One stone, three birds: up-conversion, photothermal and p-n heterojunction to boost BiOBr:Yb3+,Er3+/Cu3Mo2O9 full spectrum photodegradation

Xintong Yao, Dong Zhang, Yupeng Liu, Yanzhao Chen, Dafeng Zhang, Junchang Liu, Xue-Yang Ji, Hengshuai Li, Peiqing Cai, Xipeng Pu

PDF(2158 KB)
PDF(2158 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (10) : 118. DOI: 10.1007/s11705-024-2469-2
RESEARCH ARTICLE

One stone, three birds: up-conversion, photothermal and p-n heterojunction to boost BiOBr:Yb3+,Er3+/Cu3Mo2O9 full spectrum photodegradation

Author information +
History +

Abstract

Broadening spectral response range to realize the full spectrum photocatalysis is crucial to develop photocatalysts with satisfactory light-energy conversion ability. A full-spectrum driven p-n heterojunction photocatalytic system was rationally designed through introducing the Er3+/Yb3+ co-doped BiOBr with up-conversion effect as the collector of near infrared light and photocatalysts substrate. Meanwhile, Cu3Mo2O9 with the photothermal effect as a heat source to accelerate the reaction at the surface through absorbing the near infrared light. The photocatalytic activity of BiOBr:Yb3+,Er3+/Cu3Mo2O9 composite was markedly strengthened under visible and near infrared light irradiation, and the BiOBr:Yb3+,Er3+/Cu3Mo2O9-5 composite displayed the optimal photodegradation activities for 0.03372 min–1 and 0.058 h–1, being 2.3-folds and 2.4-folds than that of pure BiOBr:Yb3+,Er3+ under the visible and near infrared light, respectively. The position of doped ions (Yb3+ and Er3+) in BiOBr:Yb3+,Er3+ was determined from the X-ray absorption fine structure spectra. And the reasonable mechanism of p-n heterojunction was proposed base on the results of experimental and density functional theory calculation. This work provides a rational strategy for the design and development of full-spectrum heterojunction photocatalysts with the up-conversion and photothermal effects to increase the photocatalytic performance.

Graphical abstract

Keywords

photocatalyst / full spectrum / p-n heterojunction / photothermal effect / up-conversion

Cite this article

Download citation ▾
Xintong Yao, Dong Zhang, Yupeng Liu, Yanzhao Chen, Dafeng Zhang, Junchang Liu, Xue-Yang Ji, Hengshuai Li, Peiqing Cai, Xipeng Pu. One stone, three birds: up-conversion, photothermal and p-n heterojunction to boost BiOBr:Yb3+,Er3+/Cu3Mo2O9 full spectrum photodegradation. Front. Chem. Sci. Eng., 2024, 18(10): 118 https://doi.org/10.1007/s11705-024-2469-2

References

[1]
Li J J , Ding Y . Chen K Y, Li Z N, Yang H J, Yue S J, Tang Y P, Wang Q Z. δ-FeOOH coupled BiOBr0.5I0.5 for efficient photocatalysis-Fenton synergistic degradation of organic pollutants. Journal of Alloys and Compounds, 2022, 903: 163795
CrossRef Google scholar
[2]
Liu X J , Liu B B , Li L , Zhuge Z H , Chen P B , Li C , Gong Y Y , Niu L Y , Liu J Y , Lei L . . Cu2In2ZnS5/Gd2O2S:Tb for full solar spectrum photoreduction of Cr(VI) and CO2 from UV/vis to near-infrared light. Applied Catalysis B: Environmental, 2019, 249: 82–90
CrossRef Google scholar
[3]
Shi Y X , Li L L , Xu Zh , Guo F , Shi W L . Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production. Chemical Engineering Journal, 2023, 459: 141549
CrossRef Google scholar
[4]
Wang L , Ma X L , Huang G F , Lian R , Huang J W , She H D , Wang Q Z . Construction of ternary CuO/CuFe2O4/g-C3N4 composite and its enhanced photocatalytic degradation of tetracycline hydrochloride with persulfate under simulated sunlight. Journal of Environmental Sciences (China), 2022, 112: 59–70
CrossRef Google scholar
[5]
Liao X L , Li T T , Ren H T , Zhang X F , Shen B L , Lin J H , Lou C W . Construction of BiOI/TiO2 flexible and hierarchical S-scheme heterojunction nanofibers membranes for visible-light-driven photocatalytic pollutants degradation. Science of the Total Environment, 2022, 806: 150698
CrossRef Google scholar
[6]
Song K X , Zhang C , Zhang Y , Yu G L , Zhang M J , Zhang Y Y , Qiao L , Liu M S , Yin N , Zhao Y . . Efficient tetracycline degradation under visible light irradiation using CuBi2O4/ZnFe2O4 type II heterojunction photocatalyst based on two spinel oxides. Journal of Photochemistry and Photobiology A Chemistry, 2022, 433: 114122
CrossRef Google scholar
[7]
Xiao Y W , Yao B , Cao M H , Wang Y D . Super-photothermal effect-mediated fast reaction kinetic in S-scheme organic/inorganic heterojunction hollow spheres toward optimized photocatalytic performance. Small, 2023, 19(23): 2207499
CrossRef Google scholar
[8]
Han R T , Zhang X Y , Liu M Y , Gao X L , Wang S H , Lu Q F , Guo E Y , Si C H , Chen S W , Wei M Z . . Combination of theory and experiment achieving one-dimensional MWO4 (M = Zn, Ni, and Cu) photocatalysts with broad-spectrum degradation. Separation and Purification Technology, 2023, 324: 124604
CrossRef Google scholar
[9]
Dong X Y , Xu L , Ma J H , Li Y J , Yin Z Y , Chen D M , Wang Q , Han J , Qiu J B , Yang Z W . . Enhanced interfacial charge transfer and photothermal effect via in-situ construction of atom co-sharing Bi plasmonic/Bi4O5Br2 nanosheet heterojunction towards improved full-spectrum photocatalysis. Chemical Engineering Journal, 2023, 459: 141557
CrossRef Google scholar
[10]
Sun H L , Xiao K M , Ma Y F , Xiao S N , Zhang Q T , Su C L , Wong K P . Vacancy-rich BiO2−x as a highly-efficient persulfate activator under near infrared irradiation for bacterial inactivation and mechanism study. Journal of Hazardous Materials, 2022, 431: 128510
CrossRef Google scholar
[11]
Liang S H , Zhang D F , Pu X P , Yao X T , Han R T , Yin J , Ren X Z . A novel Ag2O/g-C3N4 p-n heterojunction photocatalysts with enhanced visible and near-infrared light activity. Separation and Purification Technology, 2019, 210: 786–797
CrossRef Google scholar
[12]
LiuFWangY QXuDSunFZhangS CWangW LLiX YYuW SYuHDongX T. Full-spectrum-responsive 1D/2D BiVO4:Er3+,Yb3+/BiOCl core-shell S-scheme heterostructure with boosted charge transport and redox capacity for the efficient removal of organic pollutants. Ceramics International, 2023, 49(9): 13371–13385
