
Controlled synthesis and advanced applications of ultralong carbon nanotubes
Fei Wang, Yanlong Zhao, Kangkang Wang, Khaixien Leu, Aike Xi, Qixuan Cai, Rufan Zhang
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 37.
Controlled synthesis and advanced applications of ultralong carbon nanotubes
Carbon nanotubes have attracted extensive interest owing to their extraordinary properties and wide applications in many fields. Among various types of carbon nanotubes, only ultralong carbon nanotubes with macroscale lengths, low defect concentrations, and high degrees of alignment can fully demonstrate their intrinsic performance. These attributes make ultralong carbon nanotubes highly promising for applications in cutting-edge fields, such as carbon-based integrated circuits, ultra-strong fibers, and transparent conductive films. However, the mass production of ultralong carbon nanotubes with precise structural control remains a major challenge, limiting their widespread applications. In the past decades, great progress has been achieved in the study of ultralong carbon nanotubes. In this review, we summarized the growth mechanisms and the controlled synthesis strategies of ultralong carbon nanotubes. Then, we introduced the advanced applications of ultralong carbon nanotubes in many areas, such as field-effect transistors, sensors, and photodetectors. Finally, we discussed the remaining challenges and offered our perspectives on the future directions of this field.
carbon nanotubes / ultralong / controlled synthesis / advanced application
[1] |
Iijima S . Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58
CrossRef
Google scholar
|
[2] |
Zhang R , Zhang Y , Wei F . Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chemical Society Reviews, 2017, 46(12): 3661–3715
CrossRef
Google scholar
|
[3] |
Bai Y , Yue H , Wang J , Shen B , Sun S , Wang S , Wang H , Li X , Xu Z , Zhang R .
CrossRef
Google scholar
|
[4] |
Bai Y , Zhang R , Ye X , Zhu Z , Xie H , Shen B , Cai D , Liu B , Zhang C , Jia Z .
CrossRef
Google scholar
|
[5] |
Zhang X , Lu W , Zhou G , Li Q . Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Advanced Materials, 2020, 32(5): 1902028
CrossRef
Google scholar
|
[6] |
Gong Y , Adhikari P , Liu Q , Wang T , Gong M , Chan W L , Ching W Y , Wu J . Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection. ACS Applied Materials & Interfaces, 2017, 9(12): 11016–11024
CrossRef
Google scholar
|
[7] |
Ackermann J , Metternich J T , Herbertz S , Kruss S . Biosensing with fluorescent carbon nanotubes. Angewandte Chemie International Edition, 2022, 61(18): e202112372
CrossRef
Google scholar
|
[8] |
Chen Y , Zhang H B , Yang Y , Wang M , Cao A , Yu Z Z . High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Advanced Functional Materials, 2016, 26(3): 447–455
CrossRef
Google scholar
|
[9] |
Chen S , Qiu L , Cheng H M . Carbon-based fibers for advanced electrochemical energy storage devices. Chemical Reviews, 2020, 120(5): 2811–2878
CrossRef
Google scholar
|
[10] |
Li R , Jiang Q , Zhang R . Progress and perspective on high-strength and multifunctional carbon nanotube fibers. Science Bulletin, 2022, 67(8): 784–787
CrossRef
Google scholar
|
[11] |
Sun D M , Timmermans M Y , Kaskela A , Nasibulin A G , Kishimoto S , Mizutani T , Kauppinen E I , Ohno Y . Mouldable all-carbon integrated circuits. Nature Communications, 2013, 4(1): 2302
CrossRef
Google scholar
|
[12] |
Chen T , Dai L . Flexible supercapacitors based on carbon nanomaterials. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(28): 10756–10775
CrossRef
Google scholar
|
[13] |
Huang J , Zhang Q , Zhao M , Wei F . A review of the large-scale production of carbon nanotubes: the practice of nanoscale process engineering. Chinese Science Bulletin, 2012, 57(2): 157–166
CrossRef
Google scholar
|
[14] |
Zhang X , Lei X , Jia X , Sun T , Luo J , Xu S , Li L , Yan D , Shao Y , Yong Z .
