Formation of atomically dispersed zirconium through the utilization of nanoconfined environments

Xuan-Yi Liu , Yang Wang , Le-Ping Gao , Kai Zhang , Yang Liu , Xiang-Bin Shao , Song-Song Peng , Jiahui Kou , Lin-Bing Sun

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 20

PDF (847KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 20 DOI: 10.1007/s11705-025-2524-7
RESEARCH ARTICLE

Formation of atomically dispersed zirconium through the utilization of nanoconfined environments

Author information +
History +
PDF (847KB)

Abstract

Single-atom catalysts are highly effective in catalyzing a wide range of reactions owing to their capacity to have precise coordination patterns and fully leverage the potential of metal atoms. Although several techniques have been reported for the preparation of single-atom catalysts, adopting a convenient method to construct them still has a challenge. In this work, we report a convenient method for the preparation of Zr-based single-atom catalyst that takes advantage of the nanoconfined environments between the template and silica wall in template-occupied silica SBA-15. After introducing Zr-containing precursor into the nanoconfined environments of the template-occupied silica SBA-15 using solid-phase milling, Zr-based single-atom catalysts were produced via the following calcination step. Density functional theory calculations and experimental findings show that Zr atoms form Zr–O–Si structure in the silica walls. The Zr single-atom catalyst synthesized using the nanoconfined environments exhibited notably superior catalytic performance in the synthesis of benzyl acetate from the esterification reaction between acetic acid and benzyl alcohol (63.3% yield), outperforming the counterpart that synthesized without such nanoconfined environments (19.8% yield).

Graphical abstract

Keywords

single-atom catalysts / zirconium / nanoconfined environments / esterification

Cite this article

Download citation ▾
Xuan-Yi Liu, Yang Wang, Le-Ping Gao, Kai Zhang, Yang Liu, Xiang-Bin Shao, Song-Song Peng, Jiahui Kou, Lin-Bing Sun. Formation of atomically dispersed zirconium through the utilization of nanoconfined environments. Front. Chem. Sci. Eng., 2025, 19(3): 20 DOI:10.1007/s11705-025-2524-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang L , Jia Y , Gao G , Yan X , Chen N , Chen J , Soo M T , Wood B , Yang D , Du A . . Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem, 2018, 4(2): 285–297

[2]

Liu L , Díaz U , Arenal R , Agostini G , Concepción P , Corma A . Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 2016, 16(1): 132–138

[3]

Di J C , Chen C , Yang S Z , Chen S M , Duan M L , Xiong J , Zhu C , Long R , Hao W , Chi Z . . Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO photoreduction. Nature Communications, 2019, 10(1): 2840–2847

[4]

Chang J , Zhang Q , Yu J , Jing W , Wang S , Yin G , Waterhouse G I N , Lu S . A Fe single atom seed-mediated strategy toward Fe3C/Fe-N-C catalysts with outstanding bifunctional ORR/OER activities. Advanced Science, 2023, 10(22): 2301656

[5]

Millet M M , Algara-Siller G , Wrabetz S , Mazheika A , Girgsdies F , Teschner D , Seitz F , Tarasov A , Levchenko S V , Schlögl R . . Ni single atom catalysts for CO2 activation. Journal of the American Chemical Society, 2019, 141(6): 2451–2461

[6]

Shan J , Liu J , Li M , Lustig S , Lee S , Flytzani-Stephanopoulos M . NiCu single atom alloys catalyze the C–H bond activation in the selective non-oxidative ethanol dehydrogenation reaction. Applied Catalysis B: Environmental, 2018, 226: 534–543

[7]

Liang Z , Zhao R , Qiu T , Zou R , Xu Q . Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 2019, 1(1): 100001–100033

[8]

Sun X , Sun S , Gu S , Liang Z , Zhang J , Yang Y , Deng Z , Wei P , Peng J , Xu Y , Fang C . . High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy, 2019, 61: 245–250

[9]

Wan W , Triana C A , Lan J , Li J , Allen C S , Zhao Y , Iannuzzi M , Patzke G R . Bifunctional single atom electrocatalysts: coordination-performance correlations and reaction pathways. ACS Nano, 2020, 14(10): 13279–13293

[10]

Yan J , Kong L , Ji Y , White J , Li Y , Zhang J , An P , Liu S , Lee S T , Ma T . Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nature Communications, 2019, 10(1): 2149–2159

[11]

Song W , Xiao C , Ding J , Huang Z , Yang X , Zhang T , Mitlin D , Hu W . Review of carbon support coordination environments for single metal atom electrocatalysts (SACs). Advanced Materials, 2023, 36(1): 2301477

[12]

Zhou H , Zhao Y , Gan J , Xu J , Wang Y , Lv H , Fang S , Wang Z , Deng Z , Wang X . . Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. Journal of the American Chemical Society, 2020, 142(29): 12643–12650

[13]

Lee B H , Park P , Kim M , Sinha A K , Lee S C , Jung E , Chang W J , Lee K S , Kim J H , Cho S P . . Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nature Materials, 2019, 18(6): 620–626

[14]

Li J , Banis M N , Ren Z , Adair K R , Doyle-Davis K , Meira D M , Finfrock Y Z , Zhang L , Kong F , Sham T K . . Unveiling the nature of Pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions. Small, 2021, 17(11): 2007245

[15]

Yang Z , Zhao C , Qu Y , Zhou H , Zhou F , Wang J , Wu Y , Li Y . Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Advanced Materials, 2019, 31(12): 1808043

[16]

Shahzad A , Zulfiqar F , Arif Nadeem M . Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: a critical review. Coordination Chemistry Reviews, 2023, 477(1): 214925

[17]

Guo B , Wang Z , Zheng L , Mo G , Zhou H , Luo D . Confined cobalt single-atom catalysts with strong electronic metal-support interactions based on a biomimetic self-assembly strategy. Carbon Energy, 2024, 6(9): e554

[18]

Shang H , Sun W , Sui R , Pei J , Zheng L , Dong L , Jiang Z , Zhou D , Zhuang Z , Chen W . . Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Letters, 2020, 20(7): 5443–5450

[19]

Kistler J D , Chotigkrai N , Xu P , Enderle B , Praserthdam P , Chen C Y , Browning N D , Gates B C . A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angewandte Chemie International Edition, 2014, 53(34): 8904–8907

[20]

Cui E , Lu Y , Li Z , Sang J , Wang Z , Xie M , Yang X , Cao J , Zhang Y . Unveiling the charge transfer dynamics regulated by bonding evolution in single-atom Pt/C3N5 for boosting hydrogen evolution. Applied Catalysis B: Environment and Energy, 2024, 347: 123806

[21]

Peng W , Luo M , Xu X , Jiang K , Peng M , Chen D , Chan T S , Tan Y . Spontaneous atomic ruthenium doping in Mo2CTx MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Advanced Energy Materials, 2020, 10(25): 2001364

[22]

Wang Y , Song X , Zhang K , Zheng X , Liu Y , Peng S , Shao X , Kou J , Sun L . Cobalt single atoms constructed in confined space for oxygen evolution reaction. Industrial & Engineering Chemistry Research, 2024, 63(18): 8200–8207

[23]

Zheng X , Zhang K , Wang Y , Liu Y , Peng S , Shao X , Kou J , Sun L . Construction of nickel single atoms by using the inherent confined space in template-occupied mesoporous silica. Inorganic Chemistry, 2024, 63(18): 8312–8319

[24]

Fei H , Dong J , Feng Y , Allen C S , Wan C , Volosskiy B , Li M , Zhao Z , Wang Y , Sun H . . General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1(1): 63–72

[25]

Li L , Chen Y , Xing H , Li N , Xia J , Qian X , Xu H , Li W , Yin F , He G . . Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Research, 2022, 15(9): 8056–8064

[26]

Ji J , Hou Y , Zhou S , Qiu T , Zhang L , Ma L , Qian C , Zhou S , Liang C , Ling M . Oxygen-coordinated low-nucleus cluster catalysts for enhanced electrocatalytic water oxidation. Carbon Energy, 2022, 5(2): e216

[27]

Zhong L , Jiang C , Zheng M , Peng X , Liu T , Xi S , Chi X , Zhang Q , Gu L , Zhang S . . Wood carbon based single-atom catalyst for rechargeable Zn-air batteries. ACS Energy Letters, 2021, 6(10): 3624–3633

[28]

Zhao Y , Wu H , Wang Y , Liu L , Qin W , Liu S , Liu J , Qin Y , Zhang D , Chu A . . Sulfur coordination engineering of molybdenum single-atom for dual-functional oxygen reduction/evolution catalysis. Energy Storage Materials, 2022, 50: 186–195

[29]

Xie W , Song Y , Li S , Li J , Yang Y , Liu W , Shao M , Wei M . Single-atomic-Co electrocatalysts with self-supported architecture toward oxygen-involved reaction. Advanced Functional Materials, 2019, 29(50): 1906477

[30]

Ye S , Luo F , Zhang Q , Zhang P , Xu T , Wang Q , He D , Guo L , Zhang Y , He C . . Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy & Environmental Science, 2019, 12(3): 1000–1007

[31]

Kim J H , Shin D , Lee J , Baek D S , Shin T J , Kim Y T , Jeong H Y , Kwak J H , Kim H , Joo S H . A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano, 2020, 14(2): 1990–2001

[32]

Gu M , Zheng X , Peng S , Qi S , Liu X , Sun L . Fabrication of Fe single atoms by utilizing the inherent confined space for phenol hydroxylation. ACS Sustainable Chemistry & Engineering, 2023, 11(20): 7844–7850

[33]

Liu Y , Li Z , Yu Q , Chen Y , Chai Z , Zhao G , Liu S , Cheong W , Pan Y , Zhang Q . . A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. Journal of the American Chemical Society, 2019, 141(23): 9305–9311

[34]

Jiao L , Jiang H . Metal-organic-framework-based single-atom catalysts for energy applications. Chem, 2019, 5(4): 786–804

[35]

Hülsey M J , Zhang B , Ma Z , Asakura H , Do D A , Chen W , Tanaka T , Zhang P , Wu Z , Yan N . In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nature Communications, 2019, 10(1): 1330–1340

[36]

Qiao B , Liang J , Wang A , Xu C , Li J , Zhang T , Liu J . Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Research, 2015, 8(9): 2913–2924

[37]

Gu M , Gao L , Peng S , Qi S , Shao X , Liu X , Sun L . Transition metal single atoms constructed by using inherent confined space. ACS Nano, 2023, 17(5): 5025–5032

[38]

Song Z , Norouzi Banis M , Liu H , Zhang L , Zhao Y , Li J , Doyle-Davis K , Li R , Knights S , Ye S . . Ultralow loading and haigh-performing Pt catalyst for a polymer electrolyte membrane fuel cell anode achieved by atomic layer deposition. ACS Catalysis, 2019, 9(6): 5365–5374

[39]

Zhang X , Guo J , Guan P , Liu C , Huang H , Xue F , Dong X , Pennycook S J , Chisholm M F . Catalytically active single-atom niobium in graphitic layers. Nature Communications, 2013, 4(1): 1924–1931

[40]

Piernavieja-Hermida M , Lu Z , White A , Low K B , Wu T , Elam J W , Wu Z , Lei Y . Towards ALD thin film stabilized single-atom Pd1 catalysts. Nanoscale, 2016, 8(33): 15348–15356

[41]

Ge X , Su G , Che W , Yang J , Zhou X , Wang Z , Qu Y , Yao T , Liu W , Wu Y . Atomic filtration by graphene oxide membranes to access atomically dispersed single atom catalysts. ACS Catalysis, 2020, 10(18): 10468–10475

[42]

Yang Z , Chen B , Chen W , Qu Y , Zhou F , Zhao C , Xu Q , Zhang Q , Duan X , Wu Y . Directly transforming copper(I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nature Communications, 2019, 10(1): 3734–3741

[43]

Kale M B , Borse R A , Gomaa Abdelkader Mohamed A , Wang Y . Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion. Advanced Functional Materials, 2021, 31(25): 2101313

[44]

Zhang L , Han L , Liu H , Liu X , Luo J . Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angewandte Chemie International Edition, 2017, 56(44): 13694–13698

[45]

Hu L , He A , Shen X , Gu Q , Zheng J , Wu Z , Jiang Y , Wang X , Xu J , Kan Y . . A high-efficiency zirconium-based single-atom catalyst for the transformation of biomass-derived 5 hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan with nearly 100% selectivity. Green Chemistry, 2022, 24(18): 6931–6944

[46]

Yang L , Yang H , Yin S , Wang X , Xu M , Lu G , Liu Z , Sun H . Fe single-atom catalyst for efficient and rapid fenton-like degradation of organics and disinfection against bacteria. Small, 2022, 18(9): 2104941

[47]

Wang X , An Y , Liu L , Fang L , Liu Y , Zhang J , Qi H , Heine T , Li T , Kuc A . . Atomically dispersed pentacoordinated-zirconium catalyst with axial oxygen ligand for oxygen reduction reaction. Angewandte Chemie International Edition, 2022, 61(36): e202209746

[48]

Hussain S , Talib S H , Mohamed S , Zhao R , Qurashi A , Li J , Lu Z . Computational screening of oxygen and sulfur decorated MXene supported transitions metal single-atom catalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 53: 969–978

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (847KB)

Supplementary files

FCE-24077-OF-LX_suppl_1

4163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/