Formation of atomically dispersed zirconium through the utilization of nanoconfined environments

Xuan-Yi Liu, Yang Wang, Le-Ping Gao, Kai Zhang, Yang Liu, Xiang-Bin Shao, Song-Song Peng, Jiahui Kou, Lin-Bing Sun

PDF(847 KB)
PDF(847 KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 20. DOI: 10.1007/s11705-025-2524-7
RESEARCH ARTICLE

Formation of atomically dispersed zirconium through the utilization of nanoconfined environments

Author information +
History +

Abstract

Single-atom catalysts are highly effective in catalyzing a wide range of reactions owing to their capacity to have precise coordination patterns and fully leverage the potential of metal atoms. Although several techniques have been reported for the preparation of single-atom catalysts, adopting a convenient method to construct them still has a challenge. In this work, we report a convenient method for the preparation of Zr-based single-atom catalyst that takes advantage of the nanoconfined environments between the template and silica wall in template-occupied silica SBA-15. After introducing Zr-containing precursor into the nanoconfined environments of the template-occupied silica SBA-15 using solid-phase milling, Zr-based single-atom catalysts were produced via the following calcination step. Density functional theory calculations and experimental findings show that Zr atoms form Zr–O–Si structure in the silica walls. The Zr single-atom catalyst synthesized using the nanoconfined environments exhibited notably superior catalytic performance in the synthesis of benzyl acetate from the esterification reaction between acetic acid and benzyl alcohol (63.3% yield), outperforming the counterpart that synthesized without such nanoconfined environments (19.8% yield).

Graphical abstract

Keywords

single-atom catalysts / zirconium / nanoconfined environments / esterification

Cite this article

Download citation ▾
Xuan-Yi Liu, Yang Wang, Le-Ping Gao, Kai Zhang, Yang Liu, Xiang-Bin Shao, Song-Song Peng, Jiahui Kou, Lin-Bing Sun. Formation of atomically dispersed zirconium through the utilization of nanoconfined environments. Front. Chem. Sci. Eng., 2025, 19(3): 20 https://doi.org/10.1007/s11705-025-2524-7

References

[1]
Zhang L , Jia Y , Gao G , Yan X , Chen N , Chen J , Soo M T , Wood B , Yang D , Du A . . Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem, 2018, 4(2): 285–297
CrossRef Google scholar
[2]
Liu L , Díaz U , Arenal R , Agostini G , Concepción P , Corma A . Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 2016, 16(1): 132–138
CrossRef Google scholar
[3]
Di J C , Chen C , Yang S Z , Chen S M , Duan M L , Xiong J , Zhu C , Long R , Hao W , Chi Z . . Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO photoreduction. Nature Communications, 2019, 10(1): 2840–2847
CrossRef Google scholar
[4]
Chang J , Zhang Q , Yu J , Jing W , Wang S , Yin G , Waterhouse G I N , Lu S . A Fe single atom seed-mediated strategy toward Fe3C/Fe-N-C catalysts with outstanding bifunctional ORR/OER activities. Advanced Science, 2023, 10(22): 2301656
CrossRef Google scholar
[5]
Millet M M , Algara-Siller G , Wrabetz S , Mazheika A , Girgsdies F , Teschner D , Seitz F , Tarasov A , Levchenko S V , Schlögl R . . Ni single atom catalysts for CO2 activation. Journal of the American Chemical Society, 2019, 141(6): 2451–2461
CrossRef Google scholar
[6]
Shan J , Liu J , Li M , Lustig S , Lee S , Flytzani-Stephanopoulos M . NiCu single atom alloys catalyze the C–H bond activation in the selective non-oxidative ethanol dehydrogenation reaction. Applied Catalysis B: Environmental, 2018, 226: 534–543
CrossRef Google scholar
[7]
Liang Z , Zhao R , Qiu T , Zou R , Xu Q . Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 2019, 1(1): 100001–100033
CrossRef Google scholar
[8]
Sun X , Sun S , Gu S , Liang Z , Zhang J , Yang Y , Deng Z , Wei P , Peng J , Xu Y , Fang C . . High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy, 2019, 61: 245–250
CrossRef Google scholar
[9]
Wan W , Triana C A , Lan J , Li J , Allen C S , Zhao Y , Iannuzzi M , Patzke G R . Bifunctional single atom electrocatalysts: coordination-performance correlations and reaction pathways. ACS Nano, 2020, 14(10): 13279–13293
CrossRef Google scholar
[10]
Yan J , Kong L , Ji Y , White J , Li Y , Zhang J , An P , Liu S , Lee S T , Ma T . Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nature Communications, 2019, 10(1): 2149–2159
CrossRef Google scholar
[11]
Song W , Xiao C , Ding J , Huang Z , Yang X , Zhang T , Mitlin D , Hu W . Review of carbon support coordination environments for single metal atom electrocatalysts (SACs). Advanced Materials, 2023, 36(1): 2301477
CrossRef Google scholar
[12]
Zhou H , Zhao Y , Gan J , Xu J , Wang Y , Lv H , Fang S , Wang Z , Deng Z , Wang X . . Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. Journal of the American Chemical Society, 2020, 142(29): 12643–12650
CrossRef Google scholar
[13]
Lee B H , Park P , Kim M , Sinha A K , Lee S C , Jung E , Chang W J , Lee K S , Kim J H , Cho S P . . Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nature Materials, 2019, 18(6): 620–626
CrossRef Google scholar
[14]
Li J , Banis M N , Ren Z , Adair K R , Doyle-Davis K , Meira D M , Finfrock Y Z , Zhang L , Kong F , Sham T K . . Unveiling the nature of Pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions. Small, 2021, 17(11): 2007245
CrossRef Google scholar
[15]
Yang Z , Zhao C , Qu Y , Zhou H , Zhou F , Wang J , Wu Y , Li Y . Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Advanced Materials, 2019, 31(12): 1808043
CrossRef Google scholar
[16]
Shahzad A , Zulfiqar F , Arif Nadeem M . Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: a critical review. Coordination Chemistry Reviews, 2023, 477(1): 214925
CrossRef Google scholar
[17]
Guo B , Wang Z , Zheng L , Mo G , Zhou H , Luo D . Confined cobalt single-atom catalysts with strong electronic metal-support interactions based on a biomimetic self-assembly strategy. Carbon Energy, 2024, 6(9): e554
CrossRef Google scholar
[18]
Shang H , Sun W , Sui R , Pei J , Zheng L , Dong L , Jiang Z , Zhou D , Zhuang Z , Chen W . . Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Letters, 2020, 20(7): 5443–5450
CrossRef Google scholar
[19]
Kistler J D , Chotigkrai N , Xu P , Enderle B , Praserthdam P , Chen C Y , Browning N D , Gates B C . A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angewandte Chemie International Edition, 2014, 53(34): 8904–8907
CrossRef Google scholar
[20]
Cui E , Lu Y , Li Z , Sang J , Wang Z , Xie M , Yang X , Cao J , Zhang Y . Unveiling the charge transfer dynamics regulated by bonding evolution in single-atom Pt/C3N5 for boosting hydrogen evolution. Applied Catalysis B: Environment and Energy, 2024, 347: 123806
[21]
Peng W , Luo M , Xu X , Jiang K , Peng M , Chen D , Chan T S , Tan Y . Spontaneous atomic ruthenium doping in Mo2CTx MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Advanced Energy Materials, 2020, 10(25): 2001364
CrossRef Google scholar
[22]
Wang Y , Song X , Zhang K , Zheng X , Liu Y , Peng S , Shao X , Kou J , Sun L . Cobalt single atoms constructed in confined space for oxygen evolution reaction. Industrial & Engineering Chemistry Research, 2024, 63(18): 8200–8207
CrossRef Google scholar
[23]
Zheng X , Zhang K , Wang Y , Liu Y , Peng S , Shao X , Kou J , Sun L . Construction of nickel single atoms by using the inherent confined space in template-occupied mesoporous silica. Inorganic Chemistry, 2024, 63(18): 8312–8319
CrossRef Google scholar
[24]
Fei H , Dong J , Feng Y , Allen C S , Wan C , Volosskiy B , Li M , Zhao Z , Wang Y , Sun H . . General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1(1): 63–72
CrossRef Google scholar
[25]
Li L , Chen Y , Xing H , Li N , Xia J , Qian X , Xu H , Li W , Yin F , He G . . Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Research, 2022, 15(9): 8056–8064
CrossRef Google scholar
[26]
Ji J , Hou Y , Zhou S , Qiu T , Zhang L , Ma L , Qian C , Zhou S , Liang C , Ling M . Oxygen-coordinated low-nucleus cluster catalysts for enhanced electrocatalytic water oxidation. Carbon Energy, 2022, 5(2): e216
CrossRef Google scholar
[27]
Zhong L , Jiang C , Zheng M , Peng X , Liu T , Xi S , Chi X , Zhang Q , Gu L , Zhang S . . Wood carbon based single-atom catalyst for rechargeable Zn-air batteries. ACS Energy Letters, 2021, 6(10): 3624–3633
CrossRef Google scholar
[28]
Zhao Y , Wu H , Wang Y , Liu L , Qin W , Liu S , Liu J , Qin Y , Zhang D , Chu A . . Sulfur coordination engineering of molybdenum single-atom for dual-functional oxygen reduction/evolution catalysis. Energy Storage Materials, 2022, 50: 186–195
CrossRef Google scholar
[29]
Xie W , Song Y , Li S , Li J , Yang Y , Liu W , Shao M , Wei M . Single-atomic-Co electrocatalysts with self-supported architecture toward oxygen-involved reaction. Advanced Functional Materials, 2019, 29(50): 1906477
CrossRef Google scholar
[30]
Ye S , Luo F , Zhang Q , Zhang P , Xu T , Wang Q , He D , Guo L , Zhang Y , He C . . Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy & Environmental Science, 2019, 12(3): 1000–1007
CrossRef Google scholar
[31]
Kim J H , Shin D , Lee J , Baek D S , Shin T J , Kim Y T , Jeong H Y , Kwak J H , Kim H , Joo S H . A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano, 2020, 14(2): 1990–2001
CrossRef Google scholar
[32]
Gu M , Zheng X , Peng S , Qi S , Liu X , Sun L . Fabrication of Fe single atoms by utilizing the inherent confined space for phenol hydroxylation. ACS Sustainable Chemistry & Engineering, 2023, 11(20): 7844–7850
CrossRef Google scholar
[33]
Liu Y , Li Z , Yu Q , Chen Y , Chai Z , Zhao G , Liu S , Cheong W , Pan Y , Zhang Q . . A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. Journal of the American Chemical Society, 2019, 141(23): 9305–9311
CrossRef Google scholar
[34]
Jiao L , Jiang H . Metal-organic-framework-based single-atom catalysts for energy applications. Chem, 2019, 5(4): 786–804
CrossRef Google scholar
[35]
Hülsey M J , Zhang B , Ma Z , Asakura H , Do D A , Chen W , Tanaka T , Zhang P , Wu Z , Yan N . In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nature Communications, 2019, 10(1): 1330–1340
CrossRef Google scholar
[36]
Qiao B , Liang J , Wang A , Xu C , Li J , Zhang T , Liu J . Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Research, 2015, 8(9): 2913–2924
CrossRef Google scholar
[37]
Gu M , Gao L , Peng S , Qi S , Shao X , Liu X , Sun L . Transition metal single atoms constructed by using inherent confined space. ACS Nano, 2023, 17(5): 5025–5032
CrossRef Google scholar
[38]
Song Z , Norouzi Banis M , Liu H , Zhang L , Zhao Y , Li J , Doyle-Davis K , Li R , Knights S , Ye S . . Ultralow loading and haigh-performing Pt catalyst for a polymer electrolyte membrane fuel cell anode achieved by atomic layer deposition. ACS Catalysis, 2019, 9(6): 5365–5374
CrossRef Google scholar
[39]
Zhang X , Guo J , Guan P , Liu C , Huang H , Xue F , Dong X , Pennycook S J , Chisholm M F . Catalytically active single-atom niobium in graphitic layers. Nature Communications, 2013, 4(1): 1924–1931
CrossRef Google scholar
[40]
Piernavieja-Hermida M , Lu Z , White A , Low K B , Wu T , Elam J W , Wu Z , Lei Y . Towards ALD thin film stabilized single-atom Pd1 catalysts. Nanoscale, 2016, 8(33): 15348–15356
CrossRef Google scholar
[41]
Ge X , Su G , Che W , Yang J , Zhou X , Wang Z , Qu Y , Yao T , Liu W , Wu Y . Atomic filtration by graphene oxide membranes to access atomically dispersed single atom catalysts. ACS Catalysis, 2020, 10(18): 10468–10475
CrossRef Google scholar
[42]
Yang Z , Chen B , Chen W , Qu Y , Zhou F , Zhao C , Xu Q , Zhang Q , Duan X , Wu Y . Directly transforming copper(I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nature Communications, 2019, 10(1): 3734–3741
CrossRef Google scholar
[43]
Kale M B , Borse R A , Gomaa Abdelkader Mohamed A , Wang Y . Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion. Advanced Functional Materials, 2021, 31(25): 2101313
CrossRef Google scholar
[44]
Zhang L , Han L , Liu H , Liu X , Luo J . Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angewandte Chemie International Edition, 2017, 56(44): 13694–13698
CrossRef Google scholar
[45]
Hu L , He A , Shen X , Gu Q , Zheng J , Wu Z , Jiang Y , Wang X , Xu J , Kan Y . . A high-efficiency zirconium-based single-atom catalyst for the transformation of biomass-derived 5 hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan with nearly 100% selectivity. Green Chemistry, 2022, 24(18): 6931–6944
CrossRef Google scholar
[46]
Yang L , Yang H , Yin S , Wang X , Xu M , Lu G , Liu Z , Sun H . Fe single-atom catalyst for efficient and rapid fenton-like degradation of organics and disinfection against bacteria. Small, 2022, 18(9): 2104941
CrossRef Google scholar
[47]
Wang X , An Y , Liu L , Fang L , Liu Y , Zhang J , Qi H , Heine T , Li T , Kuc A . . Atomically dispersed pentacoordinated-zirconium catalyst with axial oxygen ligand for oxygen reduction reaction. Angewandte Chemie International Edition, 2022, 61(36): e202209746
CrossRef Google scholar
[48]
Hussain S , Talib S H , Mohamed S , Zhao R , Qurashi A , Li J , Lu Z . Computational screening of oxygen and sulfur decorated MXene supported transitions metal single-atom catalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 53: 969–978
CrossRef Google scholar

Acknowledgements

We acknowledge the financial support of this work by the National Science Fund for Distinguished Young Scholars (Grant No. 22125804) and the National Natural Science Foundation of China (Grant No. 22078155). We are grateful to the High-Performance Computing Center of Nanjing Tech University for supporting the computational resources. We appreciate the XANES measurements provided by the BL11B beam station at the Shanghai Synchrotron Radiation Facility (SSRF).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-025-2524-7 and is accessible for authorized users.

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(847 KB)

Accesses

Citations

Detail

Sections
Recommended

/