Structural insight into palladium-nickel clusters over mordenite zeolite for carbene-insertion reaction

Guangchao Li , Ping-Luen Baron Ho , Bryan Kit Yue Ng , Tai-Sing Wu , Pawel Rymarz , Shik Chi Edman Tsang

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (9) : 104

PDF (1175KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (9) : 104 DOI: 10.1007/s11705-024-2455-8
RESEARCH ARTICLE

Structural insight into palladium-nickel clusters over mordenite zeolite for carbene-insertion reaction

Author information +
History +
PDF (1175KB)

Abstract

Graphical abstract

Keywords

zeolite / metal cluster / synchrotron X-ray diffraction / carbene-mediated reaction

Cite this article

Download citation ▾
Guangchao Li, Ping-Luen Baron Ho, Bryan Kit Yue Ng, Tai-Sing Wu, Pawel Rymarz, Shik Chi Edman Tsang. Structural insight into palladium-nickel clusters over mordenite zeolite for carbene-insertion reaction. Front. Chem. Sci. Eng., 2024, 18(9): 104 DOI:10.1007/s11705-024-2455-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arakawa H , Aresta M , Armor J N , Barteau M A , Beckman E J , Bell A T , Bercaw J E , Creutz C , Dinjus E , Dixon D A . . Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews, 2001, 101(4): 953–996

[2]

Xia Y , Qiu D , Wang J . Transition-metal-catalyzed cross-couplings through carbene migratory insertion. Chemical Reviews, 2017, 117(23): 13810–13889

[3]

Su H L , Pérez L M , Lee S J , Reibenspies J H , Bazzi H S , Bergbreiter D E . Studies of ligand exchange in N-heterocyclic carbene silver(I) complexes. Organometallics, 2012, 31(10): 4063–4071

[4]

LiCLiuY. Bridging Heterogeneous and Homogeneous Catalysis: Concepts, Strategies, and Applications. New Jersey: John Wiley & Sons, 2014

[5]

Wang N , Sun Q , Yu J . Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: a fascinating class of nanocatalysts. Advanced Materials, 2019, 31(1): e1803966

[6]

Chai Y , Shang W , Li W , Wu G , Dai W , Guan N , Li L . Noble metal particles confined in zeolites: synthesis, characterization, and applications. Advanced Science, 2019, 6(16): 1900299

[7]

Campbell C T , Parker S C , Starr D E . The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298(5594): 811–814

[8]

Sun Q , Wang N , Bai R , Hui Y , Zhang T , Do D A , Zhang P , Song L , Miao S , Yu J . Synergetic effect of ultrasmall metal clusters and zeolites promoting hydrogen generation. Advanced Science, 2019, 6(10): 1802350

[9]

Zhang J , Wang L , Shao Y , Wang Y , Gates B C , Xiao F S A . Pd@zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores. Angewandte Chemie International Edition, 2017, 56(33): 9747–9751

[10]

Sun Q , Wang N , Bing Q , Si R , Liu J , Bai R , Zhang P , Jia M , Yu J . Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem, 2017, 3(3): 477–493

[11]

Wun C K T , Mok H K , Chen T , Wu T S , Taniya K , Nakagawa K , Day S , Tang C C , Huang Z , Su H . . Atomically dispersed 3d metal bimetallic dual-atom catalysts and classification of the structural descriptors. Chem Catalysis, 2022, 2(9): 2346–2363

[12]

Chen T , Yu W , Wun C K T , Wu T S , Sun M , Day S , Li Z , Yuan B , Wang Y , Li M . . Cu−Co dual-atom catalysts supported on hierarchical USY zeolites for an efficient cross-dehydrogenative C(sp2)-N coupling reaction. Journal of the American Chemical Society, 2023, 145(15): 8464–8473

[13]

Yu Z , Zheng A , Wang Q , Chen L , Xu J , Amoureux J P , Deng F . Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angewandte Chemie International Edition, 2010, 49(46): 8657–8661

[14]

XuJWangQLiSDengF. Solid-State NMR in Zeolite Catalysis. Berlin: Springer, 2019

[15]

Satsuma A , Sahashi Y , Shibata J , Nishi K , Satokawa S , Itabashi K , Komai S , Yoshida H , Hattori T . Stability of Pd(II) ion in side pockets of mordenite under hydrothermal conditions. Microporous and Mesoporous Materials, 2005, 81(1-3): 135–138

[16]

Quindimil A , De-La-Torre U , Pereda-Ayo B , González-Marcos J A , González-Velasco J R . Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation. Applied Catalysis B: Environmental, 2018, 238: 393–403

[17]

Guczi L , Boskovic G , Kiss E . Bimetallic cobalt based catalysts. Catalysis Reviews. Science and Engineering, 2010, 52(2): 133–203

[18]

Leung K C , Hong S , Li G , Xing Y , Ng B K Y , Ho P L , Ye D , Zhao P , Tan E , Safonova O . . Confined Ru sites in a 13X zeolite for ultrahigh H2 production from NH3 decomposition. Journal of the American Chemical Society, 2023, 145(26): 14548–14561

[19]

Li G , Yoskamtorn T , Chen W , Foo C , Zheng J , Tang C , Day S , Zheng A , Li M M , Tsang S C E . Thermal alteration in adsorption sites over SAPO-34 zeolite. Angewandte Chemie International Edition, 2022, 61(27): e202204500

[20]

Li G , Foo C , Yi X , Chen W , Zhao P , Gao P , Yoskamtorn T , Xiao Y , Day S , Tang C C . . Induced active sites by adsorbate in zeotype materials. Journal of the American Chemical Society, 2021, 143(23): 8761–8771

[21]

Boronat M , Martínez-Sánchez C , Law D , Corma A . Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO. Journal of the American Chemical Society, 2008, 130(48): 16316–16323

[22]

Liu R , Fan B , Zhang W , Wang L , Qi L , Wang Y , Xu S , Yu Z , Wei Y , Liu Z . Increasing the number of aluminum atoms in T3 sites of a mordenite zeolite by low-pressure SiCl4 treatment to catalyze dimethyl ether carbonylation. Angewandte Chemie International Edition, 2022, 61(18): e202116990

[23]

Liu Z , Yi X , Wang G , Tang X , Li G , Huang L , Zheng A . Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: from the perspective of molecular adsorption and diffusion. Journal of Catalysis, 2019, 369: 335–344

[24]

Liu Z , Yang X , Cui L , Shi Z , Lu B , Guo X , Zhang J , Xu L , Tang Y , Xiang Y . High-performance oxygen reduction electrocatalysis enabled by 3D PdNi nanocorals with hierarchical porosity. Particle & Particle Systems Characterization, 2018, 35(5): 1700366

[25]

Sahoo L , Garg R , Kaur K , Vinod C , Gautam U K . Ultrathin twisty PdNi alloy nanowires as highly active ORR electrocatalysts exhibiting morphology-induced durability over 200 K cycles. Nano Letters, 2022, 22(1): 246–254

[26]

Wang T , Chutia A , Brett D J , Shearing P R , He G , Chai G , Parkin I P . Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy & Environmental Science, 2021, 14(5): 2639–2669

[27]

Fortea-Pérez F R , Mon M , Ferrando-Soria J , Boronat M , Leyva-Perez A , Corma A , Herrera J M , Osadchii D , Gascon J , Armentano D . . The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 2017, 16(7): 760–766

[28]

Padwa A , Weingarten M D . Cascade processes of metallo carbenoids. Chemical Reviews, 1996, 96(1): 223–270

[29]

Nakamura E , Yoshikai N , Yamanaka M . Mechanism of C–H bond activation/C–C bond formation reaction between diazo compound and alkane catalyzed by dirhodium tetracarboxylate. Journal of the American Chemical Society, 2002, 124(24): 7181–7192

AI Summary AI Mindmap
PDF (1175KB)

Supplementary files

FCE-24009-OF-LG_suppl_1

1334

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/