Controlled synthesis and advanced applications of ultralong carbon nanotubes

Fei Wang , Yanlong Zhao , Kangkang Wang , Khaixien Leu , Aike Xi , Qixuan Cai , Rufan Zhang

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 37

PDF (6881KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (5) : 37 DOI: 10.1007/s11705-025-2538-1
REVIEW ARTICLE

Controlled synthesis and advanced applications of ultralong carbon nanotubes

Author information +
History +
PDF (6881KB)

Abstract

Carbon nanotubes have attracted extensive interest owing to their extraordinary properties and wide applications in many fields. Among various types of carbon nanotubes, only ultralong carbon nanotubes with macroscale lengths, low defect concentrations, and high degrees of alignment can fully demonstrate their intrinsic performance. These attributes make ultralong carbon nanotubes highly promising for applications in cutting-edge fields, such as carbon-based integrated circuits, ultra-strong fibers, and transparent conductive films. However, the mass production of ultralong carbon nanotubes with precise structural control remains a major challenge, limiting their widespread applications. In the past decades, great progress has been achieved in the study of ultralong carbon nanotubes. In this review, we summarized the growth mechanisms and the controlled synthesis strategies of ultralong carbon nanotubes. Then, we introduced the advanced applications of ultralong carbon nanotubes in many areas, such as field-effect transistors, sensors, and photodetectors. Finally, we discussed the remaining challenges and offered our perspectives on the future directions of this field.

Graphical abstract

Keywords

carbon nanotubes / ultralong / controlled synthesis / advanced application

Cite this article

Download citation ▾
Fei Wang, Yanlong Zhao, Kangkang Wang, Khaixien Leu, Aike Xi, Qixuan Cai, Rufan Zhang. Controlled synthesis and advanced applications of ultralong carbon nanotubes. Front. Chem. Sci. Eng., 2025, 19(5): 37 DOI:10.1007/s11705-025-2538-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iijima S . Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

[2]

Zhang R , Zhang Y , Wei F . Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chemical Society Reviews, 2017, 46(12): 3661–3715

[3]

Bai Y , Yue H , Wang J , Shen B , Sun S , Wang S , Wang H , Li X , Xu Z , Zhang R . . Super-durable ultralong carbon nanotubes. Science, 2020, 369(6507): 1104–1106

[4]

Bai Y , Zhang R , Ye X , Zhu Z , Xie H , Shen B , Cai D , Liu B , Zhang C , Jia Z . . Carbon nanotube bundles with tensile strength over 80 GPa. Nature Nanotechnology, 2018, 13(7): 589–595

[5]

Zhang X , Lu W , Zhou G , Li Q . Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Advanced Materials, 2020, 32(5): 1902028

[6]

Gong Y , Adhikari P , Liu Q , Wang T , Gong M , Chan W L , Ching W Y , Wu J . Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection. ACS Applied Materials & Interfaces, 2017, 9(12): 11016–11024

[7]

Ackermann J , Metternich J T , Herbertz S , Kruss S . Biosensing with fluorescent carbon nanotubes. Angewandte Chemie International Edition, 2022, 61(18): e202112372

[8]

Chen Y , Zhang H B , Yang Y , Wang M , Cao A , Yu Z Z . High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Advanced Functional Materials, 2016, 26(3): 447–455

[9]

Chen S , Qiu L , Cheng H M . Carbon-based fibers for advanced electrochemical energy storage devices. Chemical Reviews, 2020, 120(5): 2811–2878

[10]

Li R , Jiang Q , Zhang R . Progress and perspective on high-strength and multifunctional carbon nanotube fibers. Science Bulletin, 2022, 67(8): 784–787

[11]

Sun D M , Timmermans M Y , Kaskela A , Nasibulin A G , Kishimoto S , Mizutani T , Kauppinen E I , Ohno Y . Mouldable all-carbon integrated circuits. Nature Communications, 2013, 4(1): 2302

[12]

Chen T , Dai L . Flexible supercapacitors based on carbon nanomaterials. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(28): 10756–10775

[13]

Huang J , Zhang Q , Zhao M , Wei F . A review of the large-scale production of carbon nanotubes: the practice of nanoscale process engineering. Chinese Science Bulletin, 2012, 57(2): 157–166

[14]

Zhang X , Lei X , Jia X , Sun T , Luo J , Xu S , Li L , Yan D , Shao Y , Yong Z . . Carbon nanotube fibers with dynamic strength up to 14 GPa. Science, 2024, 384(6702): 1318–1323

[15]

Yang Z , Tian J , Yin Z , Cui C , Qian W , Wei F . Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon, 2019, 141: 467–480

[16]

Wei F , Zhang Q , Qian W Z , Yu H , Wang Y , Luo G H , Xu G H , Wang D Z . The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: a multiscale space-time analysis. Powder Technology, 2008, 183(1): 10–20

[17]

Cho W , Schulz M , Shanov V . Growth and characterization of vertically aligned centimeter long cnt arrays. Carbon, 2014, 72: 264–273

[18]

Tulevski G S , Franklin A D , Frank D , Lobez J M , Cao Q , Park H , Afzali A , Han S J , Hannon J B , Haensch W . Toward high-performance digital logic technology with carbon nanotubes. ACS Nano, 2014, 8(9): 8730–8745

[19]

Kong J , Soh H T , Cassell A M , Quate C F , Dai H . Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395(6705): 878–881

[20]

Iijima S , Ichihashi T . Single-shell carbon nanotubes of 1-Nm diameter. Nature, 1993, 363(6430): 603–605

[21]

Guo T , Nikolaev P , Rinzler A G , Tomanek D , Colbert D T , Smalley R E . Self-assembly of tubular fullerenes. Journal of Physical Chemistry, 1995, 99(27): 10694–10697

[22]

Thess A , Lee R , Nikolaev P , Dai H , Petit P , Robert J , Xu C , Lee Y H , Kim S G , Rinzler A G . . Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483–487

[23]

Gavillet J , Loiseau A , Journet C , Willaime F , Ducastelle F , Charlier J C . Root-growth mechanism for single-wall carbon nanotubes. Physical Review Letters, 2001, 87(27): 275504

[24]

Zhang R , Xie H , Zhang Y , Zhang Q , Jin Y , Li P , Qian W , Wei F . The reason for the low density of horizontally aligned ultralong carbon nanotube arrays. Carbon, 2013, 52: 232–238

[25]

Yoshida H , Takeda S , Uchiyama T , Kohno H , Homma Y . Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Letters, 2008, 8(7): 2082–2086

[26]

He M , Duan X , Wang X , Zhang J , Liu Z , Robinson C . Iron catalysts reactivation for efficient CVD growth of SWNT with base-growth mode on surface. Journal of Physical Chemistry B, 2004, 108(34): 12665–12668

[27]

Helveg S , López-Cartes C , Sehested J , Hansen P L , Clausen B S , Rostrup-Nielsen J R , Abild-Pedersen F , Nørskov J K . Atomic-scale imaging of carbon nanofibre growth. Nature, 2004, 427(6973): 426–429

[28]

Ago H , Ishigami N , Yoshihara N , Imamoto K , Akita S , Ikeda K I , Tsuji M , Ikuta T , Takahashi K . Visualization of horizontally-aligned single-walled carbon nanotube growth with 13C/12C isotopes. Journal of Physical Chemistry C, 2008, 112(6): 1735–1738

[29]

Zhang R , Zhang Y , Xie H , Zhang Q , Qian W , Wei F . Controlled synthesis and property of horizontally aligned carbon nanotubes. Scientia Sinica Chimica, 2015, 45(10): 979–1009

[30]

Jiang Q , Wang F , Li R , Wu X , Zhang W , Zhao S , Huang Y , Wang B , Zhang S , Zhao Y . . The inherent thermal effect of substrates on the growth of ultralong carbon nanotubes. Advanced Functional Materials, 2022, 33(10): 2212665

[31]

Jiang Q , Li R , Wang F , Shi X , Chen F , Huang Y , Wang B , Zhang W , Wu X , Wei F . . Ultrasensitive airflow sensors based on suspended carbon nanotube networks. Advanced Materials, 2022, 34(18): 2107062