CrossRef
Google scholar
|
[15] |
Yang Z , Tian J , Yin Z , Cui C , Qian W , Wei F . Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon, 2019, 141: 467–480
CrossRef
Google scholar
|
[16] |
Wei F , Zhang Q , Qian W Z , Yu H , Wang Y , Luo G H , Xu G H , Wang D Z . The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: a multiscale space-time analysis. Powder Technology, 2008, 183(1): 10–20
CrossRef
Google scholar
|
[17] |
Cho W , Schulz M , Shanov V . Growth and characterization of vertically aligned centimeter long cnt arrays. Carbon, 2014, 72: 264–273
CrossRef
Google scholar
|
[18] |
Tulevski G S , Franklin A D , Frank D , Lobez J M , Cao Q , Park H , Afzali A , Han S J , Hannon J B , Haensch W . Toward high-performance digital logic technology with carbon nanotubes. ACS Nano, 2014, 8(9): 8730–8745
CrossRef
Google scholar
|
[19] |
Kong J , Soh H T , Cassell A M , Quate C F , Dai H . Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395(6705): 878–881
CrossRef
Google scholar
|
[20] |
Iijima S , Ichihashi T . Single-shell carbon nanotubes of 1-Nm diameter. Nature, 1993, 363(6430): 603–605
CrossRef
Google scholar
|
[21] |
Guo T , Nikolaev P , Rinzler A G , Tomanek D , Colbert D T , Smalley R E . Self-assembly of tubular fullerenes. Journal of Physical Chemistry, 1995, 99(27): 10694–10697
CrossRef
Google scholar
|
[22] |
Thess A , Lee R , Nikolaev P , Dai H , Petit P , Robert J , Xu C , Lee Y H , Kim S G , Rinzler A G .
CrossRef
Google scholar
|
[23] |
Gavillet J , Loiseau A , Journet C , Willaime F , Ducastelle F , Charlier J C . Root-growth mechanism for single-wall carbon nanotubes. Physical Review Letters, 2001, 87(27): 275504
CrossRef
Google scholar
|
[24] |
Zhang R , Xie H , Zhang Y , Zhang Q , Jin Y , Li P , Qian W , Wei F . The reason for the low density of horizontally aligned ultralong carbon nanotube arrays. Carbon, 2013, 52: 232–238
CrossRef
Google scholar
|
[25] |
Yoshida H , Takeda S , Uchiyama T , Kohno H , Homma Y . Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Letters, 2008, 8(7): 2082–2086
CrossRef
Google scholar
|
[26] |
He M , Duan X , Wang X , Zhang J , Liu Z , Robinson C . Iron catalysts reactivation for efficient CVD growth of SWNT with base-growth mode on surface. Journal of Physical Chemistry B, 2004, 108(34): 12665–12668
CrossRef
Google scholar
|
[27] |
Helveg S , López-Cartes C , Sehested J , Hansen P L , Clausen B S , Rostrup-Nielsen J R , Abild-Pedersen F , Nørskov J K . Atomic-scale imaging of carbon nanofibre growth. Nature, 2004, 427(6973): 426–429
CrossRef
Google scholar
|
[28] |
Ago H , Ishigami N , Yoshihara N , Imamoto K , Akita S , Ikeda K I , Tsuji M , Ikuta T , Takahashi K . Visualization of horizontally-aligned single-walled carbon nanotube growth with 13C/12C isotopes. Journal of Physical Chemistry C, 2008, 112(6): 1735–1738
CrossRef
Google scholar
|
[29] |
Zhang R , Zhang Y , Xie H , Zhang Q , Qian W , Wei F . Controlled synthesis and property of horizontally aligned carbon nanotubes. Scientia Sinica Chimica, 2015, 45(10): 979–1009
CrossRef
Google scholar
|
[30] |
Jiang Q , Wang F , Li R , Wu X , Zhang W , Zhao S , Huang Y , Wang B , Zhang S , Zhao Y .
CrossRef
Google scholar
|
[31] |
Jiang Q , Li R , Wang F , Shi X , Chen F , Huang Y , Wang B , Zhang W , Wu X , Wei F .
