Controlled synthesis and advanced applications of ultralong carbon nanotubes

Fei Wang, Yanlong Zhao, Kangkang Wang, Khaixien Leu, Aike Xi, Qixuan Cai, Rufan Zhang

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 37.

PDF(6881 KB)
PDF(6881 KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 37. DOI: 10.1007/s11705-025-2538-1
REVIEW ARTICLE

Controlled synthesis and advanced applications of ultralong carbon nanotubes

Author information +
History +

Abstract

Carbon nanotubes have attracted extensive interest owing to their extraordinary properties and wide applications in many fields. Among various types of carbon nanotubes, only ultralong carbon nanotubes with macroscale lengths, low defect concentrations, and high degrees of alignment can fully demonstrate their intrinsic performance. These attributes make ultralong carbon nanotubes highly promising for applications in cutting-edge fields, such as carbon-based integrated circuits, ultra-strong fibers, and transparent conductive films. However, the mass production of ultralong carbon nanotubes with precise structural control remains a major challenge, limiting their widespread applications. In the past decades, great progress has been achieved in the study of ultralong carbon nanotubes. In this review, we summarized the growth mechanisms and the controlled synthesis strategies of ultralong carbon nanotubes. Then, we introduced the advanced applications of ultralong carbon nanotubes in many areas, such as field-effect transistors, sensors, and photodetectors. Finally, we discussed the remaining challenges and offered our perspectives on the future directions of this field.

Graphical abstract

Keywords

carbon nanotubes / ultralong / controlled synthesis / advanced application

Cite this article

Download citation ▾
Fei Wang, Yanlong Zhao, Kangkang Wang, Khaixien Leu, Aike Xi, Qixuan Cai, Rufan Zhang. Controlled synthesis and advanced applications of ultralong carbon nanotubes. Front. Chem. Sci. Eng., 2025, 19(5): 37 https://doi.org/10.1007/s11705-025-2538-1