[32]

Hofmann M , Nezich D , Reina A , Kong J . In-situ sample rotation as a tool to understand chemical vapor deposition growth of long aligned carbon nanotubes. Nano Letters, 2008, 8(12): 4122–4127

[33]

Ma Y , Wang B , Wu Y , Huang Y , Chen Y . The production of horizontally aligned single-walled carbon nanotubes. Carbon, 2011, 49(13): 4098–4110

[34]

Jian M , Xie H , Wang Q , Xia K , Yin Z , Zhang M , Deng N , Wang L , Ren T , Zhang Y . Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials. Nanoscale, 2016, 8(27): 13437–13444

[35]

Flory P J . Molecular size distribution in linear condensation polymers. Journal of the American Chemical Society, 1936, 58(10): 1877–1885

[36]

Zhang R , Zhang Y , Zhang Q , Xie H , Qian W , Wei F . Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano, 2013, 7(7): 6156–6161

[37]

Jiang Q , Wang F , Li R , Li B , Wei N , Gao N , Xu H , Zhao S , Huang Y , Wang B . . Synthesis of ultralong carbon nanotubes with ultrahigh yields. Nano Letters, 2023, 23(2): 523–532

[38]

Wen Q , Qian W , Nie J , Cao A , Ning G , Wang Y , Hu L , Zhang Q , Huang J , Wei F . 100 mm long, semiconducting triple-walled carbon nanotubes. Advanced Materials, 2010, 22(16): 1867–1871

[39]

Huang S , Cai X , Liu J . Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. Journal of the American Chemical Society, 2003, 125(19): 5636–5637

[40]

Cui R , Zhang Y , Wang J , Zhou W , Li Y . Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates. Journal of Physical Chemistry C, 2010, 114(37): 15547–15552

[41]

Reina A , Hofmann M , Zhu D , Kong J . Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. Journal of Physical Chemistry C, 2007, 111(20): 7292–7297

[42]

Zhou W , Han Z , Wang J , Zhang Y , Jin Z , Sun X , Zhang Y , Yan C , Li Y . Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Letters, 2006, 6(12): 2987–2990

[43]

Wang Q , Ng M F , Yang S W , Yang Y , Chen Y . The mechanism of single-walled carbon nanotube growth and chirality selection induced by carbon atom and dimer addition. ACS Nano, 2010, 4(2): 939–946

[44]

Zhang B , Hong G , Peng B , Zhang J , Choi W , Kim J M , Choi J Y , Liu Z . Grow single-walled carbon nanotubes cross-bar in one batch. Journal of Physical Chemistry C, 2009, 113(14): 5341–5344

[45]

Liu Z , Jiao L , Yao Y , Xian X , Zhang J . Aligned, ultralong single-walled carbon nanotubes: from synthesis, sorting, to electronic devices. Advanced Materials, 2010, 22(21): 2285–2310

[46]

Yao Y , Li Q , Zhang J , Liu R , Jiao L , Zhu Y T , Liu Z . Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nature Materials, 2007, 6(4): 283–286

[47]

Jiang Q , Wu Y , Wang F , Zhu P , Li R , Zhao Y , Huang Y , Wu X , Zhao S , Li Y . . Floating bimetallic catalysts for growing 30 cm-long carbon nanotube arrays with high yields and uniformity. Advanced Materials, 2024, 36(32): 2402257

[48]

Franklin A D . The road to carbon nanotube transistors. Nature, 2013, 498(7455): 443–444

[49]

Xie H , Zhang R , Zhang Y , Li P , Jin Y , Wei F . Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres. Carbon, 2013, 52: 535–540

[50]

Hu Y , Kang L , Zhao Q , Zhong H , Zhang S , Yang L , Wang Z , Lin J , Li Q , Zhang Z . . Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nature Communications, 2015, 6(1): 6099

[51]

Hong B H , Lee J Y , Beetz T , Zhu Y , Kim P , Kim K S . Quasi-continuous growth of ultralong carbon nanotube arrays. Journal of the American Chemical Society, 2005, 127(44): 15336–15337

[52]

Peng B , Yao Y , Zhang J . Effect of the Reynolds and Richardson numbers on the growth of well-aligned ultralong single-walled carbon nanotubes. Journal of Physical Chemistry C, 2010, 114(30): 12960–12965

[53]

Wang X , Li Q , Xie J , Jin Z , Wang J , Li Y , Jiang K , Fan S . Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Letters, 2009, 9(9): 3137–3141

[54]

Brady G J , Way A J , Safron N S , Evensen H T , Gopalan P , Arnold M S . Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Science Advances, 2016, 2(9): e1601240

[55]

Qiu L , Ding F . Understanding single-walled carbon nanotube growth for chirality controllable synthesis. Accounts of Materials Research, 2021, 2(9): 828–841

[56]

Wei B Q , Vajtai R , Ajayan P M . Reliability and current carrying capacity of carbon nanotubes. Applied Physics Letters, 2001, 79(8): 1172–1174

[57]

Wehling T O , Black-Schaffer A M , Balatsky A V . Dirac materials. Advances in Physics, 2014, 63(1): 1–76

[58]

Liu L , Han J , Xu L , Zhou J , Zhao C , Ding S , Shi H , Xiao M , Ding L , Ma Z . . Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 2020, 368(6493): 850–856

[59]

Ghosh S , Bachilo S M , Weisman R B . Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nature Nanotechnology, 2010, 5(6): 443–450

[60]

Cao Q , Han S J , Tulevski G S , Zhu Y , Lu D D , Haensch W . Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nature Nanotechnology, 2013, 8(3): 180–186

[61]

Nish A , Hwang J Y , Doig J , Nicholas R J . Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotechnology, 2007, 2(10): 640–646

[62]

Avouris P , Chen Z , Perebeinos V . Carbon-based electronics. Nature Nanotechnology, 2007, 2(10): 605–615

[63]

Zhu Z , Wei N , Cheng W , Shen B , Sun S , Gao J , Wen Q , Zhang R , Xu J , Wang Y . . Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nature Communications, 2019, 10(1): 4467

[64]

Zhu Z , Wei N , Xie H , Zhang R , Bai Y , Wang Q , Zhang C , Wang S , Peng L , Dai L . . Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Science Advances, 2016, 2(11): e1601572

[65]

Wang K , Wang F , Jiang Q , Zhu P , Leu K , Zhang R . Controlled synthesis, properties, and applications of ultralong carbon nanotubes. Nanoscale Advances, 2024, 6(18): 4504–4521

[66]

Cong L , Yuan Z , Bai Z , Wang X , Zhao W , Gao X , Hu X , Liu P , Guo W , Li Q . . On-chip torsion balances with femtonewton force resolution at room temperature enabled by carbon nanotube and graphene. Science Advances, 2021, 7(12): eabd2358

[67]

Dresselhaus M S , Dresselhaus G , Jorio A . Unusual properties and structure of carbon nanotubes. Annual Review of Materials Research, 2004, 34(1): 247–278

[68]

Jiang Q , Leu K , Gong X , Wang F , Li R , Wang K , Zhu P , Zhao Y , Zang Y , Zhang R . High-performance airflow sensors based on suspended ultralong carbon nanotube crossed networks. ACS Applied Materials & Interfaces, 2024, 16(16): 20949–20958

[69]

Jiao L , Xian X , Liu Z . Manipulation of ultralong single-walled carbon nanotubes at macroscale. Journal of Physical Chemistry C, 2008, 112(27): 9963–9965

[70]

Wang F , Wang K , Chang Z , Liang H , Jiang Q , Xi A , Zhao Y , Zhao S , Leu K , Wu X . . Highly transparent and transferable ultralong carbon nanotube networks for transparent wearable electronics. ACS Nano, 2024, 18(48): 33245–33255

[71]

Wang H , Jian M , Li S , Liang X , Lu H , Xia K , Zhu M , Wu Y , Zhang Y . Inter-shell sliding in individual few-walled carbon nanotubes for flexible electronics. Advanced Materials, 2023, 35(48): 2306144

[72]

He X , Léonard F , Kono J . Uncooled carbon nanotube photodetectors. Advanced Optical Materials, 2015, 3(8): 989–1011

[73]

Dürkop T , Getty S A , Cobas E , Fuhrer M S . Extraordinary mobility in semiconducting carbon nanotubes. Nano Letters, 2004, 4(1): 35–39

[74]

Burdanova M G , Tsapenko A P , Kharlamova M V , Kauppinen E I , Gorshunov B P , Kono J , Lloyd-Hughes J . A review of the terahertz conductivity and photoconductivity of carbon nanotubes and heteronanotubes. Advanced Optical Materials, 2021, 9(24): 2101042

[75]

Pop E , Mann D A , Goodson K E , Dai H . Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. Journal of Applied Physics, 2007, 101(9): 093710

[76]

Freitag M , Martin Y , Misewich J A , Martel R , Avouris P . Photoconductivity of single carbon nanotubes. Nano Letters, 2003, 3(8): 1067–1071

[77]

Itkis M E , Borondics F , Yu A , Haddon R C . Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 2006, 312(5772): 413–416

[78]

Yu L , Shearer C , Shapter J . Recent development of carbon nanotube transparent conductive films. Chemical Reviews, 2016, 116(22): 13413–13453

[79]

Wei N , Liu Y , Xie H , Wei F , Wang S , Peng L M . Carbon nanotube light sensors with linear dynamic range of over 120 dB. Applied Physics Letters, 2014, 105(7): 073107

[80]

Zhu J L , Zhang G , Wei J , Sun J L . Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film. Applied Physics Letters, 2012, 101(12): 123117

[81]

Low T , Perebeinos V , Kim R , Freitag M , Avouris P . Cooling of photoexcited carriers in graphene by internal and substrate phonons. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(4): 045413

[82]

Wang H D , Liu J H , Guo Z Y , Zhang X , Zhang R F , Wei F , Li T Y . Thermal transport across the interface between a suspended single-walled carbon nanotube and air. Nanoscale and Microscale Thermophysical Engineering, 2013, 17(4): 349–365

[83]

Jiang Q , Wang K , Wang F , Leu K , Li R , Zhao Y , Xi A , Zang Y , Zhang R . High-performance photodetectors based on suspended ultralong carbon nanotubes. ACS Nano, 2024, 18(36): 25249–25256

[84]

Zheng Z , Fang H , Liu D , Tan Z , Gao X , Hu W , Peng H , Tong L , Hu W , Zhang J . Nonlocal response in infrared detector with semiconducting carbon nanotubes and graphdiyne. Advanced Science, 2017, 4(12): 1700472

[85]

Zeng Q , Wang S , Yang L , Wang Z , Pei T , Zhang Z , Peng L M , Zhou W , Liu J , Zhou W . . Carbon nanotube arrays based high-performance infrared photodetector. Optical Materials Express, 2012, 2(6): 839–848

[86]

Chen C , Zhao Y M , Yu H L , Jiao X Y , Hu X G , Li X , Hou P X , Liu C , Cheng H M . High-performance infrared photodetector based on single-wall carbon nanotube films. Carbon, 2023, 206: 150–156

[87]

Wang H , Li Z , Li D , Chen P , Pi L , Zhou X , Zhai T . Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Advanced Functional Materials, 2021, 31(30): 2103106

[88]

Huang P Y , Chen H J , Qin J K , Zhen L , Xu C Y . A polarization-sensitive photothermoelectric photodetector based on mixed-dimensional SWCNT-MoS2 heterostructures. Nanoscale Advances, 2022, 4(24): 5290–5296

[89]

Xiang R , Inoue T , Zheng Y , Kumamoto A , Qian Y , Sato Y , Liu M , Tang D , Gokhale D , Guo J . . One-dimensional van der Waals heterostructures. Science, 2020, 367(6477): 537–542

[90]

Wang K , Wang F , Cao Y , Jiang Q , Xi A , Leu K , Wang X , Zang Y , Liu R , Zhang R . High-performance photodetectors based on suspended ultralong CNTs-MoS2 heterojunction networks. Advanced Functional Materials, 2024, 2421980

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6881KB)

1057

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/