Selective C–C coupling via copper atom reconfiguration in CO2 electroreduction
Linlin Zhou , Yang Zhong , Kai Sun , Benqiang Tian , Haoyang Wu , Wei Liu , Tong Wan , Huijun Xin , Chen Deng , Xiaojie Li , Jinjie Fang , Geoffrey I.N. Waterhouse , Yun Kuang , Daojin Zhou , Xiaoming Sun
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 26
Selective C–C coupling via copper atom reconfiguration in CO2 electroreduction
Copper-based catalysts play a pivotal role in CO2 electroreduction (CER) toward multi-carbon (C2+) products. However, achieving a high selectivity for C2+ products remains a formidable challenge. In this work, a facile electrochemical oxidation-reduction technique was developed to modulate the surface morphology of a copper foil using sulfur and oxygen as auxiliary atoms. Optimization of this approach resulted in an atomically reconstructed copper electrode (denoted as Cu-50) with a surface tensile strain of 1.1% and preferential exposure of Cu(100) facets. Cu-50 delivered remarkable Faradaic efficiencies (up to 72%) for C2+ products during CER, with a 53% selectivity for ethylene (10-fold higher than for a non-reconstructed Cu foil). This work guides the design of advanced copper-based catalysts that promote C–C coupling, demonstrating the potential of tailored copper structures for efficient conversion of CO2 to valuable C2+ products.
CO2 electroreduction / atom reconfiguration / copper / C–C coupling / ethylene
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |