Stable lithium metal batteries enabled by Al-Li/LiF composite artificial interfacial layer

Guojie Li , Xuan Liang , Junlong Zhang , Bin Guo , Baoguang Mao , Hongming Sun , Aoxuan Wang , Qibo Deng , Chuntai Liu

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 38

PDF (3134KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 38 DOI: 10.1007/s11705-025-2539-0
RESEARCH ARTICLE

Stable lithium metal batteries enabled by Al-Li/LiF composite artificial interfacial layer

Author information +
History +
PDF (3134KB)

Abstract

Lithium metal anode represents the ultimate solution for next-generation high-energy-density batteries but is plagued from commercialization by side reactions, substantial volume fluctuation, and the notorious growth of lithium dendrites. These hazardous issues are further aggravated under real-world conditions. In this study, a stable Al-Li/LiF artificial interphase with rapid ion transport pathways is created through a one-step chemical pretreatment process, effectively addressing these challenges simultaneously. As a consequence, the composite interfacial layer exhibits exceptional ionic conductivity, mechanical strength, and electrolyte wettability, ensuring swift Li+ transfer diffusion while suppressing lithium dendrite growth. Remarkably, the Al-Li/LiF symmetric cell provides a cycle life exceeding 2300 h with a low polarization at 0.5 mA·cm–2. Furthermore, its enhanced cycling stability and capacity retention as well as capacity utilization stability pairing with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 cathodes, highlighting the proposed approach as a promising solution for practical Li metal batteries.

Graphical abstract

Keywords

lithium metal anode / artificial solid electrolyte interphase / dendrite growth / stability

Cite this article

Download citation ▾
Guojie Li, Xuan Liang, Junlong Zhang, Bin Guo, Baoguang Mao, Hongming Sun, Aoxuan Wang, Qibo Deng, Chuntai Liu. Stable lithium metal batteries enabled by Al-Li/LiF composite artificial interfacial layer. Front. Chem. Sci. Eng., 2025, 19(5): 38 DOI:10.1007/s11705-025-2539-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Z , Xia J , Ji X , Liu Y , Zhang J , He X , Zhang W , Wan H , Wang C . Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nature Energy, 2024, 9(3): 251–262

[2]

Jia J , Guo B , Gao H , Zhao Y , Li G , Wang A , Liu C . Stabilizing sodium metal anodes by functional polymers. Materials Today. Energy, 2024, 45: 101664

[3]

Ye S , Chen X , Zhang R , Jiang Y , Huang F , Huang H , Yao Y , Jiao S , Chen X , Zhang Q . . Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Letters, 2022, 14(1): 187

[4]

Li G , Guan X , Wang A , Wang C , Luo J . Cations and anions regulation through zwitterionic gel electrolytes for stable lithium metal anodes. Energy Storage Materials, 2020, 24: 574–578

[5]

Xia Q , Yuan S , Zhang Q , Huang C , Liu J , Jin H . Designing the interface layer of solid electrolytes for all-solid-state lithium batteries. Advanced Science, 2024, 11(29): 2401453

[6]

Wang A , Nie Y , Zhao Y , Xu D , Zhang L , Zhao Z , Ren L , Zhou S , Liu X , Luo J . Functional copolymer derived self-adapting LiF-rich interphase toward deep cycling lithium metal batteries. Advanced Functional Materials, 2024, 34(29): 2401462

[7]

Xu D , Zhou N , Wang A , Xu Y , Liu X , Tang S , Luo J . Mechano-electrochemically promoting lithium atom diffusion and relieving accumulative stress for deep-cycling lithium metal anodes. Advanced Materials, 2023, 35(35): 2302872

[8]

Zhang C , Liu S , Li G , Zhang C , Liu X , Luo J . Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Advanced Materials, 2018, 30(33): 1801328

[9]

Wu L , Lv H , Zhang R , Ding P , Tang M , Liu S , Wang L , Liu F , Guo X , Yu H . Ferroelectric BaTiO3 regulating the local electric field for interfacial stability in solid-state lithium metal batteries. ACS Nano, 2024, 18(7): 5498–5509

[10]

Mao M , Ji X , Wang Q , Lin Z , Li M , Liu T , Wang C , Hu Y S , Li H , Huang X . . Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nature Communications, 2023, 14(1): 1082

[11]

