Selective C–C coupling via copper atom reconfiguration in CO2 electroreduction

Linlin Zhou, Yang Zhong, Kai Sun, Benqiang Tian, Haoyang Wu, Wei Liu, Tong Wan, Huijun Xin, Chen Deng, Xiaojie Li, Jinjie Fang, Geoffrey I.N. Waterhouse, Yun Kuang, Daojin Zhou, Xiaoming Sun

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 26.

PDF(1139 KB)
PDF(1139 KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 26. DOI: 10.1007/s11705-025-2527-4
RESEARCH ARTICLE

Selective C–C coupling via copper atom reconfiguration in CO2 electroreduction

Author information +
History +

Abstract

Copper-based catalysts play a pivotal role in CO2 electroreduction (CER) toward multi-carbon (C2+) products. However, achieving a high selectivity for C2+ products remains a formidable challenge. In this work, a facile electrochemical oxidation-reduction technique was developed to modulate the surface morphology of a copper foil using sulfur and oxygen as auxiliary atoms. Optimization of this approach resulted in an atomically reconstructed copper electrode (denoted as Cu-50) with a surface tensile strain of 1.1% and preferential exposure of Cu(100) facets. Cu-50 delivered remarkable Faradaic efficiencies (up to 72%) for C2+ products during CER, with a 53% selectivity for ethylene (10-fold higher than for a non-reconstructed Cu foil). This work guides the design of advanced copper-based catalysts that promote C–C coupling, demonstrating the potential of tailored copper structures for efficient conversion of CO2 to valuable C2+ products.

Graphical abstract

Keywords

CO2 electroreduction / atom reconfiguration / copper / C–C coupling / ethylene

Cite this article

Download citation ▾
Linlin Zhou, Yang Zhong, Kai Sun, Benqiang Tian, Haoyang Wu, Wei Liu, Tong Wan, Huijun Xin, Chen Deng, Xiaojie Li, Jinjie Fang, Geoffrey I.N. Waterhouse, Yun Kuang, Daojin Zhou, Xiaoming Sun. Selective C–C coupling via copper atom reconfiguration in CO2 electroreduction. Front. Chem. Sci. Eng., 2025, 19(4): 26 https://doi.org/10.1007/s11705-025-2527-4

References

[1]
Gao D , Arán-Ais R M , Jeon H S , Roldan Cuenya B . Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nature Catalysis, 2019, 2(3): 198–210
CrossRef Google scholar
[2]
Lei Q , Huang L , Yin J , Davaasuren B , Yuan Y , Dong X , Wu Z P , Wang X , Yao K X , Lu X . . Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nature Communications, 2022, 13(1): 4857
CrossRef Google scholar
[3]
Wu H , Li J , Qi K , Zhang Y , Petit E , Wang W , Flaud V , Onofrio N , Rebiere B , Huang L . . Improved electrochemical conversion of CO2 to multicarbon products by using molecular doping. Nature Communications, 2021, 12(1): 7210
CrossRef Google scholar
[4]
Chang B , Pang H , Raziq F , Wang S , Huang K W , Ye J , Zhang H . Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. Energy & Environmental Science, 2023, 16(11): 4714–4758
CrossRef Google scholar
[5]
Chen J , Qiu H , Zhao Y , Yang H , Fan L , Liu Z , Xi S , Zheng G , Chen J , Chen L . . Selective and stable CO2 electroreduction at high rates via control of local H2O/CO2 ratio. Nature Communications, 2024, 15(1): 5893
CrossRef Google scholar
[6]
Wang H , Sun R , Liu P , Hu H , Ling C , Han X , Shi Y , Zheng X , Wu G , Hong X . Interstitial carbon induces enriched Cuδ+ sites in Cu2O nanoparticles to facilitate CO2 electroreduction to C2+ products. Nano Research, 2024, 17(8): 7013–7019
CrossRef Google scholar
[7]
SabatierP. Catalysis in Organic Chemistry. Paris: Librairie Polytechnique, Ch. Beranger, 1920, Vol. 3
[8]
Deng H , Liu T , Zhao W , Wang J , Zhang Y , Zhang S , Yang Y , Yang C , Teng W , Chen Z . . Substituent tuning of Cu coordination polymers enables carbon-efficient CO2 electroreduction to multi-carbon products. Nature Communications, 2024, 15(1): 9706
CrossRef Google scholar
[9]
Bagger A , Ju W , Varela A S , Strasser P , Rossmeisl J . Electrochemical CO2 reduction: a classification problem. ChemPhysChem, 2017, 18(22): 3266–3273
CrossRef Google scholar
[10]
Arán-Ais R M , Gao D , Roldan Cuenya B . Structure-and electrolyte-sensitivity in CO2 electroreduction. Accounts of Chemical Research, 2018, 51(11): 2906–2917
CrossRef Google scholar
[11]
Lian Z , Dattila F , López N . Stability and lifetime of diffusion-trapped oxygen in oxide-derived copper CO2 reduction electrocatalysts. Nature Catalysis, 2024, 7(4): 401–411
CrossRef Google scholar
[12]
You S , Xiao J , Liang S , Xie W , Zhang T , Li M , Zhong Z , Wang Q , He H . Doping engineering of Cu-based catalysts for electrocatalytic CO2 reduction to multi-carbon products. Energy & Environmental Science, 2024, 17(16): 5795–5818
CrossRef Google scholar
[13]
Xie Y , Ou P , Wang X , Xu Z , Li Y C , Wang Z , Huang J E , Wicks J , McCallum C , Wang N . . High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nature Catalysis, 2022, 5(6): 564–570
CrossRef Google scholar
[14]
Li X , Qin M , Wu X , Lv X , Wang J , Wang Y , Wu H B . Enhanced CO affinity on Cu facilitates CO2 electroreduction toward multi-carbon products. Small, 2023, 19(39): 2302530
CrossRef Google scholar
[15]
Li P , Bi J , Liu J , Wang Y , Kang X , Sun X , Zhang J , Liu Z , Zhu Q , Han B . p–d Orbital hybridization induced by p-block metal-doped Cu promotes the formation of C2+ products in ampere-level CO2 electroreduction. Journal of the American Chemical Society, 2023, 145(8): 4675–4682
CrossRef Google scholar
[16]
Xiong W F , Si D H , Li H F , Song X , Wang T , Huang Y B , Liu T F , Zhang T , Cao R . Steering CO2 electroreduction selectivity U-turn to ethylene by Cu–Si bonded interface. Journal of the American Chemical Society, 2024, 146(1): 289–297
CrossRef Google scholar
[17]
Liu Y , Gong L , Liu J , Xiao P , Chen B , Xie F , Yang C , Wu Z . Fabrication of interface with capping-bonding synergy to boost CO2 electroreduction to formate. Applied Catalysis B: Environment and Energy, 2025, 362: 124760
[18]
Ren S , Cao X , Fan Q , Yang Z , Wang F , Wang X , Bai L , Yang J . Selective CO2 electroreduction to multi-carbon products on organic-functionalized CuO nanoparticles by local micro-environment modulation. Nano-Micro Letters, 2024, 16(1): 262
CrossRef Google scholar
[19]
Stamenkovic V R , Strmcnik D , Lopes P P , Markovic N M . Energy and fuels from electrochemical interfaces. Nature Materials, 2017, 16(1): 57–69
CrossRef Google scholar
[20]
Subbaraman R , Tripkovic D , Strmcnik D , Chang K C , Uchimura M , Paulikas A P , Stamenkovic V , Markovic N M . Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334(6060): 1256–1260
CrossRef Google scholar
[21]
Li S , Wu G , Mao J , Chen A , Liu X , Zeng J , Wei Y , Wang J , Zhu H , Xia J . Tensile-strained Cu penetration electrode boosts asymmetric C−C coupling for ampere-level CO2-to-C2+ reduction in acid. Angewandte Chemie International Edition, 2024, 63(41): e202407612
[22]
Vasquez Moll D , De Chialvo M R G , Salvarezza R C , Arvia A J . Corrosion and passivity of copper in solutions containing sodium sulphide. Analysis of potentiostatic current transients. Electrochimica Acta, 1985, 30(8): 1011–1016