References

[1]
Iijima S . Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58
CrossRef Google scholar
[2]
Zhang R , Zhang Y , Wei F . Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chemical Society Reviews, 2017, 46(12): 3661–3715
CrossRef Google scholar
[3]
Bai Y , Yue H , Wang J , Shen B , Sun S , Wang S , Wang H , Li X , Xu Z , Zhang R . . Super-durable ultralong carbon nanotubes. Science, 2020, 369(6507): 1104–1106
CrossRef Google scholar
[4]
Bai Y , Zhang R , Ye X , Zhu Z , Xie H , Shen B , Cai D , Liu B , Zhang C , Jia Z . . Carbon nanotube bundles with tensile strength over 80 GPa. Nature Nanotechnology, 2018, 13(7): 589–595
CrossRef Google scholar
[5]
Zhang X , Lu W , Zhou G , Li Q . Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Advanced Materials, 2020, 32(5): 1902028
CrossRef Google scholar
[6]
Gong Y , Adhikari P , Liu Q , Wang T , Gong M , Chan W L , Ching W Y , Wu J . Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection. ACS Applied Materials & Interfaces, 2017, 9(12): 11016–11024
CrossRef Google scholar
[7]
Ackermann J , Metternich J T , Herbertz S , Kruss S . Biosensing with fluorescent carbon nanotubes. Angewandte Chemie International Edition, 2022, 61(18): e202112372
CrossRef Google scholar
[8]
Chen Y , Zhang H B , Yang Y , Wang M , Cao A , Yu Z Z . High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Advanced Functional Materials, 2016, 26(3): 447–455
CrossRef Google scholar
[9]
Chen S , Qiu L , Cheng H M . Carbon-based fibers for advanced electrochemical energy storage devices. Chemical Reviews, 2020, 120(5): 2811–2878
CrossRef Google scholar
[10]
Li R , Jiang Q , Zhang R . Progress and perspective on high-strength and multifunctional carbon nanotube fibers. Science Bulletin, 2022, 67(8): 784–787
CrossRef Google scholar
[11]
Sun D M , Timmermans M Y , Kaskela A , Nasibulin A G , Kishimoto S , Mizutani T , Kauppinen E I , Ohno Y . Mouldable all-carbon integrated circuits. Nature Communications, 2013, 4(1): 2302
CrossRef Google scholar
[12]
Chen T , Dai L . Flexible supercapacitors based on carbon nanomaterials. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(28): 10756–10775
CrossRef Google scholar
[13]
Huang J , Zhang Q , Zhao M , Wei F . A review of the large-scale production of carbon nanotubes: the practice of nanoscale process engineering. Chinese Science Bulletin, 2012, 57(2): 157–166
CrossRef Google scholar
[14]
Zhang X , Lei X , Jia X , Sun T , Luo J , Xu S , Li L , Yan D , Shao Y , Yong Z . . Carbon nanotube fibers with dynamic strength up to 14 GPa. Science, 2024, 384(6702): 1318–1323
CrossRef Google scholar
[15]
Yang Z , Tian J , Yin Z , Cui C , Qian W , Wei F . Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon, 2019, 141: 467–480
CrossRef Google scholar
[16]
Wei F , Zhang Q , Qian W Z , Yu H , Wang Y , Luo G H , Xu G H , Wang D Z . The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: a multiscale space-time analysis. Powder Technology, 2008, 183(1): 10–20
CrossRef Google scholar
[17]
Cho W , Schulz M , Shanov V . Growth and characterization of vertically aligned centimeter long cnt arrays. Carbon, 2014, 72: 264–273
CrossRef Google scholar
[18]
Tulevski G S , Franklin A D , Frank D , Lobez J M , Cao Q , Park H , Afzali A , Han S J , Hannon J B , Haensch W . Toward high-performance digital logic technology with carbon nanotubes. ACS Nano, 2014, 8(9): 8730–8745
CrossRef Google scholar
[19]
Kong J , Soh H T , Cassell A M , Quate C F , Dai H . Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395(6705): 878–881
CrossRef Google scholar
[20]
Iijima S , Ichihashi T . Single-shell carbon nanotubes of 1-Nm diameter. Nature, 1993, 363(6430): 603–605
