Stable lithium metal batteries enabled by Al-Li/LiF composite artificial interfacial layer

Guojie Li, Xuan Liang, Junlong Zhang, Bin Guo, Baoguang Mao, Hongming Sun, Aoxuan Wang, Qibo Deng, Chuntai Liu

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 38.

PDF(3134 KB)
PDF(3134 KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 38. DOI: 10.1007/s11705-025-2539-0
RESEARCH ARTICLE

Stable lithium metal batteries enabled by Al-Li/LiF composite artificial interfacial layer

Author information +
History +

Abstract

Lithium metal anode represents the ultimate solution for next-generation high-energy-density batteries but is plagued from commercialization by side reactions, substantial volume fluctuation, and the notorious growth of lithium dendrites. These hazardous issues are further aggravated under real-world conditions. In this study, a stable Al-Li/LiF artificial interphase with rapid ion transport pathways is created through a one-step chemical pretreatment process, effectively addressing these challenges simultaneously. As a consequence, the composite interfacial layer exhibits exceptional ionic conductivity, mechanical strength, and electrolyte wettability, ensuring swift Li+ transfer diffusion while suppressing lithium dendrite growth. Remarkably, the Al-Li/LiF symmetric cell provides a cycle life exceeding 2300 h with a low polarization at 0.5 mA·cm–2. Furthermore, its enhanced cycling stability and capacity retention as well as capacity utilization stability pairing with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 cathodes, highlighting the proposed approach as a promising solution for practical Li metal batteries.

Graphical abstract

Keywords

lithium metal anode / artificial solid electrolyte interphase / dendrite growth / stability

Cite this article

Download citation ▾
Guojie Li, Xuan Liang, Junlong Zhang, Bin Guo, Baoguang Mao, Hongming Sun, Aoxuan Wang, Qibo Deng, Chuntai Liu. Stable lithium metal batteries enabled by Al-Li/LiF composite artificial interfacial layer. Front. Chem. Sci. Eng., 2025, 19(5): 38 https://doi.org/10.1007/s11705-025-2539-0

References

[1]
Wang Z , Xia J , Ji X , Liu Y , Zhang J , He X , Zhang W , Wan H , Wang C . Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nature Energy, 2024, 9(3): 251–262
CrossRef Google scholar
[2]
Jia J , Guo B , Gao H , Zhao Y , Li G , Wang A , Liu C . Stabilizing sodium metal anodes by functional polymers. Materials Today. Energy, 2024, 45: 101664
CrossRef Google scholar
[3]
Ye S , Chen X , Zhang R , Jiang Y , Huang F , Huang H , Yao Y , Jiao S , Chen X , Zhang Q . . Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Letters, 2022, 14(1): 187
CrossRef Google scholar
[4]
Li G , Guan X , Wang A , Wang C , Luo J . Cations and anions regulation through zwitterionic gel electrolytes for stable lithium metal anodes. Energy Storage Materials, 2020, 24: 574–578
CrossRef Google scholar
[5]
Xia Q , Yuan S , Zhang Q , Huang C , Liu J , Jin H . Designing the interface layer of solid electrolytes for all-solid-state lithium batteries. Advanced Science, 2024, 11(29): 2401453
CrossRef Google scholar
[6]
Wang A , Nie Y , Zhao Y , Xu D , Zhang L , Zhao Z , Ren L , Zhou S , Liu X , Luo J . Functional copolymer derived self-adapting LiF-rich interphase toward deep cycling lithium metal batteries. Advanced Functional Materials, 2024, 34(29): 2401462
CrossRef Google scholar
[7]
Xu D , Zhou N , Wang A , Xu Y , Liu X , Tang S , Luo J . Mechano-electrochemically promoting lithium atom diffusion and relieving accumulative stress for deep-cycling lithium metal anodes. Advanced Materials, 2023, 35(35): 2302872
CrossRef Google scholar
[8]
Zhang C , Liu S , Li G , Zhang C , Liu X , Luo J . Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Advanced Materials, 2018, 30(33): 1801328
CrossRef Google scholar
[9]
Wu L , Lv H , Zhang R , Ding P , Tang M , Liu S , Wang L , Liu F , Guo X , Yu H . Ferroelectric BaTiO3 regulating the local electric field for interfacial stability in solid-state lithium metal batteries. ACS Nano, 2024, 18(7): 5498–5509
CrossRef Google scholar
[10]
Mao M , Ji X , Wang Q , Lin Z , Li M , Liu T , Wang C , Hu Y S , Li H , Huang X . . Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nature Communications, 2023, 14(1): 1082
CrossRef Google scholar
[11]
Liu P , Shen S , Qiu Z , Yang T , Liu Y , Su H , Zhang Y , Li J , Cao F , Zhong Y . . Plasma coupled electrolyte additive strategy for construction of high-performance solid electrolyte interphase on Li metal anodes. Advanced Materials, 2024, 36(30): 2312812
CrossRef Google scholar
[12]
Zhuang H , Xiao H , Zhang T , Zhang F , Han P , Xu M , Dai W , Jiao J , Jiang L , Gao Q . LiF-rich alloy-doped SEI enabling ultra-stable and high-rate Li metal anode. Angewandte Chemie International Edition, 2024, 63(33): e202407315
CrossRef Google scholar
[13]
Lu W , Zhao A , Chen Q , Liu S , Yu M , Wang Z , Gao Z , Zhao X , Sun G , Feng M . Constructing lithiophilic sites-rich artificial solid electrolyte interphase to enable dendrite-free and corrosion-free lithium-sulfur batteries. Green Energy & Environment, 2024, 9(12): 1891–1900
CrossRef Google scholar
[14]
Xie S , Yu S , Hou Y , Dong F , Zhang X , Zheng H , Xie H , Wang Z , Liu Y . Ga-polymer dual interfacial layer modified Li metal for high-energy Li metal batteries. Journal of Energy Storage, 2024, 91: 112056
CrossRef Google scholar
[15]
Tan P , Wang Y , Sun X , Zhou Y , Dong H , Han Y , Li D . Self-limiting lithium deposition enabled by synergistic surface chemical and structural engineering of Li metal anodes. Journal of Alloys and Compounds, 2024, 996: 174867
CrossRef Google scholar
[16]
Shi M , Zhang J , Tang G , Wang B , Wang S , Ren X , Li G , Chen W , Liu C , Shen C . Polyzwitterionic cross-linked double network hydrogel electrolyte enabling high-stable Zn anode. Nano Research, 2024, 17(6): 5278–5287
CrossRef Google scholar
[17]
Zhang Y , Guo Y , Yong K , Wang Q , Yao M , Zhang Y , Wu H . A large-capacity, superhigh-rate integrated lithium metal anode with top-down composition gradient enabled by polyantimonic acid. Energy & Environmental Science, 2024, 17(16): 5819–5832
CrossRef Google scholar
[18]
Cao J , Shi Y , Gao A , Du G , Dilxat M , Zhang Y , Cai M , Qian G , Lu X , Xie F . . Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries. Nature Communications, 2024, 15(1): 1354
CrossRef Google scholar
[19]
Pathak R , Chen K , Gurung A , Reza K M , Bahrami B , Pokharel J , Baniya A , He W , Wu F , Zhou Y . . Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 2020, 11(1): 93
CrossRef Google scholar
[20]
Tan Y , Sun Z , Liu Y , Yan H , Wang C , Fan J , Zheng M , Dong Q . Constructing an ion-wall to achieve excellent lithium anodes in Li-O2 batteries with high DN electrolytes. Advanced Energy Materials, 2024, 14(17): 2304153
CrossRef Google scholar
[21]
Long K , Huang S , Wang H , Wang A , Chen Y , Liu Z , Zhang Y , Wu Z , Wang W , Chen L . Green mechanochemical Li foil surface reconstruction toward long-life Li-metal pouch cells. Energy & Environmental Science, 2024, 17(1): 260–273
CrossRef Google scholar
[22]
Zhang C H , Guo Y J , Tan S J , Wang Y H , Guo J C , Tian Y F , Zhang X S , Liu B Z , Xin S , Zhang J . . An ultralight, pulverization-free integrated anode toward lithium-less lithium metal batteries. Science Advances, 2024, 10(13): eadl4842
CrossRef Google scholar
[23]
Zhang Y , Yao M , Wang T , Wu H , Zhang Y . A 3D hierarchical host with gradient-distributed dielectric properties toward dendrite-free lithium metal anode. Angewandte Chemie International Edition, 2024, 63(22): e202403399
CrossRef Google scholar
[24]
Zhai P , Liu L , Gu X , Wang T , Gong Y . Interface engineering for lithium metal anodes in liquid electrolyte. Advanced Energy Materials, 2020, 10(34): 2001257
CrossRef Google scholar
[25]
Lim H , Jun S , Song Y B , Baeck K H , Bae H , Lee G , Kim J , Jung Y S . Rationally designed conversion-type lithium metal protective layer for all-solid-state lithium metal batteries. Advanced Energy Materials, 2024, 14(12): 2303762
CrossRef Google scholar
[26]
Pan J , Cheng Y T , Qi Y . General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(13): 134116
CrossRef Google scholar
[27]
Yuan Y , Wu F , Bai Y , Li Y , Chen G , Wang Z , Wu C . Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Materials, 2019, 16: 411–418
CrossRef Google scholar
[28]
Zhao J , Liao L , Shi F , Lei T , Chen G , Pei A , Sun J , Yan K , Zhou G , Xie J . . Surface fluorination of reactive battery anode materials for enhanced stability. Journal of the American Chemical Society, 2017, 139(33): 11550–11558
CrossRef Google scholar
[29]
Tu Z , Choudhury S , Zachman M J , Wei S , Zhang K , Kourkoutis L F , Archer L A . Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nature Energy, 2018, 3(4): 310–316
CrossRef Google scholar
[30]
Pang M , Jiang Z , Luo C , Yao Z , Fu T , Pan T , Guo Q , Li Y , Xiong S , Zheng C . . A surface chemistry-regulated gradient multi-component solid electrolyte interphase for a 460 Wh·kg–1 lithium metal pouch cell. Energy & Environmental Science, 2024, 17(20): 7699–7711
CrossRef Google scholar
[31]
Tan L , Chen P , Chen Q Y , Huang X , Zou K Y , Nie Y M , Li L J A . Li3Bi/LiF interfacial layer enabling highly stable lithium metal anode. Rare Metals, 2023, 42(12): 4081–4090
CrossRef Google scholar
[32]
Wang L , Fu S , Zhao T , Qian J , Chen N , Li L , Wu F , Chen R . In situ formation of a LiF and Li-Al alloy anode protected layer on a Li metal anode with enhanced cycle life. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(3): 1247–1253
CrossRef Google scholar
[33]
Wang H , Lin D , Liu Y , Li Y , Cui Y . Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Science Advances, 2017, 3(9): e1701301
CrossRef Google scholar
[34]
Ma L , Kim M S , Archer L A . Stable artificial solid electrolyte interphases for lithium batteries. Chemistry of Materials, 2017, 29(10): 4181–4189
CrossRef Google scholar
[35]
Zhang X , Wang S , Xue C , Xin C , Lin Y , Shen Y , Li L , Nan C W . Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Advanced Materials, 2019, 31(11): 1806082
CrossRef Google scholar
[36]
Smirnov N A . Ab initio calculations of the thermodynamic properties of LiF crystal. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(1): 014109
CrossRef Google scholar
[37]
Ryu J , Kang J , Kim H , Lee J H , Lee H , Park S . Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries. Energy Storage Materials, 2020, 33: 164–172
CrossRef Google scholar
[38]
Lu Z , Li W , Long Y , Liang J , Liang Q , Wu S , Tao Y , Weng Z , Lv W , Yang Q H . Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode. Advanced Functional Materials, 2020, 30(7): 1907343
CrossRef Google scholar
[39]
Lee H , Lee D J , Kim Y J , Park J K , Kim H T . A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. Journal of Power Sources, 2015, 284: 103–108
CrossRef Google scholar
[40]
Liang X , Pang Q , Kochetkov I R , Sempere M S , Huang H , Sun X , Nazar L F . A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2(9): 17119
CrossRef Google scholar
[41]
Lu K , Gao S , Dick R J , Sattar Z , Cheng Y . A fast and stable Li metal anode incorporating an Mo6S8 artificial interphase with super Li-ion conductivity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(11): 6038–6044
CrossRef Google scholar
[42]
Gao Y , Zhao Y , Li Y C , Huang Q , Mallouk T E , Wang D . Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. Journal of the American Chemical Society, 2017, 139(43): 15288–15291
CrossRef Google scholar
[43]
Peng Z , Song J , Huai L , Jia H , Xiao B , Zou L , Zhu G , Martinez A , Roy S , Murugesan V . . Enhanced stability of Li metal anodes by synergetic control of nucleation and the solid electrolyte interphase. Advanced Energy Materials, 2019, 9(42): 1901764
CrossRef Google scholar
[44]
Wang L , Zhang L , Wang Q , Li W , Wu B , Jia W , Wang Y , Li J , Li H . Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Materials, 2018, 10: 16–23
CrossRef Google scholar
[45]
Naren T , Kuang G C , Jiang R , Qing P , Yang H , Lin J , Chen Y , Wei W , Ji X , Chen L . Reactive polymer as artificial solid electrolyte interface for stable lithium metal batteries. Angewandte Chemie International Edition, 2023, 62(26): e202305287
CrossRef Google scholar
[46]
Fang S , Wu F , Zhao S , Zarrabeitia M , Kim G T , Kim J K , Zhou N , Passerini S . Adaptive multi-site gradient adsorption of siloxane-based protective layers enable high performance lithium-metal batteries. Advanced Energy Materials, 2023, 13(46): 2302577
CrossRef Google scholar
[47]
Li C , Liang Z , Li Z , Cao D , Zuo D , Chang J , Wang J , Deng Y , Liu K , Kong X . . Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries. Nano Letters, 2023, 23(9): 4014–4022
CrossRef Google scholar

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 22278308); Beijing-Tianjin-Hebei Basic Research Cooperation Special Project (Grant No. B2024209048); the Natural Science Foundation of Tianjin, China (Grant No. 24JCZXJC00250); the Natural Science Foundation of Henan Province (Grant No. 242300421431) and the China Postdoctoral Science Foundation (Grant No. 2022M712863).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-025-2539-0 and is accessible for authorized users.

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(3134 KB)

Accesses

Citations

Detail

Sections
Recommended

/