[13]
Li Y L , Ma J H , Xu L , Liu T , Xiao T Z , Chen D M , Song Z G , Qiu J B , Zhang Y L . Enhancement of charge separation and NIR light harvesting through construction of 2D–2D Bi4O5I2/BiOBr:Yb3+,Er3+ Z-scheme heterojunctions for improved full-spectrum photocatalytic performance. Advanced Science, 2023, 10(13): 2207514
CrossRef Google scholar
[14]
Lv J X , Chen X L , Chen S S , Li H , Deng H . A visible light induced ultrasensitive photoelectrochemical sensor based on Cu3Mo2O9/BaTiO3 p–n heterojunction for detecting oxytetracycline. Journal of Electroanalytical Chemistry, 2019, 842: 161–167
CrossRef Google scholar
[15]
Chen K Y , Shi Y X , Shu P , Luo Z Y , Shi W L , Guo F . Construction of core-shell FeS2@ZnIn2S4 hollow hierarchical structure S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production. Chemical Engineering Journal, 2023, 454: 140053
CrossRef Google scholar
[16]
Qu J N , Sun X Y , Yang C L , Xue L , Li Z F , Cui B L , Hu Y Y , Du Y , Ji P H . Novel p-n type polyimide aerogels/BiOBr heterojunction for visible light activated high efficient photocatalytic degradation of organic contaminants. Journal of Alloys and Compounds, 2022, 900: 163469
CrossRef Google scholar
[17]
Liang S H , Zhang D F , Yao X T , Han R T , Zhang Q D , Jin C Y , Pu X P , Geng Y L . Deposition-precipitation synthesis of Yb3+/Er3+ co-doped BiOBr/AgBr heterojunction photocatalysts with enhanced photocatalytic activity under Vis/NIR light irradiation. Separation and Purification Technology, 2020, 238: 116450
CrossRef Google scholar
[18]
Yao X T , Jiang X , Zhang D F , Lu S Y , Wang M Y , Pan S H , Pu X P , Liu J C , Cai P Q . Achieving improved full-spectrum responsive 0D/3D CuWO4/BiOBr:Yb3+,Er3+ photocatalyst with synergetic effects of up-conversion, photothermal effect and direct Z-scheme heterojunction. Journal of Colloid and Interface Science, 2023, 644: 95–106
CrossRef Google scholar
[19]
YuJ HYaoX TSuPWangS KZhangD FGeBPuX P. Construction of Cu3Mo2O9/Mn0.3Cd0.7S S-scheme heterojunction for photocatalytic hydrogen production via water splitting. Journal of Liaocheng University (Natural Science Edition), 2024, 37(1): 52–61
[20]
Li J , Ni Z B , He Y R , Yang S Y , Gao Q Z , Cai X , Fang Y P , Qiu R L , Zhang S S . Insight into the mechanism and toxicity assessment of a novel Co3O4/BiOBr p-n heterojunction driven by sunlight for efficient degradation of glyphosate. Separation and Purification Technology, 2023, 316: 123756
CrossRef Google scholar
[21]
Peng G W , Xie Y Y , Wang Y , Yu Q , Huang Y Y , Liu S W , Lu L M . Triggering sustainable regeneration of Fe2+ by S-scheme Bi2Fe4O9/BiOBr heterojunction toward highly efficient peroxymonosulfate activation for visible-light-driven removal of thiabendazole. Applied Surface Science, 2023, 631: 157567
CrossRef Google scholar
[22]
Huang W Q , Fu Z Y , Hu X Y , Wang Q , Fan J , Liu E Z . Efficient photocatalytic hydrogen evolution over Cu3Mo2O9/TiO2 p-n heterojunction. Journal of Alloys and Compounds, 2022, 904: 164089
CrossRef Google scholar
[23]
Zhu Z R , Xia H W , Li X , Li H . A novel 1D/2D rod-sheet shape Cu3Mo2O9/g-C3N4 heterojunction photocatalyst with enhanced photocatalytic performance for ciprofloxacin. Optical Materials, 2023, 136: 113420
CrossRef Google scholar
[24]
Jatav N , Shrivastava A , Kumar De A , Sinha I . Experimental and molecular dynamics investigations on Z-scheme visible light Ag3PO4/CuWO4 photocatalysts for antibiotic degradation. Journal of Environmental Chemical Engineering, 2022, 10(3): 107975
CrossRef Google scholar
[25]
Ji X Y , Sun K , Liu Z K , Liu X H , Dong W K , Zuo X T , Shao R W , Tao J . Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. Nano-Micro Letters, 2023, 15(1): 110
CrossRef Google scholar
[26]
Jantachum P , Utara S , Hunpratub S , Chanlek N , Kidkhunthod P , Phokha S . Improved magnetic properties of CeO2 nanoparticles on Ce3+ valence states by Fe3+/Co2+/Mn2+-doped CeO2 nanoparticles. Radiation Physics and Chemistry, 2023, 208: 110920
CrossRef Google scholar
[27]
CaoB WGongS WZubairuS MLiuL NXuY HGuoLDangRZhuGDangRZhuG Q. Fabrication of Er3+/Yb3+ co-doped Bi5O7I microsphere with upconversion luminescence and enhanced photocatalytic activity for bisphenol A degradation. Frontiers in Chemistry, 2020, 8: 773
[28]
Ruiz-Fuertes J , Sanz-Ortiz M N , González J , Rodríguez F , Segura A , Errandonea D . Optical absorption and Raman spectroscopy of CuWO4. Journal of Physics: Conference Series, 2010, 215(1): 012048
CrossRef Google scholar
[29]
Zhang W H , Bian Z Y , Peng Y Y , Tang H Y , Wang H . Dual-function oxygen vacancy of BiOBr intensifies pollutant adsorption and molecular oxygen activation to remove tetracycline hydrochloride. Chemical Engineering Journal, 2023, 451: 138731
CrossRef Google scholar
[30]
Rahmani A , Farsi H . Nanostructured copper molybdates as promising bifunctional electrocatalysts for overall water splitting and CO2 reduction. RSC Advances, 2020, 10(64): 39037–39048
CrossRef Google scholar
[31]
Deng J , Lei W Y , Fu J W , Jin H L , Xu Q L , Wang S . Enhanced selective photooxidation of toluene to benzaldehyde over Co3O4-modified BiOBr/AgBr S-scheme heterojunction. Solar RRL, 2022, 6(8): 2200279
CrossRef Google scholar
[32]
Wang X Y , Li J J , Chen K Y , Li J J , Jia Y F , Mei Q , Wang Q Z . Facile synthesis of oxygen vacancies enriched ZnFe2O4 for effective photocatalytic peroxodisulfate activation. Separation and Purification Technology, 2022, 303: 122205
CrossRef Google scholar
[33]
XueY SGuoE YLuQ F. Study on preparation and photocatalytic properties of Bi2MoO6/Ni3V2O8 heterostructured nanofibers. Journal of Liaocheng University (Natural Science Edition), 2022, 35(6): 58–67
[34]
Li Y J , Zhang Y Y , Wang J J , Fan Y Z , Xiao T Z , Yin Z Y , Wang T H , Qiu J B , Song Z G . Enhancement of solar-driven photocatalytic activity of oxygen vacancy-rich Bi/BiOBr/Sr2LaF7:Yb3+,Er3+ composites through synergetic strategy of upconversion function and plasmonic effect. Journal of Environmental Sciences, 2022, 115: 76–87
CrossRef Google scholar
[35]
Liu F , Wang Y Q , Zhang S C , Sun F , Xu D , Wang W L , Li X Y , Yu W S , Yu H , Dong X T . Enhanced ultraviolet-visible-near infrared driven photocatalytic activity of 1D/0D BiVO4:Er/Yb@Ag/Ag3PO4 Z-scheme heterostructure via a synergetic strategy of plasmonic effect and upconversion luminescence. Ceramics International, 2023, 49(16): 26589–26603
CrossRef Google scholar
[36]
Shi W L , Chen Z Z , Lu J L , Sun X H , Wang Z Y , Yan Y J , Guo F , Chen L Z , Wang G Z . Construction of ZrC@ZnIn2S4 core-shell heterostructures for boosted near-infrared-light driven photothermal-assisted photocatalytic H2 evolution. Chemical Engineering Journal, 2023, 474: 145690
CrossRef Google scholar
[37]
Zhang X , Zhang J , Zha X , Luo Y , Hu Y , Chen G N , He X P . Interfacial chemical bond and oxygen vacancies modulated Mo2S3/BiOBr high-low junctions for enhanced photocatalysis gatifloxacin degradation. Applied Surface Science, 2023, 641: 158548
CrossRef Google scholar
[38]
LiYLiZLiuE Z. Preparation of NiMoO4/ZnIn2S4 S-scheme heterojunctions and enhancement mechanism of photocatalytic hydrogen production. Journal of Liaocheng University (Natural Science Edition), 2023, 36(2): 1–10
[39]
Cao Z , Jia Y , Wang Q , Cheng H . High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation. Applied Clay Science, 2021, 212: 106213
CrossRef Google scholar
[40]
LuY NZouX LWangLGengY L. Preparation and hydrogen evolution properties of ZnIn2S4/g-C3N4/MoS2 ternary heterojunctions. Journal of Liaocheng University (Natural Science Edition), 2023, 36(6): 57–64
[41]
Ou M , Wan S P , Zhong Q , Zhang S L , Song Y , Guo L , Cai W , Xu Y L . Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4 (040) with enhanced visible-light-induced photocatalytic oxidation performance. Applied Catalysis B: Environmental, 2018, 221: 97–107
CrossRef Google scholar
[42]
Li Y B , Li H K , Li S , Li M , He P , Xiao Y , Chen J F , Zhou Y F , Ren T Y . Boosting the photocatalytic hydrogen evolution performance by fabricating the NiO/Zn3In2S6 p-n heterojunction. Applied Surface Science, 2024, 642: 158622
CrossRef Google scholar
[43]
Zhang R , Xu M Q , Yu J R , Chen Z Y , Jiang J C , He J , Hao J J . Study on highly efficient p-n heterojunction Bi2MoO6/Cu2O: synthesis, characterization and visible-light photocatalytic activity toward antibiotics degradation. Journal of Solid State Chemistry, 2023, 328: 124330
CrossRef Google scholar
[44]
Wang R B , Yu W L , Fang N J , Wang P , Chu Y H , Wu S L , Liang J . Constructing fast charge separation of ZnIn2S4 @CuCo2S4 p-n heterojunction for efficient photocatalytic hydrogen energy recovery from quinolone antibiotic wastewater. Applied Catalysis B: Environmental, 2024, 341: 123284
CrossRef Google scholar
[45]
Qu J Z , Zhang D P , Li Y X , Wang P F , Mao Y S , Zhang T , Zhan S H , Li Y . In situ synthesized S-type heterojunction Bi2O2CO3/CuBi2O4 enable efficient NIR light-driven H2O2 activation for water purification. Applied Catalysis B: Environmental, 2024, 340: 123246
CrossRef Google scholar
[46]
Ngo T H , Le P N M , Truong C H , Huynh N D T , Tran T H , Luan V H , Dang B T , Johan M R , Sagadevan S , Le M M . Development of bismuth-rich bismuth oxyhalides based photocatalyst for degradation of a representative antibiotic under simulated solar light irradiation. Journal of Photochemistry and Photobiology A Chemistry, 2024, 446: 115157
CrossRef Google scholar
[47]
Zhang L Z , Zhang J J , Yu H G , Yu J G . Emerging S-scheme photocatalyst. Advanced Materials, 2022, 34(11): 2107668
CrossRef Google scholar
[48]
Wang L , Li Y K , Ai Y Y , Fan E C , Zhang F , Zhang W T , Shao G S , Zhang P . Tracking heterogeneous interface charge reverse separation in SrTiO3/NiO/NiS nanofibers with in situ irradiation XPS. Advanced Functional Materials, 2023, 33(44): 2306466
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation, China (Grant Nos. ZR2022ME179, ZR2021QE086), Liaocheng Key Research and Development Program (Policy Guidance Category) (Grant No. 2022YDSF89), and Liaocheng University Innovation and Entrepreneurship Training Program for College Students (Grant No. 2020205963). The authors acknowledge the 4B9A station of the Beijing Synchrotron Radiation Facility (BSRF).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2469-2 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2158 KB)

Accesses

Citations

Detail

Sections
Recommended

/