Liu P , Shen S , Qiu Z , Yang T , Liu Y , Su H , Zhang Y , Li J , Cao F , Zhong Y . . Plasma coupled electrolyte additive strategy for construction of high-performance solid electrolyte interphase on Li metal anodes. Advanced Materials, 2024, 36(30): 2312812

[12]

Zhuang H , Xiao H , Zhang T , Zhang F , Han P , Xu M , Dai W , Jiao J , Jiang L , Gao Q . LiF-rich alloy-doped SEI enabling ultra-stable and high-rate Li metal anode. Angewandte Chemie International Edition, 2024, 63(33): e202407315

[13]

Lu W , Zhao A , Chen Q , Liu S , Yu M , Wang Z , Gao Z , Zhao X , Sun G , Feng M . Constructing lithiophilic sites-rich artificial solid electrolyte interphase to enable dendrite-free and corrosion-free lithium-sulfur batteries. Green Energy & Environment, 2024, 9(12): 1891–1900

[14]

Xie S , Yu S , Hou Y , Dong F , Zhang X , Zheng H , Xie H , Wang Z , Liu Y . Ga-polymer dual interfacial layer modified Li metal for high-energy Li metal batteries. Journal of Energy Storage, 2024, 91: 112056

[15]

Tan P , Wang Y , Sun X , Zhou Y , Dong H , Han Y , Li D . Self-limiting lithium deposition enabled by synergistic surface chemical and structural engineering of Li metal anodes. Journal of Alloys and Compounds, 2024, 996: 174867

[16]

Shi M , Zhang J , Tang G , Wang B , Wang S , Ren X , Li G , Chen W , Liu C , Shen C . Polyzwitterionic cross-linked double network hydrogel electrolyte enabling high-stable Zn anode. Nano Research, 2024, 17(6): 5278–5287

[17]

Zhang Y , Guo Y , Yong K , Wang Q , Yao M , Zhang Y , Wu H . A large-capacity, superhigh-rate integrated lithium metal anode with top-down composition gradient enabled by polyantimonic acid. Energy & Environmental Science, 2024, 17(16): 5819–5832

[18]

Cao J , Shi Y , Gao A , Du G , Dilxat M , Zhang Y , Cai M , Qian G , Lu X , Xie F . . Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries. Nature Communications, 2024, 15(1): 1354

[19]

Pathak R , Chen K , Gurung A , Reza K M , Bahrami B , Pokharel J , Baniya A , He W , Wu F , Zhou Y . . Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 2020, 11(1): 93

[20]

Tan Y , Sun Z , Liu Y , Yan H , Wang C , Fan J , Zheng M , Dong Q . Constructing an ion-wall to achieve excellent lithium anodes in Li-O2 batteries with high DN electrolytes. Advanced Energy Materials, 2024, 14(17): 2304153

[21]

Long K , Huang S , Wang H , Wang A , Chen Y , Liu Z , Zhang Y , Wu Z , Wang W , Chen L . Green mechanochemical Li foil surface reconstruction toward long-life Li-metal pouch cells. Energy & Environmental Science, 2024, 17(1): 260–273

[22]

Zhang C H , Guo Y J , Tan S J , Wang Y H , Guo J C , Tian Y F , Zhang X S , Liu B Z , Xin S , Zhang J . . An ultralight, pulverization-free integrated anode toward lithium-less lithium metal batteries. Science Advances, 2024, 10(13): eadl4842

[23]

Zhang Y , Yao M , Wang T , Wu H , Zhang Y . A 3D hierarchical host with gradient-distributed dielectric properties toward dendrite-free lithium metal anode. Angewandte Chemie International Edition, 2024, 63(22): e202403399

[24]

Zhai P , Liu L , Gu X , Wang T , Gong Y . Interface engineering for lithium metal anodes in liquid electrolyte. Advanced Energy Materials, 2020, 10(34): 2001257

[25]

Lim H , Jun S , Song Y B , Baeck K H , Bae H , Lee G , Kim J , Jung Y S . Rationally designed conversion-type lithium metal protective layer for all-solid-state lithium metal batteries. Advanced Energy Materials, 2024, 14(12): 2303762

[26]

Pan J , Cheng Y T , Qi Y . General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(13): 134116

[27]

Yuan Y , Wu F , Bai Y , Li Y , Chen G , Wang Z , Wu C . Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Materials, 2019, 16: 411–418

[28]

Zhao J , Liao L , Shi F , Lei T , Chen G , Pei A , Sun J , Yan K , Zhou G , Xie J . . Surface fluorination of reactive battery anode materials for enhanced stability. Journal of the American Chemical Society, 2017, 139(33): 11550–11558

[29]

Tu Z , Choudhury S , Zachman M J , Wei S , Zhang K , Kourkoutis L F , Archer L A . Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nature Energy, 2018, 3(4): 310–316

[30]

Pang M , Jiang Z , Luo C , Yao Z , Fu T , Pan T , Guo Q , Li Y , Xiong S , Zheng C . . A surface chemistry-regulated gradient multi-component solid electrolyte interphase for a 460 Wh·kg–1 lithium metal pouch cell. Energy & Environmental Science, 2024, 17(20): 7699–7711

[31]

Tan L , Chen P , Chen Q Y , Huang X , Zou K Y , Nie Y M , Li L J A . Li3Bi/LiF interfacial layer enabling highly stable lithium metal anode. Rare Metals, 2023, 42(12): 4081–4090

[32]

Wang L , Fu S , Zhao T , Qian J , Chen N , Li L , Wu F , Chen R . In situ formation of a LiF and Li-Al alloy anode protected layer on a Li metal anode with enhanced cycle life. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(3): 1247–1253

[33]

Wang H , Lin D , Liu Y , Li Y , Cui Y . Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Science Advances, 2017, 3(9): e1701301

[34]

Ma L , Kim M S , Archer L A . Stable artificial solid electrolyte interphases for lithium batteries. Chemistry of Materials, 2017, 29(10): 4181–4189

[35]

Zhang X , Wang S , Xue C , Xin C , Lin Y , Shen Y , Li L , Nan C W . Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Advanced Materials, 2019, 31(11): 1806082

[36]

Smirnov N A . Ab initio calculations of the thermodynamic properties of LiF crystal. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(1): 014109

[37]

Ryu J , Kang J , Kim H , Lee J H , Lee H , Park S . Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries. Energy Storage Materials, 2020, 33: 164–172

[38]

Lu Z , Li W , Long Y , Liang J , Liang Q , Wu S , Tao Y , Weng Z , Lv W , Yang Q H . Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode. Advanced Functional Materials, 2020, 30(7): 1907343

[39]

Lee H , Lee D J , Kim Y J , Park J K , Kim H T . A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. Journal of Power Sources, 2015, 284: 103–108

[40]

Liang X , Pang Q , Kochetkov I R , Sempere M S , Huang H , Sun X , Nazar L F . A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2(9): 17119

[41]

Lu K , Gao S , Dick R J , Sattar Z , Cheng Y . A fast and stable Li metal anode incorporating an Mo6S8 artificial interphase with super Li-ion conductivity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(11): 6038–6044

[42]

Gao Y , Zhao Y , Li Y C , Huang Q , Mallouk T E , Wang D . Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. Journal of the American Chemical Society, 2017, 139(43): 15288–15291

[43]

Peng Z , Song J , Huai L , Jia H , Xiao B , Zou L , Zhu G , Martinez A , Roy S , Murugesan V . . Enhanced stability of Li metal anodes by synergetic control of nucleation and the solid electrolyte interphase. Advanced Energy Materials, 2019, 9(42): 1901764

[44]

Wang L , Zhang L , Wang Q , Li W , Wu B , Jia W , Wang Y , Li J , Li H . Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Materials, 2018, 10: 16–23

[45]

Naren T , Kuang G C , Jiang R , Qing P , Yang H , Lin J , Chen Y , Wei W , Ji X , Chen L . Reactive polymer as artificial solid electrolyte interface for stable lithium metal batteries. Angewandte Chemie International Edition, 2023, 62(26): e202305287

[46]

Fang S , Wu F , Zhao S , Zarrabeitia M , Kim G T , Kim J K , Zhou N , Passerini S . Adaptive multi-site gradient adsorption of siloxane-based protective layers enable high performance lithium-metal batteries. Advanced Energy Materials, 2023, 13(46): 2302577

[47]

Li C , Liang Z , Li Z , Cao D , Zuo D , Chang J , Wang J , Deng Y , Liu K , Kong X . . Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries. Nano Letters, 2023, 23(9): 4014–4022

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3134KB)

Supplementary files

FCE-24092-OF-LG_suppl_1

1062

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/