CrossRef
Google scholar
|
[32] |
Hofmann M , Nezich D , Reina A , Kong J . In-situ sample rotation as a tool to understand chemical vapor deposition growth of long aligned carbon nanotubes. Nano Letters, 2008, 8(12): 4122–4127
CrossRef
Google scholar
|
[33] |
Ma Y , Wang B , Wu Y , Huang Y , Chen Y . The production of horizontally aligned single-walled carbon nanotubes. Carbon, 2011, 49(13): 4098–4110
CrossRef
Google scholar
|
[34] |
Jian M , Xie H , Wang Q , Xia K , Yin Z , Zhang M , Deng N , Wang L , Ren T , Zhang Y . Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials. Nanoscale, 2016, 8(27): 13437–13444
CrossRef
Google scholar
|
[35] |
Flory P J . Molecular size distribution in linear condensation polymers. Journal of the American Chemical Society, 1936, 58(10): 1877–1885
CrossRef
Google scholar
|
[36] |
Zhang R , Zhang Y , Zhang Q , Xie H , Qian W , Wei F . Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano, 2013, 7(7): 6156–6161
CrossRef
Google scholar
|
[37] |
Jiang Q , Wang F , Li R , Li B , Wei N , Gao N , Xu H , Zhao S , Huang Y , Wang B .
CrossRef
Google scholar
|
[38] |
Wen Q , Qian W , Nie J , Cao A , Ning G , Wang Y , Hu L , Zhang Q , Huang J , Wei F . 100 mm long, semiconducting triple-walled carbon nanotubes. Advanced Materials, 2010, 22(16): 1867–1871
CrossRef
Google scholar
|
[39] |
Huang S , Cai X , Liu J . Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. Journal of the American Chemical Society, 2003, 125(19): 5636–5637
CrossRef
Google scholar
|
[40] |
Cui R , Zhang Y , Wang J , Zhou W , Li Y . Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates. Journal of Physical Chemistry C, 2010, 114(37): 15547–15552
CrossRef
Google scholar
|
[41] |
Reina A , Hofmann M , Zhu D , Kong J . Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. Journal of Physical Chemistry C, 2007, 111(20): 7292–7297
CrossRef
Google scholar
|
[42] |
Zhou W , Han Z , Wang J , Zhang Y , Jin Z , Sun X , Zhang Y , Yan C , Li Y . Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Letters, 2006, 6(12): 2987–2990
CrossRef
Google scholar
|
[43] |
Wang Q , Ng M F , Yang S W , Yang Y , Chen Y . The mechanism of single-walled carbon nanotube growth and chirality selection induced by carbon atom and dimer addition. ACS Nano, 2010, 4(2): 939–946
CrossRef
Google scholar
|
[44] |
Zhang B , Hong G , Peng B , Zhang J , Choi W , Kim J M , Choi J Y , Liu Z . Grow single-walled carbon nanotubes cross-bar in one batch. Journal of Physical Chemistry C, 2009, 113(14): 5341–5344
CrossRef
Google scholar
|
[45] |
Liu Z , Jiao L , Yao Y , Xian X , Zhang J . Aligned, ultralong single-walled carbon nanotubes: from synthesis, sorting, to electronic devices. Advanced Materials, 2010, 22(21): 2285–2310
CrossRef
Google scholar
|
[46] |
Yao Y , Li Q , Zhang J , Liu R , Jiao L , Zhu Y T , Liu Z . Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nature Materials, 2007, 6(4): 283–286
CrossRef
Google scholar
|
[47] |
Jiang Q , Wu Y , Wang F , Zhu P , Li R , Zhao Y , Huang Y , Wu X , Zhao S , Li Y .
CrossRef
Google scholar
|
[48] |
Franklin A D . The road to carbon nanotube transistors. Nature, 2013, 498(7455): 443–444
CrossRef
Google scholar
|
[49] |
Xie H , Zhang R , Zhang Y , Li P , Jin Y , Wei F . Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres. Carbon, 2013, 52: 535–540
CrossRef
Google scholar
|
[50] |
Hu Y , Kang L , Zhao Q , Zhong H , Zhang S , Yang L , Wang Z , Lin J , Li Q , Zhang Z .
CrossRef
Google scholar
|
[51] |
Hong B H , Lee J Y , Beetz T , Zhu Y , Kim P , Kim K S . Quasi-continuous growth of ultralong carbon nanotube arrays. Journal of the American Chemical Society, 2005, 127(44): 15336–15337
CrossRef
Google scholar
|
[52] |
Peng B , Yao Y , Zhang J . Effect of the Reynolds and Richardson numbers on the growth of well-aligned ultralong single-walled carbon nanotubes. Journal of Physical Chemistry C, 2010, 114(30): 12960–12965
CrossRef
Google scholar
|
[53] |
Wang X , Li Q , Xie J , Jin Z , Wang J , Li Y , Jiang K , Fan S . Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Letters, 2009, 9(9): 3137–3141
CrossRef
Google scholar
|
[54] |
Brady G J , Way A J , Safron N S , Evensen H T , Gopalan P , Arnold M S . Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Science Advances, 2016, 2(9): e1601240
CrossRef
Google scholar
|
[55] |
Qiu L , Ding F . Understanding single-walled carbon nanotube growth for chirality controllable synthesis. Accounts of Materials Research, 2021, 2(9): 828–841
CrossRef
Google scholar
|
[56] |
Wei B Q , Vajtai R , Ajayan P M . Reliability and current carrying capacity of carbon nanotubes. Applied Physics Letters, 2001, 79(8): 1172–1174
CrossRef
Google scholar
|
[57] |
Wehling T O , Black-Schaffer A M , Balatsky A V . Dirac materials. Advances in Physics, 2014, 63(1): 1–76
CrossRef
Google scholar
|
[58] |
Liu L , Han J , Xu L , Zhou J , Zhao C , Ding S , Shi H , Xiao M , Ding L , Ma Z .
CrossRef
Google scholar
|
[59] |
Ghosh S , Bachilo S M , Weisman R B . Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nature Nanotechnology, 2010, 5(6): 443–450
CrossRef
Google scholar
|
[60] |
Cao Q , Han S J , Tulevski G S , Zhu Y , Lu D D , Haensch W . Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nature Nanotechnology, 2013, 8(3): 180–186
CrossRef
Google scholar
|
[61] |
Nish A , Hwang J Y , Doig J , Nicholas R J . Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotechnology, 2007, 2(10): 640–646
CrossRef
Google scholar
|
[62] |
Avouris P , Chen Z , Perebeinos V . Carbon-based electronics. Nature Nanotechnology, 2007, 2(10): 605–615
CrossRef
Google scholar
|
[63] |
Zhu Z , Wei N , Cheng W , Shen B , Sun S , Gao J , Wen Q , Zhang R , Xu J , Wang Y .
CrossRef
Google scholar
|
[64] |
Zhu Z , Wei N , Xie H , Zhang R , Bai Y , Wang Q , Zhang C , Wang S , Peng L , Dai L .
CrossRef
Google scholar
|
[65] |
Wang K , Wang F , Jiang Q , Zhu P , Leu K , Zhang R . Controlled synthesis, properties, and applications of ultralong carbon nanotubes. Nanoscale Advances, 2024, 6(18): 4504–4521
CrossRef
Google scholar
|
[66] |
Cong L , Yuan Z , Bai Z , Wang X , Zhao W , Gao X , Hu X , Liu P , Guo W , Li Q .
CrossRef
Google scholar
|
[67] |
Dresselhaus M S , Dresselhaus G , Jorio A . Unusual properties and structure of carbon nanotubes. Annual Review of Materials Research, 2004, 34(1): 247–278
CrossRef
Google scholar
|
[68] |
Jiang Q , Leu K , Gong X , Wang F , Li R , Wang K , Zhu P , Zhao Y , Zang Y , Zhang R . High-performance airflow sensors based on suspended ultralong carbon nanotube crossed networks. ACS Applied Materials & Interfaces, 2024, 16(16): 20949–20958
CrossRef
Google scholar
|
[69] |
Jiao L , Xian X , Liu Z . Manipulation of ultralong single-walled carbon nanotubes at macroscale. Journal of Physical Chemistry C, 2008, 112(27): 9963–9965
CrossRef
Google scholar
|
[70] |
Wang F , Wang K , Chang Z , Liang H , Jiang Q , Xi A , Zhao Y , Zhao S , Leu K , Wu X .
