Fe/Ru synthesized by hydrothermal deposition on hyper-crosslinked polystyrene as promising Fischer-Tropsch catalyst
Mariia E. Markova , Antonina A. Stepacheva , Alexey V. Bykov , Yurii V. Larichev , Valentin Y. Doluda , Mikhail G. Sulman , Lioubov Kiwi-Minsker
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 28
Fe/Ru synthesized by hydrothermal deposition on hyper-crosslinked polystyrene as promising Fischer-Tropsch catalyst
In this work, Fe/Ru-catalyst supported on hyper-crosslinked polystyrene (HPS) synthesized via hydrothermal deposition was proposed for the Fischer-Tropsch synthesis (FTS) to obtain a high yield of gasoline-ranged hydrocarbons. According to the characterization results, the obtained monometallic 2%Fe-HPS catalyst contains Fe3O4 particles with a multimodal distribution (mean particle size of 11, 30, and 45 nm). The addition of Ru leads to a decrease in the particle size with a narrower distribution (ca. 5 nm). Ru was shown to serve as a nucleating agent for Fe3O4 crystalline since it has a higher affinity to the HPS surface and strongly anchors to the benzene rings of the polymer. This prevents a leaching of the active phase from the support increasing the catalyst stability. Ru addition also brings supplemental sites for CO and H2 chemisorption resulting in 1.5-fold increased activity in FTS reaction compared to monometallic 2%Fe-HPS composite. 2%Fe-1%Ru-HPS composite showed ~20% higher selectivity toward the formation of C5–C11 alkanes at about 30% conversion of CO in comparison with monometallic one. Moreover, the branched hydrocarbons with a selectivity of approximately 17.5 mol% were observed in the FTS products in the presence of a 2%Fe-1%Ru-HPS catalyst.
hydrothermal deposition / Fe3O4 / ruthenium / hyper-crosslinked polystyrene / Fischer-Tropsch synthesis
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |