Reversible heat-set four-phase transitions of gel1-to-sol1-to-gel2-to-sol2 in binary hydrogels

Mengjiao Liang , Wenwen Cao , Yaodong Huang

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (12) : 155

PDF (1084KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (12) : 155 DOI: 10.1007/s11705-024-2501-6
RESEARCH ARTICLE

Reversible heat-set four-phase transitions of gel1-to-sol1-to-gel2-to-sol2 in binary hydrogels

Author information +
History +
PDF (1084KB)

Abstract

A class of supramolecular binary hydrogels is formed from dodecylamine or tridecylamine and sparing carboxylic acids (with amine/acid molar ratio ≥ 18). These hydrogels exhibit a remarkable thermally reversible four-phase transition. On heating, they transition from gel one (G1)-to-sol one (Sol1), then to gel two (G2)-to-sol two (Sol2). On cooling, they revert from Sol2-to-G2-to-Sol1-to-G1. Additionally, several G1 and G2 hydrogels undergo thermally reversible gel-to-gel phase transitions, which are reflected by translucent-opaque and opaque-translucent changes in their appearance. The nature of the four-phase transformation was analyzed using a range of techniques. Scanning electron microscopy images confirmed that the fibers of the opaque hydrogel at high temperatures were considerably larger than those of its translucent counterpart at low temperatures. Fluorescence emission spectra demonstrated that higher temperatures, higher amine/acid ratios, and greater acid hydrophobicity increased the hydrophobic interactions. Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopic analyses confirmed the existence of hydrogen-bonding interactions and aggregation in the hydrogels. X-ray diffraction profiles indicated that the hydrogels adopt lamellar structures. The findings advance our current understanding of the phase transition of supramolecular gels and facilitate the constitution of binary or multicomponent gels, providing a practical way to create new smart functional materials.

Graphical abstract

Keywords

binaryhydrogels / dodecylamine / tridecylamine / gel1-to-sol1-to-gel2-to-sol2 phase transition / gel-to-gel phase transition

Cite this article

Download citation ▾
Mengjiao Liang, Wenwen Cao, Yaodong Huang. Reversible heat-set four-phase transitions of gel1-to-sol1-to-gel2-to-sol2 in binary hydrogels. Front. Chem. Sci. Eng., 2024, 18(12): 155 DOI:10.1007/s11705-024-2501-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams D J . Personal perspective on understanding low molecular weight gels. Journal of the American Chemical Society, 2022, 144(25): 11047–11053

[2]

Sharma H , Kalita B K , Pathak D , Sarma B . Low molecular weight supramolecular gels as a crystallization matrix. Crystal Growth & Design, 2024, 24(1): 17–37

[3]

Shi Y , Feng A , Mao S , Onggowarsito C , Stella Zhang X , Guo W , Fu Q . Hydrogels in solar-driven water and energy production: recent advances and future perspectives. Chemical Engineering Journal, 2024, 492: 152303

[4]

Draper E R , Adams D J . Controlling the assembly and properties of low-molecular-weight hydrogelators. Langmuir, 2019, 35(20): 6506–6521

[5]

Liu Y , Ren Y , Huang J , Lu H , Huang Z , Wang L , Ren Y , Huang J , Lu H , Huang Z . . A mechanically strong shape-memory organohydrogel based on dual hydrogen bonding and gelator-induced solidification effect. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2023, 665: 131175

[6]

Zeng L , Cui H , Liu Y , Lin X , Wang Z , Guo H , Li W H . Tough antifouling organogels reinforced by the synergistic effect of oleophobic and dipole–dipole interactions. Journal of Industrial and Engineering Chemistry, 2022, 114: 205–212

[7]

Zhu L , Lu Q , Bian T , Yang P , Yang Y , Zhang L . Fabrication and characterization of π–π stacking peptide-contained double network hydrogels. ACS Biomaterials Science & Engineering, 2023, 9(8): 4761–4769

[8]

Borsdorf L , Herkert L , Bäumer N , Rubert L , Soberats B , Korevaar P , Bourque C , Gatsogiannis C , Fernández G . Pathway-controlled aqueous supramolecular polymerization via solvent-dependent chain conformation effects. Journal of the American Chemical Society, 2023, 145(16): 8882–8895

[9]

Dutta A , Panda P , Das A , Ganguly D , Chattopadhyay S , Banerji P , Pradhan D , Das R K . Intrinsically freezing-tolerant, conductive, and adhesive proton donor-acceptor hydrogel for multifunctional applications. ACS Applied Polymer Materials, 2022, 4(10): 7710–7722

[10]

Suezawa T , Sasaki N , Yukawa Y , Assan N , Uetake Y , Onuma K , Kamada R , Tomioka D , Sakurai H , Katayama R . . Ultra-rapid and specific gelation of collagen molecules for transparent and tough gels by transition metal complexation. Advanced Science, 2023, 10(30): 2302637

[11]

Wang G , Liu Y , Zu B , Lei D C , Guo Y , Wang M , Dou X . Reversible adhesive hydrogel with enhanced sampling efficiency boosted by hydrogen bond and van der Waals force for visualized detection. Chemical Engineering Journal, 2023, 455: 140493

[12]

Guo J , Zeng C , Wu P , Liu G , Zhou F , Liu W . Surface-functionalized Ti3C2Tx MXene as a kind of efficient lubricating additive for supramolecular gel. ACS Applied Materials & Interfaces, 2022, 14(46): 52566–52573

[13]

Li Y , Liu J , Du G , Yan H , Wang H , Zhang H , An W , Zhao W , Sun T , Xin F . . Reversible heat-set organogel based on supramolecular interactions of β-cyclodextrin in N,N-dimethylformamide. Journal of Physical Chemistry B, 2010, 114(32): 10321–10326

[14]

Yin W , Shi L , Liang M , Huang Y , Yang J . Synthesis and ultraviolet/aggregation-induced emission investigation of novel tetraphenylvinyl hydrazone derivatives: efficient multimodal chemosensors for fluoride ion. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2061–2073

[15]

Sahoo P . Introducing dihedral angle torsion in a flexible dicarboxylic acid: evolution from a sequential symmetry condensing Liquid crystalline gel to a step-halting heat-set gel. Crystal Growth & Design, 2024, 24(8): 3100–3108

[16]

Ochi R , Nishida T , Ikeda M , Hamachi I . Design of peptide-based bolaamphiphiles exhibiting heat-set hydrogelation via retro-Diels-Alder reaction. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(11): 1464–1469

[17]

Zhong D C , Liao L Q , Wang K J , Liu H J , Luo X Z . Heat-set gels formed from easily accessible gelators of a succinamic acid derivative (SAD) and a primary alkyl amine (R-NH2). Soft Matter, 2015, 11(32): 6386–6392

[18]

Xie H , Asad Ayoubi M , Lu W , Wang J , Huang J . Wang W. A unique thermo-induced gel-to-gel transition in a pH-sensitive small-molecule hydrogel. Scientific Reports, 2017, 7(1): 8459

[19]

Duraisamy D K , Reddy S M M , Saveri P , Deshpande A P , Shanmugam G . A unique temperature-induced reverse supramolecular chirality-assisted gel-to-gel transition. Macromolecular Rapid Communications, 2024, 45(10): 2400018

[20]

Qin Y , Wang Y , Xiong J , Li Q , Zeng M H . Supramolecular gel-to-gel transition induced by nanoscale structural perturbation via the rotary motion of Feringa’s motor. Small, 2023, 19(29): e2207785

[21]

Schwaller D , Zapién-Castillo S , Carvalho A , Combet J , Collin D , Jacomine L , Kékicheff P , Heinrich B , Lamps J P , Díaz-Zavala N P , Mésini P J . Gel-to-gel non-variant transition of an organogel caused by polymorphism from nanotubes to crystallites. Soft Matter, 2021, 17(16): 4386–4394

[22]

Mallia V A , Butler P D , Sarkar B , Holman K T , Weiss R G . Reversible phase transitions within self-assembled fibrillar networks of (R)-18-(n-alkylamino)octadecan-7-ols in their carbon tetrachloride gels. Journal of the American Chemical Society, 2011, 133(38): 15045–15054

[23]

Huang Y D , Tu W , Yuan Y Q , Fan D L . Novel organogelators based on pyrazine-2,5-dicarboxylic acid derivatives and their mesomorphic behaviors. Tetrahedron, 2014, 70(6): 1274–1282

[24]

Huang Y , Yuan Y , Tu W , Zhang Y , Zhang M , Qu H . Preparation of efficient organogelators based on pyrazine-2,5-dicarboxylic acid showing room temperature mesophase. Tetrahedron, 2015, 71(21): 3221–3230

[25]

van Esch J , Schoombeek F , de Loos M , Kooijman H , Spek A L , Kellogg R M , Feringa B L . Cyclic bis-urea compounds as gelators for organic solvents. Chemistry, 1999, 5(3): 937–950

[26]

Ayabe M , Kishida T , Fujita N , Sada K , Shinkai S . Binary organogelators which show light and temperature responsiveness. Organic & Biomolecular Chemistry, 2003, 1(15): 2744–2747

[27]

Kotlewski A , Norder B , Jager W F , Picken S J , Mendes E . Can morphological transitions in fibrils drive stiffness of gels formed by discotic liquid crystal organogelators. Soft Matter, 2009, 24(5): 4905–4913

[28]

Kalyanasundaram K , Thomas J K . Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society, 1977, 99(7): 2039–2044

[29]

Piñeiro L , Novo M , Al-Soufi W . Novo Mercedes, Al-Soufi W. Fluorescence emission of pyrene in surfactant solutions. Advances in Colloid and Interface Science, 2015, 215: 1–12

[30]

Mallamace F , Corsaro C , Longo S , Chen S H , Mallamace D . The evaluation of the hydrophilic-hydrophobic interactions and their effect in water-methanol solutions: a study in terms of the thermodynamic state functions in the frame of the transition state theory. Colloids and Surfaces. B, Biointerfaces, 2018, 168: 193–200

[31]

Cao D , Chen X , Cao F , Guo W , Tang J , Cai C , Cui S , Yang X , Yu L , Su Y . . An intelligent transdermal formulation of ALA-loaded copolymer thermogel with spontaneous asymmetry by using temperature-induced sol-gel transition and gel-sol (suspension) transition on different sides. Advanced Functional Materials, 2021, 31(22): 2100349

[32]

Würthner F , Bauer C , Stepanenko V , Yagai S . A black perylene bisimide super gelator with an unexpected J-type absorption band. Advanced Materials, 2008, 20(9): 1695–1698

[33]

Bai B , Mao X , Wei J , Wei Z , Wang H , Li M . Selective anion-responsive organogel based on a gelator containing hydrazide and azobenzene units. Sensors and Actuators. B, Chemical, 2015, 211: 268–274

[34]

Pérez A , Serrano J L , Sierra T , Ballesteros A , de Saá D , Barluenga J . Control of self-assembly of a 3-hexen-1,5-diyne derivative: toward soft materials with an aggregation-induced enhancement in emission. Journal of the American Chemical Society, 2011, 133(21): 8110–8113

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1084KB)

Supplementary files

FCE-24054-OF-LM_suppl_1

974

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/