CrossRef
Google scholar
|
[71] |
Wang H , Jian M , Li S , Liang X , Lu H , Xia K , Zhu M , Wu Y , Zhang Y . Inter-shell sliding in individual few-walled carbon nanotubes for flexible electronics. Advanced Materials, 2023, 35(48): 2306144
CrossRef
Google scholar
|
[72] |
He X , Léonard F , Kono J . Uncooled carbon nanotube photodetectors. Advanced Optical Materials, 2015, 3(8): 989–1011
CrossRef
Google scholar
|
[73] |
Dürkop T , Getty S A , Cobas E , Fuhrer M S . Extraordinary mobility in semiconducting carbon nanotubes. Nano Letters, 2004, 4(1): 35–39
CrossRef
Google scholar
|
[74] |
Burdanova M G , Tsapenko A P , Kharlamova M V , Kauppinen E I , Gorshunov B P , Kono J , Lloyd-Hughes J . A review of the terahertz conductivity and photoconductivity of carbon nanotubes and heteronanotubes. Advanced Optical Materials, 2021, 9(24): 2101042
CrossRef
Google scholar
|
[75] |
Pop E , Mann D A , Goodson K E , Dai H . Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. Journal of Applied Physics, 2007, 101(9): 093710
CrossRef
Google scholar
|
[76] |
Freitag M , Martin Y , Misewich J A , Martel R , Avouris P . Photoconductivity of single carbon nanotubes. Nano Letters, 2003, 3(8): 1067–1071
CrossRef
Google scholar
|
[77] |
Itkis M E , Borondics F , Yu A , Haddon R C . Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 2006, 312(5772): 413–416
CrossRef
Google scholar
|
[78] |
Yu L , Shearer C , Shapter J . Recent development of carbon nanotube transparent conductive films. Chemical Reviews, 2016, 116(22): 13413–13453
CrossRef
Google scholar
|
[79] |
Wei N , Liu Y , Xie H , Wei F , Wang S , Peng L M . Carbon nanotube light sensors with linear dynamic range of over 120 dB. Applied Physics Letters, 2014, 105(7): 073107
CrossRef
Google scholar
|
[80] |
Zhu J L , Zhang G , Wei J , Sun J L . Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film. Applied Physics Letters, 2012, 101(12): 123117
CrossRef
Google scholar
|
[81] |
Low T , Perebeinos V , Kim R , Freitag M , Avouris P . Cooling of photoexcited carriers in graphene by internal and substrate phonons. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(4): 045413
CrossRef
Google scholar
|
[82] |
Wang H D , Liu J H , Guo Z Y , Zhang X , Zhang R F , Wei F , Li T Y . Thermal transport across the interface between a suspended single-walled carbon nanotube and air. Nanoscale and Microscale Thermophysical Engineering, 2013, 17(4): 349–365
CrossRef
Google scholar
|
[83] |
Jiang Q , Wang K , Wang F , Leu K , Li R , Zhao Y , Xi A , Zang Y , Zhang R . High-performance photodetectors based on suspended ultralong carbon nanotubes. ACS Nano, 2024, 18(36): 25249–25256
CrossRef
Google scholar
|
[84] |
Zheng Z , Fang H , Liu D , Tan Z , Gao X , Hu W , Peng H , Tong L , Hu W , Zhang J . Nonlocal response in infrared detector with semiconducting carbon nanotubes and graphdiyne. Advanced Science, 2017, 4(12): 1700472
CrossRef
Google scholar
|
[85] |
Zeng Q , Wang S , Yang L , Wang Z , Pei T , Zhang Z , Peng L M , Zhou W , Liu J , Zhou W .
CrossRef
Google scholar
|
[86] |
Chen C , Zhao Y M , Yu H L , Jiao X Y , Hu X G , Li X , Hou P X , Liu C , Cheng H M . High-performance infrared photodetector based on single-wall carbon nanotube films. Carbon, 2023, 206: 150–156
CrossRef
Google scholar
|
[87] |
Wang H , Li Z , Li D , Chen P , Pi L , Zhou X , Zhai T . Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Advanced Functional Materials, 2021, 31(30): 2103106
CrossRef
Google scholar
|
[88] |
Huang P Y , Chen H J , Qin J K , Zhen L , Xu C Y . A polarization-sensitive photothermoelectric photodetector based on mixed-dimensional SWCNT-MoS2 heterostructures. Nanoscale Advances, 2022, 4(24): 5290–5296
CrossRef
Google scholar
|
[89] |
Xiang R , Inoue T , Zheng Y , Kumamoto A , Qian Y , Sato Y , Liu M , Tang D , Gokhale D , Guo J .
CrossRef
Google scholar
|
[90] |
Wang K , Wang F , Cao Y , Jiang Q , Xi A , Leu K , Wang X , Zang Y , Liu R , Zhang R . High-performance photodetectors based on suspended ultralong CNTs-MoS2 heterojunction networks. Advanced Functional Materials, 2024, 2421980
CrossRef
Google scholar
|
/
〈 |
|
〉 |