CrossRef Google scholar
[23]
Chen T , Kitada A , Seki Y , Fukami K , Usmanov D T , Chen L C , Hiraoka K , Murase K . Identification of copper(II)–lactate complexes in Cu2O electrodeposition baths: deprotonation of the α-hydroxyl group in highly concentrated alkaline solution. Journal of the Electrochemical Society, 2018, 165(10): D444–D451
CrossRef Google scholar
[24]
Wang H , Zhang H , Huang Y , Wang H , Ozden A , Yao K , Li H , Guo Q , Liu Y , Vomiero A . . Strain in copper/ceria heterostructure promotes electrosynthesis of multicarbon products. ACS Nano, 2023, 17(1): 346–354
CrossRef Google scholar
[25]
Zoolfakar A S , Rani R A , Morfa A J , O’Mullane A P , Kalantar-Zadeh K . Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. Journal of Materials Chemistry C, 2014, 2(27): 5247–5270
CrossRef Google scholar
[26]
Kudryashov D , Monastyrenko A , Mozharov A , Bukatin A , Nikitina E , Pirogov E , Gudovskikh A . Copper(I) oxide rf-magnetron sputtering at elevated substrate temperatures. Journal of Physics: Conference Series, 2017, 917(3): 032020
CrossRef Google scholar
[27]
Compaan A , Cummins H . Resonant quadrupole-dipole Raman scattering at the 1s yellow exciton in Cu2O. Physical Review Letters, 1973, 31(1): 41–44
CrossRef Google scholar
[28]
Yu P Y , Shen Y R . Resonance Raman studies in Cu2O. I. The phonon-assisted 1s yellow excitonic absorption edge. Physical Review B: Solid State, 1975, 12(4): 1377–1394
CrossRef Google scholar
[29]
Powell D , Compaan A , Macdonald J , Forman R . Raman-scattering study of ion-implantation-produced damage in Cu2O. Physical Review B: Solid State, 1975, 12(1): 20–25
CrossRef Google scholar
[30]
Wu M K , Ashburn J R , Torng C J , Hor P H , Meng R L , Gao L , Huang Z L , Wang Y Q , Chu C W . Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters, 1987, 58(9): 908–910
CrossRef Google scholar
[31]
Ravichandiran C , Sakthivelu A , Deva Arun Kumar K , Davidprabu R , Valanarasu S , Kathalingam A , Ganesh V , Shkir M , Algarni H , AlFaify S . Influence of rare earth material (Sm3+) doping on the properties of electrodeposited Cu2O films for optoelectronics. Journal of Materials Science Materials in Electronics, 2019, 30(3): 2530–2537
CrossRef Google scholar
[32]
Kim J , Choi W , Park J W , Kim C , Kim M , Song H . Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. Journal of the American Chemical Society, 2019, 141(17): 6986–6994
CrossRef Google scholar
[33]
Zhang Y , Dong L Z , Li S , Huang X , Chang J N , Wang J H , Zhou J , Li S L , Lan Y Q . Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nature Communications, 2021, 12(1): 6390
CrossRef Google scholar
[34]
Montoya J H , Shi C , Chan K , Nørskov J K . Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. Journal of Physical Chemistry Letters, 2015, 6(11): 2032–2037
CrossRef Google scholar
[35]
Ma W , He X , Wang W , Xie S , Zhang Q , Wang Y . Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chemical Society Reviews, 2021, 50(23): 12897–12914
CrossRef Google scholar
[36]
Kortlever R , Shen J , Schouten K J P , Calle-Vallejo F , Koper M T . Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. Journal of Physical Chemistry Letters, 2015, 6(20): 4073–4082
CrossRef Google scholar
[37]
Zhi X , Vasileff A , Zheng Y , Jiao Y , Qiao S Z . Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction. Energy & Environmental Science, 2021, 14(7): 3912–3930
CrossRef Google scholar
[38]
Ma W , Xie S , Zhang B , He X , Liu X , Mei B , Sun F , Jiang Z , Lin L , Zhang Q . . Copper lattice tension boosts full-cell CO electrolysis to multi-carbon olefins and oxygenates. Chem, 2023, 9(8): 2161–2177
CrossRef Google scholar
[39]
Droog J M , Schlenter B . Oxygen electrosorption on copper single crystal electrodes in sodium hydroxide solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 112(2): 387–390
CrossRef Google scholar
[40]
Zhang G , Zhao Z J , Cheng D , Li H , Yu J , Wang Q , Gao H , Guo J , Wang H , Ozin G A . . Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nature Communications, 2021, 12(1): 5745
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2021YFA1502200), the Shenzhen Science and Technology Program (Nos. RCJC20231211090051085, KJZD20230923115759014, JCYJ20230807151159002), the National Natural Science Foundation of China (Grant No. 21935001, 22175012), the National Key Beijing Natural Science Foundation (Grant No. Z210016), the Young Elite Scientists Sponsorship Program by CAST (No. 2022QNRC001), the Project of PetroChina Technology Management Department (No. 2023ZZ1202), and the long-term subsidy mechanism from the Ministry of Finance and the Ministry of Education of China. GINW acknowledges funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnology.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://doi.org/10.1007/s11705-025-2527-4 and is accessible for authorized users.

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(1139 KB)

Accesses

Citations

Detail

Sections
Recommended

/