Formation of atomically dispersed zirconium through the utilization of nanoconfined environments
Xuan-Yi Liu, Yang Wang, Le-Ping Gao, Kai Zhang, Yang Liu, Xiang-Bin Shao, Song-Song Peng, Jiahui Kou, Lin-Bing Sun
Formation of atomically dispersed zirconium through the utilization of nanoconfined environments
Single-atom catalysts are highly effective in catalyzing a wide range of reactions owing to their capacity to have precise coordination patterns and fully leverage the potential of metal atoms. Although several techniques have been reported for the preparation of single-atom catalysts, adopting a convenient method to construct them still has a challenge. In this work, we report a convenient method for the preparation of Zr-based single-atom catalyst that takes advantage of the nanoconfined environments between the template and silica wall in template-occupied silica SBA-15. After introducing Zr-containing precursor into the nanoconfined environments of the template-occupied silica SBA-15 using solid-phase milling, Zr-based single-atom catalysts were produced via the following calcination step. Density functional theory calculations and experimental findings show that Zr atoms form Zr–O–Si structure in the silica walls. The Zr single-atom catalyst synthesized using the nanoconfined environments exhibited notably superior catalytic performance in the synthesis of benzyl acetate from the esterification reaction between acetic acid and benzyl alcohol (63.3% yield), outperforming the counterpart that synthesized without such nanoconfined environments (19.8% yield).
single-atom catalysts / zirconium / nanoconfined environments / esterification
[1] |
Zhang L , Jia Y , Gao G , Yan X , Chen N , Chen J , Soo M T , Wood B , Yang D , Du A .
CrossRef
Google scholar
|
[2] |
Liu L , Díaz U , Arenal R , Agostini G , Concepción P , Corma A . Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 2016, 16(1): 132–138
CrossRef
Google scholar
|
[3] |
Di J C , Chen C , Yang S Z , Chen S M , Duan M L , Xiong J , Zhu C , Long R , Hao W , Chi Z .
CrossRef
Google scholar
|
[4] |
Chang J , Zhang Q , Yu J , Jing W , Wang S , Yin G , Waterhouse G I N , Lu S . A Fe single atom seed-mediated strategy toward Fe3C/Fe-N-C catalysts with outstanding bifunctional ORR/OER activities. Advanced Science, 2023, 10(22): 2301656
CrossRef
Google scholar
|
[5] |
Millet M M , Algara-Siller G , Wrabetz S , Mazheika A , Girgsdies F , Teschner D , Seitz F , Tarasov A , Levchenko S V , Schlögl R .
CrossRef
Google scholar
|
[6] |
Shan J , Liu J , Li M , Lustig S , Lee S , Flytzani-Stephanopoulos M . NiCu single atom alloys catalyze the C–H bond activation in the selective non-oxidative ethanol dehydrogenation reaction. Applied Catalysis B: Environmental, 2018, 226: 534–543
CrossRef
Google scholar
|
[7] |
Liang Z , Zhao R , Qiu T , Zou R , Xu Q . Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 2019, 1(1): 100001–100033
CrossRef
Google scholar
|
[8] |
Sun X , Sun S , Gu S , Liang Z , Zhang J , Yang Y , Deng Z , Wei P , Peng J , Xu Y , Fang C .
CrossRef
Google scholar
|
[9] |
Wan W , Triana C A , Lan J , Li J , Allen C S , Zhao Y , Iannuzzi M , Patzke G R . Bifunctional single atom electrocatalysts: coordination-performance correlations and reaction pathways. ACS Nano, 2020, 14(10): 13279–13293
CrossRef
Google scholar
|
[10] |
Yan J , Kong L , Ji Y , White J , Li Y , Zhang J , An P , Liu S , Lee S T , Ma T . Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nature Communications, 2019, 10(1): 2149–2159
CrossRef
Google scholar
|
[11] |
Song W , Xiao C , Ding J , Huang Z , Yang X , Zhang T , Mitlin D , Hu W . Review of carbon support coordination environments for single metal atom electrocatalysts (SACs). Advanced Materials, 2023, 36(1): 2301477
CrossRef
Google scholar
|
[12] |
Zhou H , Zhao Y , Gan J , Xu J , Wang Y , Lv H , Fang S , Wang Z , Deng Z , Wang X .
CrossRef
Google scholar
|
[13] |
Lee B H , Park P , Kim M , Sinha A K , Lee S C , Jung E , Chang W J , Lee K S , Kim J H , Cho S P .
CrossRef
Google scholar
|
[14] |
Li J , Banis M N , Ren Z , Adair K R , Doyle-Davis K , Meira D M , Finfrock Y Z , Zhang L , Kong F , Sham T K .
CrossRef
Google scholar
|
[15] |
Yang Z , Zhao C , Qu Y , Zhou H , Zhou F , Wang J , Wu Y , Li Y . Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Advanced Materials, 2019, 31(12): 1808043
CrossRef
Google scholar
|
[16] |
Shahzad A , Zulfiqar F , Arif Nadeem M . Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: a critical review. Coordination Chemistry Reviews, 2023, 477(1): 214925
CrossRef
Google scholar
|
[17] |
Guo B , Wang Z , Zheng L , Mo G , Zhou H , Luo D . Confined cobalt single-atom catalysts with strong electronic metal-support interactions based on a biomimetic self-assembly strategy. Carbon Energy, 2024, 6(9): e554
CrossRef
Google scholar
|
[18] |
Shang H , Sun W , Sui R , Pei J , Zheng L , Dong L , Jiang Z , Zhou D , Zhuang Z , Chen W .
CrossRef
Google scholar
|
[19] |
Kistler J D , Chotigkrai N , Xu P , Enderle B , Praserthdam P , Chen C Y , Browning N D , Gates B C . A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angewandte Chemie International Edition, 2014, 53(34): 8904–8907
CrossRef
Google scholar
|
[20] |
Cui E , Lu Y , Li Z , Sang J , Wang Z , Xie M , Yang X , Cao J , Zhang Y . Unveiling the charge transfer dynamics regulated by bonding evolution in single-atom Pt/C3N5 for boosting hydrogen evolution. Applied Catalysis B: Environment and Energy, 2024, 347: 123806
|
[21] |
Peng W , Luo M , Xu X , Jiang K , Peng M , Chen D , Chan T S , Tan Y . Spontaneous atomic ruthenium doping in Mo2CTx MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Advanced Energy Materials, 2020, 10(25): 2001364
CrossRef
Google scholar
|
[22] |
Wang Y , Song X , Zhang K , Zheng X , Liu Y , Peng S , Shao X , Kou J , Sun L . Cobalt single atoms constructed in confined space for oxygen evolution reaction. Industrial & Engineering Chemistry Research, 2024, 63(18): 8200–8207
CrossRef
Google scholar
|
[23] |
Zheng X , Zhang K , Wang Y , Liu Y , Peng S , Shao X , Kou J , Sun L . Construction of nickel single atoms by using the inherent confined space in template-occupied mesoporous silica. Inorganic Chemistry, 2024, 63(18): 8312–8319
CrossRef
Google scholar
|
[24] |
Fei H , Dong J , Feng Y , Allen C S , Wan C , Volosskiy B , Li M , Zhao Z , Wang Y , Sun H .
CrossRef
Google scholar
|
[25] |
Li L , Chen Y , Xing H , Li N , Xia J , Qian X , Xu H , Li W , Yin F , He G .
CrossRef
Google scholar
|
[26] |
Ji J , Hou Y , Zhou S , Qiu T , Zhang L , Ma L , Qian C , Zhou S , Liang C , Ling M . Oxygen-coordinated low-nucleus cluster catalysts for enhanced electrocatalytic water oxidation. Carbon Energy, 2022, 5(2): e216
CrossRef
Google scholar
|
[27] |
Zhong L , Jiang C , Zheng M , Peng X , Liu T , Xi S , Chi X , Zhang Q , Gu L , Zhang S .
CrossRef
Google scholar
|
[28] |
Zhao Y , Wu H , Wang Y , Liu L , Qin W , Liu S , Liu J , Qin Y , Zhang D , Chu A .
CrossRef
Google scholar
|
[29] |
Xie W , Song Y , Li S , Li J , Yang Y , Liu W , Shao M , Wei M . Single-atomic-Co electrocatalysts with self-supported architecture toward oxygen-involved reaction. Advanced Functional Materials, 2019, 29(50): 1906477
CrossRef
Google scholar
|
[30] |
Ye S , Luo F , Zhang Q , Zhang P , Xu T , Wang Q , He D , Guo L , Zhang Y , He C .