CrossRef Google scholar
[21]
Guo T , Nikolaev P , Rinzler A G , Tomanek D , Colbert D T , Smalley R E . Self-assembly of tubular fullerenes. Journal of Physical Chemistry, 1995, 99(27): 10694–10697
CrossRef Google scholar
[22]
Thess A , Lee R , Nikolaev P , Dai H , Petit P , Robert J , Xu C , Lee Y H , Kim S G , Rinzler A G . . Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483–487
CrossRef Google scholar
[23]
Gavillet J , Loiseau A , Journet C , Willaime F , Ducastelle F , Charlier J C . Root-growth mechanism for single-wall carbon nanotubes. Physical Review Letters, 2001, 87(27): 275504
CrossRef Google scholar
[24]
Zhang R , Xie H , Zhang Y , Zhang Q , Jin Y , Li P , Qian W , Wei F . The reason for the low density of horizontally aligned ultralong carbon nanotube arrays. Carbon, 2013, 52: 232–238
CrossRef Google scholar
[25]
Yoshida H , Takeda S , Uchiyama T , Kohno H , Homma Y . Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Letters, 2008, 8(7): 2082–2086
CrossRef Google scholar
[26]
He M , Duan X , Wang X , Zhang J , Liu Z , Robinson C . Iron catalysts reactivation for efficient CVD growth of SWNT with base-growth mode on surface. Journal of Physical Chemistry B, 2004, 108(34): 12665–12668
CrossRef Google scholar
[27]
Helveg S , López-Cartes C , Sehested J , Hansen P L , Clausen B S , Rostrup-Nielsen J R , Abild-Pedersen F , Nørskov J K . Atomic-scale imaging of carbon nanofibre growth. Nature, 2004, 427(6973): 426–429
CrossRef Google scholar
[28]
Ago H , Ishigami N , Yoshihara N , Imamoto K , Akita S , Ikeda K I , Tsuji M , Ikuta T , Takahashi K . Visualization of horizontally-aligned single-walled carbon nanotube growth with 13C/12C isotopes. Journal of Physical Chemistry C, 2008, 112(6): 1735–1738
CrossRef Google scholar
[29]
Zhang R , Zhang Y , Xie H , Zhang Q , Qian W , Wei F . Controlled synthesis and property of horizontally aligned carbon nanotubes. Scientia Sinica Chimica, 2015, 45(10): 979–1009
CrossRef Google scholar
[30]
Jiang Q , Wang F , Li R , Wu X , Zhang W , Zhao S , Huang Y , Wang B , Zhang S , Zhao Y . . The inherent thermal effect of substrates on the growth of ultralong carbon nanotubes. Advanced Functional Materials, 2022, 33(10): 2212665
CrossRef Google scholar
[31]
Jiang Q , Li R , Wang F , Shi X , Chen F , Huang Y , Wang B , Zhang W , Wu X , Wei F . . Ultrasensitive airflow sensors based on suspended carbon nanotube networks. Advanced Materials, 2022, 34(18): 2107062
CrossRef Google scholar
[32]
Hofmann M , Nezich D , Reina A , Kong J . In-situ sample rotation as a tool to understand chemical vapor deposition growth of long aligned carbon nanotubes. Nano Letters, 2008, 8(12): 4122–4127
CrossRef Google scholar
[33]
Ma Y , Wang B , Wu Y , Huang Y , Chen Y . The production of horizontally aligned single-walled carbon nanotubes. Carbon, 2011, 49(13): 4098–4110
CrossRef Google scholar
[34]
Jian M , Xie H , Wang Q , Xia K , Yin Z , Zhang M , Deng N , Wang L , Ren T , Zhang Y . Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials. Nanoscale, 2016, 8(27): 13437–13444
CrossRef Google scholar
[35]
Flory P J . Molecular size distribution in linear condensation polymers. Journal of the American Chemical Society, 1936, 58(10): 1877–1885
CrossRef Google scholar
[36]
Zhang R , Zhang Y , Zhang Q , Xie H , Qian W , Wei F . Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano, 2013, 7(7): 6156–6161
CrossRef Google scholar
[37]
Jiang Q , Wang F , Li R , Li B , Wei N , Gao N , Xu H , Zhao S , Huang Y , Wang B . . Synthesis of ultralong carbon nanotubes with ultrahigh yields. Nano Letters, 2023, 23(2): 523–532
CrossRef Google scholar
[38]
