Fe/Ru synthesized by hydrothermal deposition on hyper-crosslinked polystyrene as promising Fischer-Tropsch catalyst

Mariia E. Markova , Antonina A. Stepacheva , Alexey V. Bykov , Yurii V. Larichev , Valentin Y. Doluda , Mikhail G. Sulman , Lioubov Kiwi-Minsker

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 28

PDF (1395KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 28 DOI: 10.1007/s11705-025-2529-2
RESEARCH ARTICLE

Fe/Ru synthesized by hydrothermal deposition on hyper-crosslinked polystyrene as promising Fischer-Tropsch catalyst

Author information +
History +
PDF (1395KB)

Abstract

In this work, Fe/Ru-catalyst supported on hyper-crosslinked polystyrene (HPS) synthesized via hydrothermal deposition was proposed for the Fischer-Tropsch synthesis (FTS) to obtain a high yield of gasoline-ranged hydrocarbons. According to the characterization results, the obtained monometallic 2%Fe-HPS catalyst contains Fe3O4 particles with a multimodal distribution (mean particle size of 11, 30, and 45 nm). The addition of Ru leads to a decrease in the particle size with a narrower distribution (ca. 5 nm). Ru was shown to serve as a nucleating agent for Fe3O4 crystalline since it has a higher affinity to the HPS surface and strongly anchors to the benzene rings of the polymer. This prevents a leaching of the active phase from the support increasing the catalyst stability. Ru addition also brings supplemental sites for CO and H2 chemisorption resulting in 1.5-fold increased activity in FTS reaction compared to monometallic 2%Fe-HPS composite. 2%Fe-1%Ru-HPS composite showed ~20% higher selectivity toward the formation of C5–C11 alkanes at about 30% conversion of CO in comparison with monometallic one. Moreover, the branched hydrocarbons with a selectivity of approximately 17.5 mol% were observed in the FTS products in the presence of a 2%Fe-1%Ru-HPS catalyst.

Graphical abstract

Keywords

hydrothermal deposition / Fe3O4 / ruthenium / hyper-crosslinked polystyrene / Fischer-Tropsch synthesis

Cite this article

Download citation ▾
Mariia E. Markova, Antonina A. Stepacheva, Alexey V. Bykov, Yurii V. Larichev, Valentin Y. Doluda, Mikhail G. Sulman, Lioubov Kiwi-Minsker. Fe/Ru synthesized by hydrothermal deposition on hyper-crosslinked polystyrene as promising Fischer-Tropsch catalyst. Front. Chem. Sci. Eng., 2025, 19(4): 28 DOI:10.1007/s11705-025-2529-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

van Steen E , Claeys M . Fischer-Tropsch catalysts for the biomass-to-liquid process. Chemical Engineering & Technology, 2008, 31(5): 655–666

[2]

Tijmensen M J A , Faaij A P C , Hamelinck C N , van Hardeveld M R M . Exploration of the possibilities for production of Fischer-Tropsch liquids and power via biomass gasification. Biomass and Bioenergy, 2002, 23(2): 129–152

[3]

MaitlisP Mde KlerkA. Greener Fischer-Tropsch Processes: For Fuels and Feedstocks. Weinheim: Wiley-VCH, 2013, 339–357

[4]

Davis B H . Overview of reactors for liquid phase Fischer-Tropsch synthesis. Catalysis Today, 2002, 71(3-4): 249–300

[5]

Chandra V , Vogels D , Peters E A J F , Kuipers J A M . A multi-scale model for the Fischer-Tropsch synthesis in a wall-cooled packed bed reactor. Chemical Engineering Journal, 2021, 410: 128245–128263

[6]

Marker T L , Wangerow J R , Ortiz-Toral P J , Linck M B . Fluidized bed processes and catalyst systems for Fischer-Tropsch conversion. Focus on Catalysts, 2021, 2021(10): 7

[7]

Basha O M , Sehabiague L , Abdel-Wahab A , Morsi B I . Fischer-Tropsch synthesis in slurry bubble column reactors: experimental investigations and modeling—a review. International Journal of Chemical Reactor Engineering, 2015, 13(3): 201–288

[8]

Cheng X , Wu B , Yang Y , Li Y . Synthesis of iron nanoparticles in water-in-oil microemulsions for liquid-phase Fischer-Tropsch synthesis in polyethylene glycol. Catalysis Communications, 2011, 12(6): 431–435

[9]

Kulikova M V , Dement’eva O S , Chudakova M V , Ivantsov M I . Influence of preparing nanoscale suspensions method on its physico-chemical and catalytic properties under the conditions of Fischer-Tropsch synthesis. Chemistry & Chemical Technology, 2018, 61(9-10): 70–75

[10]

Asiaee A , Benjamin K M . A density functional theory based elementary reaction mechanism for early steps of Fischer-Tropsch synthesis over cobalt catalyst 2 Microkinetic modeling of liquid-phase vs. gaseous-phase process. Molecular Catalysis, 2017, 436: 210–217

[11]

Roe D P , Xu R , Roberts C B . Influence of a carbon nanotube support and supercritical fluid reaction medium on Fe-catalyzed Fischer-Tropsch synthesis. Applied Catalysis A: General, 2017, 543: 141–149

[12]

Al-Khazraji A H , Krylov A V , Kulikova M V , Flid V R , Tkachenko O Yu . Kinetic model for Fischer-Tropsch synthesis over nanoparticles iron catalysts with polymer matrix in a slurry reactor. Fine Chemical Technology, 2016, 11(6): 28–35

[13]

Davis B H . Fischer-Tropsch synthesis: comparison of performances of iron and cobalt catalysts. Industrial & Engineering Chemistry Research, 2007, 46(26): 8938–8945

[14]

Otun K O , Liu X , Hildebrandt D . Metal-organic framework (MOF)-derived catalysts for Fischer-Tropsch synthesis: recent progress and future perspectives. Journal of Energy Chemistry, 2020, 51: 230–245

[15]

Zhou W , Cheng K , Kang J , Zhou C , Subramanian V , Zhang Q , Wang Y . New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48(12): 3193–3228

[16]

Liu Y , Deng D , Bao X . Catalysis for selected C1 chemistry. Chemistry, 2020, 6(10): 2497–2514

[17]

Ding M , Yang Y , Wu B , Li Y , Wang T , Ma L . Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst. Applied Energy, 2015, 160: 982–989

[18]

Liu Z , Jia G , Zhao C , Xing Y . Selective iron catalysts for direct Fischer-Tropsch synthesis to light olefins. Industrial & Engineering Chemistry Research, 2021, 60(17): 6137–6146

[19]

Ma W , Jacobs G , Sparks D E , Todic B , Bukur D B , Davis B H . Quantitative comparison of iron and cobalt based catalysts for the Fischer-Tropsch synthesis under clean and poisoning conditions. Catalysis Today, 2020, 343: 125–136

[20]

Gao Y , Shao L , Yang S , Hu J , Zhao S , Dang J , Wang W , Yan X , Yang P . Recent advances in iron-based catalysts for Fischer-Tropsch to olefins reaction. Catalysis Communications, 2023, 181: 106720

[21]

Chen W , Lin T J , Dai Y Y , An Y L , Yu F , Zhong L S , Li S G , Sun Y H . Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts. Catalysis Today, 2018, 311: 8–22

[22]

Park J Y , Lee Y J , Khanna P K , Jun K W , Bae J W , Kim Y H . Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts: effect of particle size of iron oxide. Journal of Molecular Catalysis A: Chemical, 2010, 323(1-2): 84–90

[23]

Cheng K , Ordomsky V V , Virginie M , Legras B , Chernavskii P A , Kazak V O , Cordier C , Paul S , Wang Y , Khodakov A Y . Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts. Applied Catalysis A: General, 2014, 488: 66–77

[24]

Mierczynski P , Dawid B , Chalupka K , Maniukiewicz W , Witonska I , Szynkowska M I . Role of the activation process on catalytic properties of iron supported catalyst in Fischer-Tropsch synthesis. Journal of the Energy Institute, 2020, 93(2): 565–580

[25]

Puga A V . On the nature of active phases and sites in CO and CO2 hydrogenation catalysts. Catalysis Science & Technology, 2018, 8(22): 5681–5707

[26]

Cha S , Kim H , Choi H , Kim C S , Ha K S . Effects of silica shell encapsulated nanocrystals on active χ-Fe5C2 phase and Fischer-Tropsch synthesis. Nanomaterials, 2022, 12(20): 3704

[27]

