sub-3.3 Å ultramicropores in advanced carbon molecular sieve membranes for blue hydrogen production. Science Advances, 2022, 8(10): eabl8160

[128]

Enrico D, Giuseppe B, Enrico D, Giuseppe B. Membrane Engineering for the Treatment of Gases: Gas-separation Problems with Membranes. United Kingdom: The Royal Society of Chemistry, 2011.

[129]

WuZ. Membrane Separation Principles and Applications. Amsterdam: Elsevier, 2019

[130]

Tronci G , Raffone F , Cicero G . Theoretical study of nanoporous graphene membranes for natural gas purification. Applied Sciences, 2018, 8(9): 1547

[131]

Haider S , Lindbråthen A , Lie J A , Hägg M B . Regenerated cellulose based carbon membranes for CO2 separation: durability and aging under miscellaneous environments. Journal of Industrial and Engineering Chemistry, 2019, 70: 363–371

[132]

Li G , Kujawski W , Válek R , Koter S . A review —the development of hollow fibre membranes for gas separation processes. International Journal of Greenhouse Gas Control, 2021, 104: 103195

[133]

Morisato A , Mahley E . Hydrogen sulfide permeation and hydrocarbon separation properties in cellulose triacetate hollow fiber membrane for high hydrogen sulfide contained natural gas sweetening applications. Journal of Membrane Science, 2023, 681: 121734

[134]

Lu H T , Liu L , Kanehashi S , Scholes C A , Kentish S E . The impact of toluene and xylene on the performance of cellulose triacetate membranes for natural gas sweetening. Journal of Membrane Science, 2018, 555: 362–368

[135]

Niknejad S M S , Savoji H , Pourafshari Chenar M , Soltanieh M . Separation of H2S from CH4 by polymeric membranes at different H2S concentrations. International Journal of Environmental Science and Technology, 2017, 14(2): 375–384

[136]

Chenar M P , Savoji H , Soltanieh M , Matsuura T , Tabe S . Removal of hydrogen sulfide from methane using commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes. Korean Journal of Chemical Engineering, 2011, 28(3): 902–913

[137]

Saedi S , Madaeni S S , Shamsabadi A A . PDMS coated asymmetric PES membrane for natural gas sweetening: effect of preparation and operating parameters on performance. Canadian Journal of Chemical Engineering, 2014, 92(5): 892–904

[138]

Liu Z , Liu Y , Liu G , Qiu W , Koros W J . Cross-linkable semi-rigid 6FDA-based polyimide hollow fiber membranes for sour natural gas purification. Industrial & Engineering Chemistry Research, 2020, 59(12): 5333–5339

[139]

Liu Y , Liu Z , Kraftschik B E , Babu V P , Bhuwania N , Chinn D , Koros W J . Natural gas sweetening using TEGMC polyimide hollow fiber membranes. Journal of Membrane Science, 2021, 632: 119361

[140]

Shalabi Y A , Yahaya G O , Choi S H , Alsamah A , Hayek A . Copolyimide asymmetric hollow fiber membranes for high‐pressure natural gas purification. Journal of Applied Polymer Science, 2023, 140(21): e53866

[141]

Yahaya G O , Choi S H , Sultan M M B , Hayek A . Development of thin-film composite membranes from aromatic Cardo-type co-polyimide for mixed and sour gas separations from natural gas. Global Challenges, 2020, 4(7): 1900107

[142]

Liu Y , Liu Z , Morisato A , Bhuwania N , Chinn D , Koros W J . Natural gas sweetening using a cellulose triacetate hollow fiber membrane illustrating controlled plasticization benefits. Journal of Membrane Science, 2020, 601: 117910

[143]

Bhide B , Stern S A . Membrane processes for the removal of acid gases from natural gas. I. Process configurations and optimization of operating conditions. Journal of Membrane Science, 1993, 81(3): 209–237

[144]

Bhide B , Voskericyan A , Stern S . Hybrid processes for the removal of acid gases from natural gas. Journal of Membrane Science, 1998, 140(1): 27–49

[145]

Hao J , Rice P , Stern S . Upgrading low-quality natural gas with H2S-and CO2-selective polymer membranes: Part I. Process design and economics of membrane stages without recycle streams. Journal of Membrane Science, 2002, 209(1): 177–206

[146]

Hao J , Rice P , Stern S . Upgrading low-quality natural gas with H2S-and CO2-selective polymer membranes: Part II. Process design, economics, and sensitivity study of membrane stages with recycle streams. Journal of Membrane Science, 2008, 320(1–2): 108–122

[147]

Peters L , Hussain A , Follmann M , Melin T , Hägg M B . CO2 removal from natural gas by employing amine absorption and membrane technology: a technical and economical analysis. Chemical Engineering Journal, 2011, 172(2–3): 952–960

[148]

Seong M S , Kong C I , Park B R , Lee Y , Na B K , Kim J H . Optimization of pilot-scale 3-stage membrane process using asymmetric polysulfone hollow fiber membranes for production of high-purity CH4 and CO2 from crude biogas. Chemical Engineering Journal, 2020, 384: 123342

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3311KB)

1182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/