Wen Q , Qian W , Nie J , Cao A , Ning G , Wang Y , Hu L , Zhang Q , Huang J , Wei F . 100 mm long, semiconducting triple-walled carbon nanotubes. Advanced Materials, 2010, 22(16): 1867–1871
CrossRef Google scholar
[39]
Huang S , Cai X , Liu J . Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. Journal of the American Chemical Society, 2003, 125(19): 5636–5637
CrossRef Google scholar
[40]
Cui R , Zhang Y , Wang J , Zhou W , Li Y . Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates. Journal of Physical Chemistry C, 2010, 114(37): 15547–15552
CrossRef Google scholar
[41]
Reina A , Hofmann M , Zhu D , Kong J . Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. Journal of Physical Chemistry C, 2007, 111(20): 7292–7297
CrossRef Google scholar
[42]
Zhou W , Han Z , Wang J , Zhang Y , Jin Z , Sun X , Zhang Y , Yan C , Li Y . Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Letters, 2006, 6(12): 2987–2990
CrossRef Google scholar
[43]
Wang Q , Ng M F , Yang S W , Yang Y , Chen Y . The mechanism of single-walled carbon nanotube growth and chirality selection induced by carbon atom and dimer addition. ACS Nano, 2010, 4(2): 939–946
CrossRef Google scholar
[44]
Zhang B , Hong G , Peng B , Zhang J , Choi W , Kim J M , Choi J Y , Liu Z . Grow single-walled carbon nanotubes cross-bar in one batch. Journal of Physical Chemistry C, 2009, 113(14): 5341–5344
CrossRef Google scholar
[45]
Liu Z , Jiao L , Yao Y , Xian X , Zhang J . Aligned, ultralong single-walled carbon nanotubes: from synthesis, sorting, to electronic devices. Advanced Materials, 2010, 22(21): 2285–2310
CrossRef Google scholar
[46]
Yao Y , Li Q , Zhang J , Liu R , Jiao L , Zhu Y T , Liu Z . Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nature Materials, 2007, 6(4): 283–286
CrossRef Google scholar
[47]
Jiang Q , Wu Y , Wang F , Zhu P , Li R , Zhao Y , Huang Y , Wu X , Zhao S , Li Y . . Floating bimetallic catalysts for growing 30 cm-long carbon nanotube arrays with high yields and uniformity. Advanced Materials, 2024, 36(32): 2402257
CrossRef Google scholar
[48]
Franklin A D . The road to carbon nanotube transistors. Nature, 2013, 498(7455): 443–444
CrossRef Google scholar
[49]
Xie H , Zhang R , Zhang Y , Li P , Jin Y , Wei F . Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres. Carbon, 2013, 52: 535–540
CrossRef Google scholar
[50]
Hu Y , Kang L , Zhao Q , Zhong H , Zhang S , Yang L , Wang Z , Lin J , Li Q , Zhang Z . . Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nature Communications, 2015, 6(1): 6099
CrossRef Google scholar
[51]
Hong B H , Lee J Y , Beetz T , Zhu Y , Kim P , Kim K S . Quasi-continuous growth of ultralong carbon nanotube arrays. Journal of the American Chemical Society, 2005, 127(44): 15336–15337
CrossRef Google scholar
[52]
Peng B , Yao Y , Zhang J . Effect of the Reynolds and Richardson numbers on the growth of well-aligned ultralong single-walled carbon nanotubes. Journal of Physical Chemistry C, 2010, 114(30): 12960–12965
CrossRef Google scholar
[53]
Wang X , Li Q , Xie J , Jin Z , Wang J , Li Y , Jiang K , Fan S . Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Letters, 2009, 9(9): 3137–3141
CrossRef Google scholar
[54]
Brady G J , Way A J , Safron N S , Evensen H T , Gopalan P , Arnold M S . Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Science Advances, 2016, 2(9): e1601240
CrossRef Google scholar
[55]
Qiu L , Ding F . Understanding single-walled carbon nanotube growth for chirality controllable synthesis. Accounts of Materials Research, 2021, 2(9): 828–841
CrossRef Google scholar
[56]
Wei B Q , Vajtai R , Ajayan P M . Reliability and current carrying capacity of carbon nanotubes. Applied Physics Letters, 2001, 79(8): 1172–1174
CrossRef Google scholar
[57]
Wehling T O , Black-Schaffer A M , Balatsky A V . Dirac materials. Advances in Physics, 2014, 63(1): 1–76
CrossRef Google scholar
[58]
Liu L , Han J , Xu L , Zhou J , Zhao C , Ding S , Shi H , Xiao M , Ding L , Ma Z . . Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 2020, 368(6493): 850–856
CrossRef Google scholar
[59]
Ghosh S , Bachilo S M , Weisman R B . Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nature Nanotechnology, 2010, 5(6): 443–450
CrossRef Google scholar
[60]
Cao Q , Han S J , Tulevski G S , Zhu Y , Lu D D , Haensch W . Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nature Nanotechnology, 2013, 8(3): 180–186
CrossRef Google scholar
[61]
Nish A , Hwang J Y , Doig J , Nicholas R J . Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotechnology, 2007, 2(10): 640–646
CrossRef Google scholar
[62]
Avouris P , Chen Z , Perebeinos V . Carbon-based electronics. Nature Nanotechnology, 2007, 2(10): 605–615
CrossRef Google scholar
[63]
Zhu Z , Wei N , Cheng W , Shen B , Sun S , Gao J , Wen Q , Zhang R , Xu J , Wang Y . . Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nature Communications, 2019, 10(1): 4467
CrossRef Google scholar
[64]
Zhu Z , Wei N , Xie H , Zhang R , Bai Y , Wang Q , Zhang C , Wang S , Peng L , Dai L . . Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Science Advances, 2016, 2(11): e1601572
CrossRef Google scholar
[65]
Wang K , Wang F , Jiang Q , Zhu P , Leu K , Zhang R . Controlled synthesis, properties, and applications of ultralong carbon nanotubes. Nanoscale Advances, 2024, 6(18): 4504–4521
CrossRef Google scholar
[66]
Cong L , Yuan Z , Bai Z , Wang X , Zhao W , Gao X , Hu X , Liu P , Guo W , Li Q . . On-chip torsion balances with femtonewton force resolution at room temperature enabled by carbon nanotube and graphene. Science Advances, 2021, 7(12): eabd2358
CrossRef Google scholar
[67]
Dresselhaus M S , Dresselhaus G , Jorio A . Unusual properties and structure of carbon nanotubes. Annual Review of Materials Research, 2004, 34(1): 247–278
CrossRef Google scholar
[68]
Jiang Q , Leu K , Gong X , Wang F , Li R , Wang K , Zhu P , Zhao Y , Zang Y , Zhang R . High-performance airflow sensors based on suspended ultralong carbon nanotube crossed networks. ACS Applied Materials & Interfaces, 2024, 16(16): 20949–20958
CrossRef Google scholar
[69]
Jiao L , Xian X , Liu Z . Manipulation of ultralong single-walled carbon nanotubes at macroscale. Journal of Physical Chemistry C, 2008, 112(27): 9963–9965
CrossRef Google scholar
[70]
Wang F , Wang K , Chang Z , Liang H , Jiang Q , Xi A , Zhao Y , Zhao S , Leu K , Wu X . . Highly transparent and transferable ultralong carbon nanotube networks for transparent wearable electronics. ACS Nano, 2024, 18(48): 33245–33255
CrossRef Google scholar
[71]
Wang H , Jian M , Li S , Liang X , Lu H , Xia K , Zhu M , Wu Y , Zhang Y . Inter-shell sliding in individual few-walled carbon nanotubes for flexible electronics. Advanced Materials, 2023, 35(48): 2306144
CrossRef Google scholar
[72]
He X , Léonard F , Kono J . Uncooled carbon nanotube photodetectors. Advanced Optical Materials, 2015, 3(8): 989–1011
CrossRef Google scholar
[73]
Dürkop T , Getty S A , Cobas E , Fuhrer M S . Extraordinary mobility in semiconducting carbon nanotubes. Nano Letters, 2004, 4(1): 35–39
CrossRef Google scholar
[74]
Burdanova M G , Tsapenko A P , Kharlamova M V , Kauppinen E I , Gorshunov B P , Kono J , Lloyd-Hughes J . A review of the terahertz conductivity and photoconductivity of carbon nanotubes and heteronanotubes. Advanced Optical Materials, 2021, 9(24): 2101042
CrossRef Google scholar
[75]
Pop E , Mann D A , Goodson K E , Dai H . Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. Journal of Applied Physics, 2007, 101(9): 093710
CrossRef Google scholar
[76]
Freitag M , Martin Y , Misewich J A , Martel R , Avouris P . Photoconductivity of single carbon nanotubes. Nano Letters, 2003, 3(8): 1067–1071
CrossRef Google scholar
[77]
Itkis M E , Borondics F , Yu A , Haddon R C . Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 2006, 312(5772): 413–416
CrossRef Google scholar
[78]
Yu L , Shearer C , Shapter J . Recent development of carbon nanotube transparent conductive films. Chemical Reviews, 2016, 116(22): 13413–13453
CrossRef Google scholar
[79]
Wei N , Liu Y , Xie H , Wei F , Wang S , Peng L M . Carbon nanotube light sensors with linear dynamic range of over 120 dB. Applied Physics Letters, 2014, 105(7): 073107
CrossRef Google scholar
[80]
Zhu J L , Zhang G , Wei J , Sun J L . Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film. Applied Physics Letters, 2012, 101(12): 123117
CrossRef Google scholar
[81]
Low T , Perebeinos V , Kim R , Freitag M , Avouris P . Cooling of photoexcited carriers in graphene by internal and substrate phonons. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(4): 045413
CrossRef Google scholar
[82]
Wang H D , Liu J H , Guo Z Y , Zhang X , Zhang R F , Wei F , Li T Y . Thermal transport across the interface between a suspended single-walled carbon nanotube and air. Nanoscale and Microscale Thermophysical Engineering, 2013, 17(4): 349–365
CrossRef Google scholar
[83]
Jiang Q , Wang K , Wang F , Leu K , Li R , Zhao Y , Xi A , Zang Y , Zhang R . High-performance photodetectors based on suspended ultralong carbon nanotubes. ACS Nano, 2024, 18(36): 25249–25256
CrossRef Google scholar
[84]
Zheng Z , Fang H , Liu D , Tan Z , Gao X , Hu W , Peng H , Tong L , Hu W , Zhang J . Nonlocal response in infrared detector with semiconducting carbon nanotubes and graphdiyne. Advanced Science, 2017, 4(12): 1700472
CrossRef Google scholar
[85]
Zeng Q , Wang S , Yang L , Wang Z , Pei T , Zhang Z , Peng L M , Zhou W , Liu J , Zhou W . . Carbon nanotube arrays based high-performance infrared photodetector. Optical Materials Express, 2012, 2(6): 839–848
CrossRef Google scholar
[86]
Chen C , Zhao Y M , Yu H L , Jiao X Y , Hu X G , Li X , Hou P X , Liu C , Cheng H M . High-performance infrared photodetector based on single-wall carbon nanotube films. Carbon, 2023, 206: 150–156
CrossRef Google scholar
[87]
Wang H , Li Z , Li D , Chen P , Pi L , Zhou X , Zhai T . Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Advanced Functional Materials, 2021, 31(30): 2103106
CrossRef Google scholar
[88]
Huang P Y , Chen H J , Qin J K , Zhen L , Xu C Y . A polarization-sensitive photothermoelectric photodetector based on mixed-dimensional SWCNT-MoS2 heterostructures. Nanoscale Advances, 2022, 4(24): 5290–5296
CrossRef Google scholar
[89]
Xiang R , Inoue T , Zheng Y , Kumamoto A , Qian Y , Sato Y , Liu M , Tang D , Gokhale D , Guo J . . One-dimensional van der Waals heterostructures. Science, 2020, 367(6477): 537–542
CrossRef Google scholar
[90]
Wang K , Wang F , Cao Y , Jiang Q , Xi A , Leu K , Wang X , Zang Y , Liu R , Zhang R . High-performance photodetectors based on suspended ultralong CNTs-MoS2 heterojunction networks. Advanced Functional Materials, 2024, 2421980
CrossRef Google scholar

Acknowledgements

This work is supported by the National Key Research and Development Program (Grant Nos. 2020YFC2201103 and 2020YFA0210702) and the National Natural Science Foundation of China (Grant No. 22075163).

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(6881 KB)

Accesses

Citations

Detail

Sections
Recommended

/