Bukur D B , Todic B , Elbashir N . Role of water-gas-shift reaction in Fischer-Tropsch synthesis on iron catalysts: a review. Catalysis Today, 2016, 275: 66–75

[28]

ReedijkJPoeppelmeierK R. Comprehensive Inorganic Chemistry. 3rd ed. Amsterdam: Elsevier, 2023, 354–380

[29]

Barrios A J , Gu B , Luo Y , Peron D V , Chernavskii P A , Virginie M , Wojcieszak R , Thybaut J W , Ordomsky V V , Khodakov A Y . Identification of efficient promoters and selectivity trends in high temperature Fischer-Tropsch synthesis over supported iron catalysts. Applied Catalysis B: Environmental, 2020, 273: 119028

[30]

Wang A , Luo M , Lu B , Song Y , Li M , Yang Z . Effect of Na, Cu and Ru on metal-organic framework-derived porous carbon supported iron catalyst for Fischer-Tropsch synthesis. Molecular Catalysis, 2021, 509: 111601

[31]

Chernyak S A , Stolbov D N , Maslakov K I , Kazantsev R V , Eliseev O L , Moskovskikh D O , Savilov S V . Graphene nanoflake- and carbon nanotube-supported iron-potassium 3D-catalysts for hydrocarbon synthesis from syngas. Nanomaterials, 2022, 12(24): 4491

[32]

Saharuddin T S T , Salleh F , Samsuri A , Othaman R , Yarmo M A . Influence of noble metal (Ru, Os and Ag) on the reduction behaviour of iron oxide using carbon monoxide: TPR and kinetic studies. International Journal of Chemical Engineering and Applications, 2015, 6(6): 405–409

[33]

Wan H , Qing M , Wang H , Liu S , Liu X W , Zhang Y , Gong H , Li L , Zhang W , Song C . . Promotive effect of boron oxide on the iron-based catalysts for Fischer-Tropsch synthesis. Fuel, 2020, 281: 118714

[34]

Liuzzi D , Perez-Alonso F J , Rojas S . Ru-M (M = Fe or Co) catalysts with high Ru surface concentration for Fischer-Tropsch synthesis. Fuel, 2021, 293: 120435

[35]

Cansell F , Aymonier C . Design of functional nanostructured materials using supercritical fluids. Journal of Supercritical Fluids, 2009, 47(3): 508–516

[36]

Zhang Y , Erkey C . Preparation of supported metallic nanoparticles using supercritical fluids: a review. Journal of Supercritical Fluids, 2006, 38(2): 252–267

[37]

Nadimpalli N K V , Bandyopadhyaya R , Runkana V . Thermodynamic analysis of hydrothermal synthesis of nanoparticles. Fluid Phase Equilibria, 2018, 456: 33–45

[38]

Hayashi H , Hakuta Y . Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials, 2010, 3(7): 3794–3817

[39]

Lester E , Blood P , Denyer J , Giddings D , Azzopardi B , Poliakoff M . Reaction engineering: the supercritical water hydrothermal synthesis of nanoparticles. Journal of Supercritical Fluids, 2006, 37(2): 209–214

[40]

Markova M E , Stepacheva A A , Kosivtsov Y Y , Sidorov A I , Matveeva V G , Sulman M G . Influence of temperature and pressure on the structure of polymeric catalysts synthesized in subctitical water. Russian Journal of Physical Chemistry B, 2021, 15(7): 1120–1125

[41]

Markova M E , Gavrilenko A V , Stepacheva A A , Molchanov V P , Matveeva V G , Sulman M G , Sulman E M . Study of the structure of cobalt-containing catalysts synthesized under subcritical conditions. Kinetics and Catalysis, 2019, 60(5): 618–626

[42]

Bykov A V , Demidenko G N , Stepacheva A A , Markova M E . Temperature effect on tension formation in styrene-divinylbenzene copolymers. Polymer International, 2024, 73(10): 852–863

[43]

Stepacheva A A , Markova M E , Monzharenko M A , Matveeva V G , Sulman M G . Polymer-based bifunctional catalysts for anthracene hydrocracking in the medium of supercritical propanol-2. Catalysis Today, 2021, 378: 158–166

[44]

Wang S , Zhang C , Liu Q , Tan B . Unprecedented processable hypercrosslinked polymers with controlled knitting. Macromolecular Rapid Communications, 2022, 43(2): 2100449

[45]

Song W , Tang Y , Moon B Y , Liao Q , Xu H , Hou Q , Zhang H , Yu D G , Liao Y , Kim I . Green synthesis of hypercrosslinked polymers for CO2 capture and conversion: recent advances, opportunities, and challenges. Green Chemistry, 2024, 26(5): 2476–2504

[46]

Li C , Che W , Liu S Y , Liao G . Hypercrosslinked microporous polystyrene: from synthesis to properties to applications. Materials Today. Chemistry, 2023, 29: 101392

[47]

Matveeva V G , Stepacheva A A , Shimanskaya E I , Markova M E , Sidorov A I , Bykov A V , Sul’man M G , Sul’man E M . Effect of hydrothermal synthesis conditions on the metal-polymer system structure and the metallic phase composition. Russian Journal of Physical Chemistry B, 2019, 13(6): 1044–1050

[48]

Manaenkov O V , Kislitsa O V , Matveeva V G , Kosivtsov Y Y , Sulman M G . Kinetics of the hydrolytic hydrogenation of inulin to mannitol on Ru-containing magnetic catalyst. Chemistry & Chemical Technology, 2023, 66(8): 70–76

[49]

Stepacheva A A , Lugovoy Y V , Manaenkov O V , Sidorov A I , Matveeva V G , Sulman M G , Sulman E M . Magnetically separable Ru-containing catalysts in supercritical deoxygenation of fatty acids. Pure and Applied Chemistry, 2020, 92(6): 817–826

[50]

Grosvenor A P , Kobe B A , Biesinger M C , Mclntyre N S . Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 2004, 36(12): 1564–1574

[51]

Lesiak B , Rangam N , Jiricek P , Gordeev I , Toth J , Kover L , Mohai M , Borowicz P . Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Frontiers in Chemistry, 2019, 7: 642

[52]

Ge X , Liu H , Ding X , Liu Y , Li X , Wu X , Li B . Ru@carbon nanotube composite microsponge: fabrication in supercritical CO2 for hydrogenation of p-chloronitrobenzene. Nanomaterials, 2022, 12(3): 539

[53]

Morgan D J . Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis, 2015, 47(11): 1072–1079

[54]

Devadas A , Baranton S , Coutanceau C . Green synthesis and modification of RuO2 materials for the oxygen evolution reaction. Frontiers in Energy Research, 2020, 8: 571704

[55]

Liu H , Xia G , Zhang R , Jiang P , Chen J , Chen Q . MOF-derived RuO2/Co3O4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Advances, 2017, 7(7): 3686–3694

[56]

Noberi C , Kaya C . Synthesis and characterization of hydrothermally synthesized ɑ-Fe2O3 nanostructures with controlled morphology. SN Applied Sciences, 2019, 1(8): 947

[57]

Liang C , Liu H , Zhou J , Peng X , Zhang H . One-step synthesis of spherical γ-Fe2O3 nanopowders and the evaluation of their photocatalytic activity for orange I degradation. Journal of Chemistry, 2015, 2015: 791829

[58]

Wang Y , Peng Z , Jiang W . Hydrothermal synthesis and microwave absorption properties of Fe3O4@SnO2 core-shell structured microspheres. Journal of Materials Science Materials in Electronics, 2015, 26(7): 4880–4887

[59]

Khoshsang H , Ghaffarinejad A , Kazemi H , Jabarian S . Synthesis of mesoporous Fe3O4 and Fe3O4/C nanocomposite for removal of hazardous dye from aqueous media. Journal of Water Environment Nanotechnology, 2018, 3(3): 191–206

[60]

Azeredo B , Ben Ghzaiel T B , Huang N , Nowak S , Peron J , Giraud M , Balachandran J , Tache O , Barthe L , Piquemal J Y . . Mechanism of formation of Co-Ru nanoalloys: the key role of Ru in the reduction pathway of Co. Physical Chemistry Chemical Physics, 2023, 25(33): 22523–22534

[61]

Carballo J M G , Finocchio E , García-Rodriguez S , Ojeda M , Fierro J L G , Busca G , Rojas S . Insights into the deactivation and reactivation of Ru/TiO2 during Fischer-Tropsch synthesis. Catalysis Today, 2013, 214: 2–11

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1395KB)

Supplementary files

FCE-24082-OF-MEE_suppl_1

4161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/