Selective C–C coupling via copper atom reconfiguration in CO2 electroreduction

Linlin Zhou , Yang Zhong , Kai Sun , Benqiang Tian , Haoyang Wu , Wei Liu , Tong Wan , Huijun Xin , Chen Deng , Xiaojie Li , Jinjie Fang , Geoffrey I.N. Waterhouse , Yun Kuang , Daojin Zhou , Xiaoming Sun

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 26

PDF (1139KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 26 DOI: 10.1007/s11705-025-2527-4
RESEARCH ARTICLE

Selective C–C coupling via copper atom reconfiguration in CO2 electroreduction

Author information +
History +
PDF (1139KB)

Abstract

Copper-based catalysts play a pivotal role in CO2 electroreduction (CER) toward multi-carbon (C2+) products. However, achieving a high selectivity for C2+ products remains a formidable challenge. In this work, a facile electrochemical oxidation-reduction technique was developed to modulate the surface morphology of a copper foil using sulfur and oxygen as auxiliary atoms. Optimization of this approach resulted in an atomically reconstructed copper electrode (denoted as Cu-50) with a surface tensile strain of 1.1% and preferential exposure of Cu(100) facets. Cu-50 delivered remarkable Faradaic efficiencies (up to 72%) for C2+ products during CER, with a 53% selectivity for ethylene (10-fold higher than for a non-reconstructed Cu foil). This work guides the design of advanced copper-based catalysts that promote C–C coupling, demonstrating the potential of tailored copper structures for efficient conversion of CO2 to valuable C2+ products.

Graphical abstract

Keywords

CO2 electroreduction / atom reconfiguration / copper / C–C coupling / ethylene

Cite this article

Download citation ▾
Linlin Zhou, Yang Zhong, Kai Sun, Benqiang Tian, Haoyang Wu, Wei Liu, Tong Wan, Huijun Xin, Chen Deng, Xiaojie Li, Jinjie Fang, Geoffrey I.N. Waterhouse, Yun Kuang, Daojin Zhou, Xiaoming Sun. Selective C–C coupling via copper atom reconfiguration in CO2 electroreduction. Front. Chem. Sci. Eng., 2025, 19(4): 26 DOI:10.1007/s11705-025-2527-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao D , Arán-Ais R M , Jeon H S , Roldan Cuenya B . Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nature Catalysis, 2019, 2(3): 198–210

[2]

Lei Q , Huang L , Yin J , Davaasuren B , Yuan Y , Dong X , Wu Z P , Wang X , Yao K X , Lu X . . Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nature Communications, 2022, 13(1): 4857

[3]

Wu H , Li J , Qi K , Zhang Y , Petit E , Wang W , Flaud V , Onofrio N , Rebiere B , Huang L . . Improved electrochemical conversion of CO2 to multicarbon products by using molecular doping. Nature Communications, 2021, 12(1): 7210

[4]

Chang B , Pang H , Raziq F , Wang S , Huang K W , Ye J , Zhang H . Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. Energy & Environmental Science, 2023, 16(11): 4714–4758

[5]

Chen J , Qiu H , Zhao Y , Yang H , Fan L , Liu Z , Xi S , Zheng G , Chen J , Chen L . . Selective and stable CO2 electroreduction at high rates via control of local H2O/CO2 ratio. Nature Communications, 2024, 15(1): 5893

[6]

Wang H , Sun R , Liu P , Hu H , Ling C , Han X , Shi Y , Zheng X , Wu G , Hong X . Interstitial carbon induces enriched Cuδ+ sites in Cu2O nanoparticles to facilitate CO2 electroreduction to C2+ products. Nano Research, 2024, 17(8): 7013–7019

[7]

SabatierP. Catalysis in Organic Chemistry. Paris: Librairie Polytechnique, Ch. Beranger, 1920, Vol. 3

[8]