CrossRef
Google scholar
|
[31] |
Kim J H , Shin D , Lee J , Baek D S , Shin T J , Kim Y T , Jeong H Y , Kwak J H , Kim H , Joo S H . A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano, 2020, 14(2): 1990–2001
CrossRef
Google scholar
|
[32] |
Gu M , Zheng X , Peng S , Qi S , Liu X , Sun L . Fabrication of Fe single atoms by utilizing the inherent confined space for phenol hydroxylation. ACS Sustainable Chemistry & Engineering, 2023, 11(20): 7844–7850
CrossRef
Google scholar
|
[33] |
Liu Y , Li Z , Yu Q , Chen Y , Chai Z , Zhao G , Liu S , Cheong W , Pan Y , Zhang Q .
CrossRef
Google scholar
|
[34] |
Jiao L , Jiang H . Metal-organic-framework-based single-atom catalysts for energy applications. Chem, 2019, 5(4): 786–804
CrossRef
Google scholar
|
[35] |
Hülsey M J , Zhang B , Ma Z , Asakura H , Do D A , Chen W , Tanaka T , Zhang P , Wu Z , Yan N . In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nature Communications, 2019, 10(1): 1330–1340
CrossRef
Google scholar
|
[36] |
Qiao B , Liang J , Wang A , Xu C , Li J , Zhang T , Liu J . Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Research, 2015, 8(9): 2913–2924
CrossRef
Google scholar
|
[37] |
Gu M , Gao L , Peng S , Qi S , Shao X , Liu X , Sun L . Transition metal single atoms constructed by using inherent confined space. ACS Nano, 2023, 17(5): 5025–5032
CrossRef
Google scholar
|
[38] |
Song Z , Norouzi Banis M , Liu H , Zhang L , Zhao Y , Li J , Doyle-Davis K , Li R , Knights S , Ye S .
CrossRef
Google scholar
|
[39] |
Zhang X , Guo J , Guan P , Liu C , Huang H , Xue F , Dong X , Pennycook S J , Chisholm M F . Catalytically active single-atom niobium in graphitic layers. Nature Communications, 2013, 4(1): 1924–1931
CrossRef
Google scholar
|
[40] |
Piernavieja-Hermida M , Lu Z , White A , Low K B , Wu T , Elam J W , Wu Z , Lei Y . Towards ALD thin film stabilized single-atom Pd1 catalysts. Nanoscale, 2016, 8(33): 15348–15356
CrossRef
Google scholar
|
[41] |
Ge X , Su G , Che W , Yang J , Zhou X , Wang Z , Qu Y , Yao T , Liu W , Wu Y . Atomic filtration by graphene oxide membranes to access atomically dispersed single atom catalysts. ACS Catalysis, 2020, 10(18): 10468–10475
CrossRef
Google scholar
|
[42] |
Yang Z , Chen B , Chen W , Qu Y , Zhou F , Zhao C , Xu Q , Zhang Q , Duan X , Wu Y . Directly transforming copper(I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nature Communications, 2019, 10(1): 3734–3741
CrossRef
Google scholar
|
[43] |
Kale M B , Borse R A , Gomaa Abdelkader Mohamed A , Wang Y . Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion. Advanced Functional Materials, 2021, 31(25): 2101313
CrossRef
Google scholar
|
[44] |
Zhang L , Han L , Liu H , Liu X , Luo J . Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angewandte Chemie International Edition, 2017, 56(44): 13694–13698
CrossRef
Google scholar
|
[45] |
Hu L , He A , Shen X , Gu Q , Zheng J , Wu Z , Jiang Y , Wang X , Xu J , Kan Y .
CrossRef
Google scholar
|
[46] |
Yang L , Yang H , Yin S , Wang X , Xu M , Lu G , Liu Z , Sun H . Fe single-atom catalyst for efficient and rapid fenton-like degradation of organics and disinfection against bacteria. Small, 2022, 18(9): 2104941
CrossRef
Google scholar
|
[47] |
Wang X , An Y , Liu L , Fang L , Liu Y , Zhang J , Qi H , Heine T , Li T , Kuc A .
CrossRef
Google scholar
|
[48] |
Hussain S , Talib S H , Mohamed S , Zhao R , Qurashi A , Li J , Lu Z . Computational screening of oxygen and sulfur decorated MXene supported transitions metal single-atom catalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 53: 969–978
CrossRef
Google scholar
|
/
〈 | 〉 |