Deng H , Liu T , Zhao W , Wang J , Zhang Y , Zhang S , Yang Y , Yang C , Teng W , Chen Z . . Substituent tuning of Cu coordination polymers enables carbon-efficient CO2 electroreduction to multi-carbon products. Nature Communications, 2024, 15(1): 9706

[9]

Bagger A , Ju W , Varela A S , Strasser P , Rossmeisl J . Electrochemical CO2 reduction: a classification problem. ChemPhysChem, 2017, 18(22): 3266–3273

[10]

Arán-Ais R M , Gao D , Roldan Cuenya B . Structure-and electrolyte-sensitivity in CO2 electroreduction. Accounts of Chemical Research, 2018, 51(11): 2906–2917

[11]

Lian Z , Dattila F , López N . Stability and lifetime of diffusion-trapped oxygen in oxide-derived copper CO2 reduction electrocatalysts. Nature Catalysis, 2024, 7(4): 401–411

[12]

You S , Xiao J , Liang S , Xie W , Zhang T , Li M , Zhong Z , Wang Q , He H . Doping engineering of Cu-based catalysts for electrocatalytic CO2 reduction to multi-carbon products. Energy & Environmental Science, 2024, 17(16): 5795–5818

[13]

Xie Y , Ou P , Wang X , Xu Z , Li Y C , Wang Z , Huang J E , Wicks J , McCallum C , Wang N . . High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nature Catalysis, 2022, 5(6): 564–570

[14]

Li X , Qin M , Wu X , Lv X , Wang J , Wang Y , Wu H B . Enhanced CO affinity on Cu facilitates CO2 electroreduction toward multi-carbon products. Small, 2023, 19(39): 2302530

[15]

Li P , Bi J , Liu J , Wang Y , Kang X , Sun X , Zhang J , Liu Z , Zhu Q , Han B . p–d Orbital hybridization induced by p-block metal-doped Cu promotes the formation of C2+ products in ampere-level CO2 electroreduction. Journal of the American Chemical Society, 2023, 145(8): 4675–4682

[16]

Xiong W F , Si D H , Li H F , Song X , Wang T , Huang Y B , Liu T F , Zhang T , Cao R . Steering CO2 electroreduction selectivity U-turn to ethylene by Cu–Si bonded interface. Journal of the American Chemical Society, 2024, 146(1): 289–297

[17]

Liu Y , Gong L , Liu J , Xiao P , Chen B , Xie F , Yang C , Wu Z . Fabrication of interface with capping-bonding synergy to boost CO2 electroreduction to formate. Applied Catalysis B: Environment and Energy, 2025, 362: 124760

[18]

Ren S , Cao X , Fan Q , Yang Z , Wang F , Wang X , Bai L , Yang J . Selective CO2 electroreduction to multi-carbon products on organic-functionalized CuO nanoparticles by local micro-environment modulation. Nano-Micro Letters, 2024, 16(1): 262

[19]

Stamenkovic V R , Strmcnik D , Lopes P P , Markovic N M . Energy and fuels from electrochemical interfaces. Nature Materials, 2017, 16(1): 57–69

[20]

Subbaraman R , Tripkovic D , Strmcnik D , Chang K C , Uchimura M , Paulikas A P , Stamenkovic V , Markovic N M . Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334(6060): 1256–1260

[21]

Li S , Wu G , Mao J , Chen A , Liu X , Zeng J , Wei Y , Wang J , Zhu H , Xia J . Tensile-strained Cu penetration electrode boosts asymmetric C−C coupling for ampere-level CO2-to-C2+ reduction in acid. Angewandte Chemie International Edition, 2024, 63(41): e202407612

[22]

Vasquez Moll D , De Chialvo M R G , Salvarezza R C , Arvia A J . Corrosion and passivity of copper in solutions containing sodium sulphide. Analysis of potentiostatic current transients. Electrochimica Acta, 1985, 30(8): 1011–1016

[23]

Chen T , Kitada A , Seki Y , Fukami K , Usmanov D T , Chen L C , Hiraoka K , Murase K . Identification of copper(II)–lactate complexes in Cu2O electrodeposition baths: deprotonation of the α-hydroxyl group in highly concentrated alkaline solution. Journal of the Electrochemical Society, 2018, 165(10): D444–D451

[24]

Wang H , Zhang H , Huang Y , Wang H , Ozden A , Yao K , Li H , Guo Q , Liu Y , Vomiero A . . Strain in copper/ceria heterostructure promotes electrosynthesis of multicarbon products. ACS Nano, 2023, 17(1): 346–354

[25]

Zoolfakar A S , Rani R A , Morfa A J , O’Mullane A P , Kalantar-Zadeh K . Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. Journal of Materials Chemistry C, 2014, 2(27): 5247–5270

[26]

Kudryashov D , Monastyrenko A , Mozharov A , Bukatin A , Nikitina E , Pirogov E , Gudovskikh A . Copper(I) oxide rf-magnetron sputtering at elevated substrate temperatures. Journal of Physics: Conference Series, 2017, 917(3): 032020

[27]

Compaan A , Cummins H . Resonant quadrupole-dipole Raman scattering at the 1s yellow exciton in Cu2O. Physical Review Letters, 1973, 31(1): 41–44

[28]

Yu P Y , Shen Y R . Resonance Raman studies in Cu2O. I. The phonon-assisted 1s yellow excitonic absorption edge. Physical Review B: Solid State, 1975, 12(4): 1377–1394

[29]

Powell D , Compaan A , Macdonald J , Forman R . Raman-scattering study of ion-implantation-produced damage in Cu2O. Physical Review B: Solid State, 1975, 12(1): 20–25

[30]

Wu M K , Ashburn J R , Torng C J , Hor P H , Meng R L , Gao L , Huang Z L , Wang Y Q , Chu C W . Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters, 1987, 58(9): 908–910

[31]

Ravichandiran C , Sakthivelu A , Deva Arun Kumar K , Davidprabu R , Valanarasu S , Kathalingam A , Ganesh V , Shkir M , Algarni H , AlFaify S . Influence of rare earth material (Sm3+) doping on the properties of electrodeposited Cu2O films for optoelectronics. Journal of Materials Science Materials in Electronics, 2019, 30(3): 2530–2537

[32]

Kim J , Choi W , Park J W , Kim C , Kim M , Song H . Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. Journal of the American Chemical Society, 2019, 141(17): 6986–6994

[33]

Zhang Y , Dong L Z , Li S , Huang X , Chang J N , Wang J H , Zhou J , Li S L , Lan Y Q . Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nature Communications, 2021, 12(1): 6390

[34]

Montoya J H , Shi C , Chan K , Nørskov J K . Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. Journal of Physical Chemistry Letters, 2015, 6(11): 2032–2037

[35]

Ma W , He X , Wang W , Xie S , Zhang Q , Wang Y . Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chemical Society Reviews, 2021, 50(23): 12897–12914

[36]

Kortlever R , Shen J , Schouten K J P , Calle-Vallejo F , Koper M T . Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. Journal of Physical Chemistry Letters, 2015, 6(20): 4073–4082

[37]

Zhi X , Vasileff A , Zheng Y , Jiao Y , Qiao S Z . Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction. Energy & Environmental Science, 2021, 14(7): 3912–3930

[38]

Ma W , Xie S , Zhang B , He X , Liu X , Mei B , Sun F , Jiang Z , Lin L , Zhang Q . . Copper lattice tension boosts full-cell CO electrolysis to multi-carbon olefins and oxygenates. Chem, 2023, 9(8): 2161–2177

[39]

Droog J M , Schlenter B . Oxygen electrosorption on copper single crystal electrodes in sodium hydroxide solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 112(2): 387–390

[40]

Zhang G , Zhao Z J , Cheng D , Li H , Yu J , Wang Q , Gao H , Guo J , Wang H , Ozin G A . . Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nature Communications, 2021, 12(1): 5745

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1139KB)

Supplementary files

FCE-24080-OF-ZL_suppl_1

3448

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/